Week 13: Data Warehousing

Warehousing

- Growing industry: \$8 billion in 1998
- Range from desktop to huge:
 - ◆Walmart: 900-CPU, 2,700 disk, 23TB Teradata system
- Lots of buzzwords, hype
 - ◆slice & dice, rollup, MOLAP, pivot, ...

Outline

- What is a data warehouse?
- Why a warehouse?
- Models & operations
- Implementing a warehouse
- Future directions

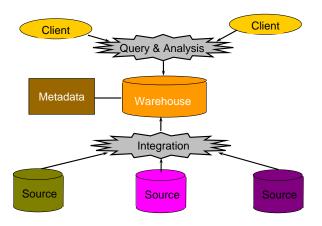
3

What is a Warehouse?

- Collection of diverse data
 - subject oriented
 - ◆aimed at executive, decision maker
 - often a copy of operational data
 - with value-added data (e.g., summaries, history)
 - integrated
 - time-varying
 - ◆non-volatile

2

-


What is a Warehouse?

- Collection of tools
 - gathering data
 - ◆cleansing, integrating, ...
 - querying, reporting, analysis
 - data mining
 - monitoring, administering warehouse

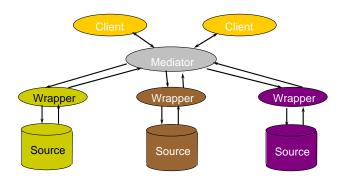
Motivating Examples

- Forecasting
- Comparing performance of units
- Monitoring, detecting fraud
- Visualization

Warehouse Architecture

Why a Warehouse?

- Two Approaches:
 - ◆Query-Driven (Lazy)
 - ◆Warehouse (Eager)



Query-Driven Approach

Advantages of Query-Driven

- No need to copy data
 - ♦less storage
 - ◆no need to purchase data
- More up-to-date data
- Query needs can be unknown
- Only query interface needed at sources
- May be less draining on sources

11

Advantages of Warehousing

- High query performance
- Queries not visible outside warehouse
- Local processing at sources unaffected
- Can operate when sources unavailable
- Can query data not stored in a DBMS
- Extra information at warehouse
 - Modify, summarize (store aggregates)
 - ◆ Add historical information

OLTP vs. OLAP

- OLTP: On Line Transaction Processing
 - ◆Describes processing at operational sites
- OLAP: On Line Analytical Processing
 - Describes processing at warehouse

10 12

OLTP vs. OLAP

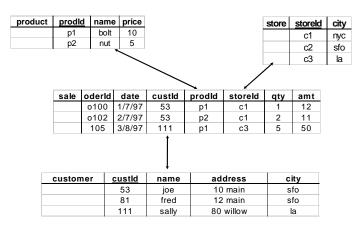
OLTP

- Mostly updates
- Many small transactions
- Mb-Tb of data
- Raw data
- Clerical users
- Up-to-date data
- Consistency, recoverability critical

OLAP

- Mostly reads
- Queries long, complex
- Gb-Tb of data
- Summarized, consolidated data
- Decision-makers, analysts as users

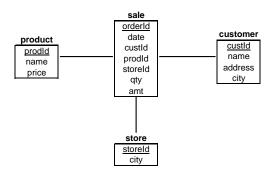
Warehouse Models & Operators

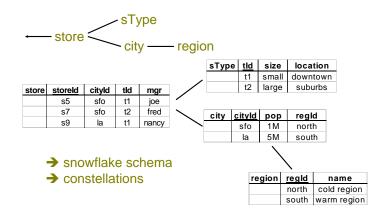

- Data Models
 - relations
 - stars & snowflakes
 - cubes
- Operators
 - ♦slice & dice
 - ◆roll-up, drill down
 - pivoting
 - other

13 15

Data Marts

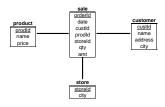
- Smaller warehouses
- Spans part of organization
 - e.g., marketing (customers, products, sales)
- Do not require enterprise-wide consensus
 - but long term integration problems?


Star

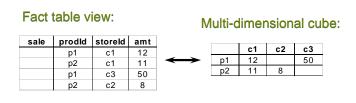

14

.

Star Schema


Dimension Hierarchies

19


Terms

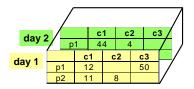
- Fact table
- Dimension tables
- Measures

17

Cube

dimensions = 2

18 20


ŗ

3-D Cube

Fact table view:

Multi-dimensional cube:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3 c2	1	50
	p2	c2	1	8
	p1	c1	2	44
	p1	c2	2	4

dimensions = 3

21

Aggregates

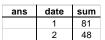
- Add up amounts for day 1
- In SQL: SELECT sum(amt) FROM SALE WHERE date = 1

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3 c2	1	50
	p2	c2	1	8
	p2 p1 p2 p1	c1 c2	2	44
	p1	c2	2	4

81

23

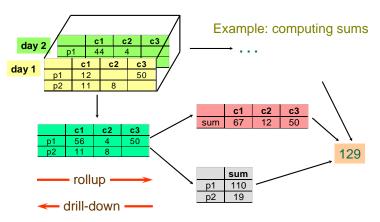
ROLAP vs. MOLAP


- ROLAP: Relational On-Line Analytical Processing
- MOLAP:
 Multi-Dimensional On-Line Analytical
 Processing

Aggregates

- Add up amounts by day
- In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3 c2	1	50
	p2	c2	1	8
	p1	c1 c2	2	44
	p1	c2	2	4

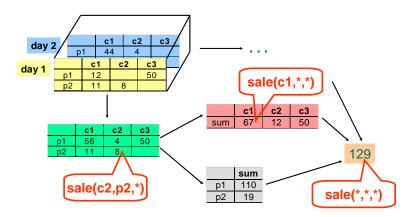


Another Example

- Add up amounts by day, product
- In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date, prodld

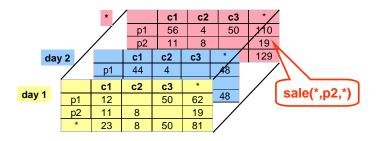
sale	prodld	storeld	date	amt					
	p1	c1	1	12		sale	prodld	date	amt
	p2	c1	1	11			p1	1	62
	p1	c3	1	50			p2	1	19
	p2	c2	1	8			· ·		-
	p1	c1	2	44			p1	2	48
	p1	c2	2	4					
				– roll	up ——	→			
			←	drill-d	down —	_			

Cube Aggregation

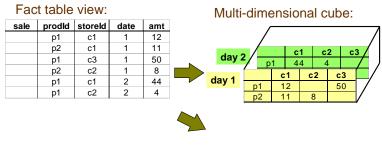


25

Aggregates

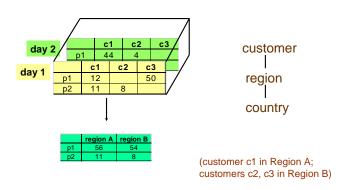

- Operators: sum, count, max, min, median, ave
- "Having" clause
- Using dimension hierarchy
 - average by region (within store)
 - maximum by month (within date)

Cube Operators



26

Extended Cube


Pivoting

	c1	c2	с3
p1	56	4	50
p2	11	8	

31

Aggregation Using Hierarchies

Query & Analysis Tools

- Query Building
- Report Writers (comparisons, growth, graphs,...)
- Spreadsheet Systems
- Web Interfaces
- Data Mining

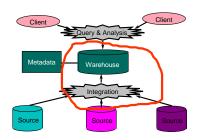
30

Other Operations

- Time functions
 - ◆e.g., time average
- Computed Attributes
 - ♦e.g., commission = sales * rate
- Text Queries
 - ◆e.g., find documents with words X AND B
 - e.g., rank documents by frequency of words X, Y, Z

Data Cleaning

- Migration (e.g., yen ⇒ dollars)
- Scrubbing: use domain-specific knowledge (e.g., social security numbers)
- Fusion (e.g., mail list, customer merging)


billing DB → customer1(Joe) ← merged_customer(Joe) service DB → customer2(Joe)

 Auditing: discover rules & relationships (like data mining)

35

Integration

- Data Cleaning
- Data Loading
- Derived Data

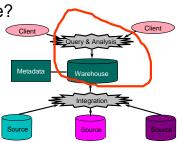
Loading Data

- Incremental vs. refresh
- Off-line vs. on-line
- Frequency of loading
 - ◆At night, 1x a week/month, continuously
- Parallel/Partitioned load

34

(

Derived Data


- Derived Warehouse Data
 - indexes
 - *aggregates
 - materialized views (next slide)
- When to update derived data?
- Incremental vs. refresh

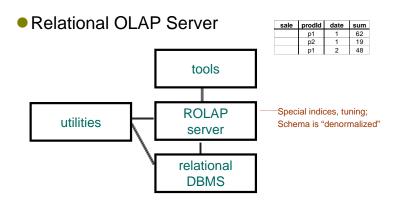
Processing

- ROLAP servers vs. MOLAP servers
- Index Structures

• What to Materialize?

Algorithms

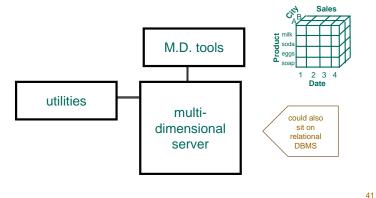
37

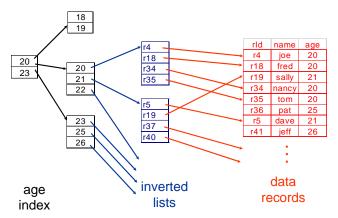

39

Materialized Views

 Define new warehouse relations using SQL expressions

sale	prodld	sto	reld	da	ite	amt			pr	oduct	id	name	price
	p1	(:1	1	1	12		←			p1	bolt	10
	p2	(:1	1	1	11					p2	nut	5
	p1	(:3	1	1	50							
	p2	(2	1	1	8							
	p1	(:1	2	2	44							
	p1	(2	2	2	4							
		-											
	joir	ιTb	prod	ld	nan	ne	price	stor	eld	date	amt		4
	joir	ıTb	prod p1	ld	nan bo		price 10	stor C		date 1	amt 12		
	joir	1Tb				lt	•		1			do	es not exi
	joir	1Tb	p1		bo	lt t	10	C′	1	1	12	<	es not exis
	joir	nTb	p1 p2		bo nu	lt t lt	10 5	c′ c′	1 1 3	1	12 11	<	
	joir	ıTb	p1 p2 p1		bo nu bo	lt t lt	10 5 10	c1 c1 c3	1 1 3 2	1 1 1	12 11 50	<	


ROLAP Server


40

MOLAP Server

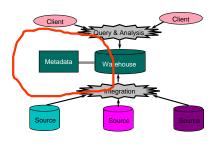
Multi-Dimensional OLAP Server

Inverted Lists

Index Structures

- Traditional Access Methods
 - ◆B-trees, hash tables, R-trees, grids, ...
- Popular in Warehouses
 - inverted lists
 - bit map indexes
 - join indexes
 - text indexes

Using Inverted Lists


- Query:
 - ◆Get people with age = 20 and name = "fred"
- List for age = 20: r4, r18, r34, r35
- List for name = "fred": r18, r52
- Answer is intersection: r18

42 44

1

Managing

- Metadata
- Warehouse Design
- Tools

Metadata

- Business
 - business terms & definition
 - data ownership, charging
- Operational
 - data lineage
 - data currency (e.g., active, archived, purged)
 - use stats, error reports, audit trails

45

47

Metadata

- Administrative
 - ♦ definition of sources, tools, ...
 - ◆schemas, dimension hierarchies, ...
 - ◆rules for extraction, cleaning, ...
 - ◆refresh, purging policies
 - ◆user profiles, access control, ...

Design

- What data is needed?
- Where does it come from?
- How to clean data?
- How to represent in warehouse (schema)?
- What to summarize?
- What to materialize?
- What to index?

46 48

Tools

- Development
 - ♦ design & edit: schemas, views, scripts, rules, queries, reports
- Planning & Analysis
 - ♦ what-if scenarios (schema changes, refresh rates), capacity planning
- Warehouse Management
 - performance monitoring, usage patterns, exception reporting
- System & Network Management
 - measure traffic (sources, warehouse, clients)
- Workflow Management
 - ◆ "reliable scripts" for cleaning & analyzing data

Future Directions

- Better performance
- Larger warehouses
- Easier to use
- What are companies & research labs working on?

51

Current State of Industry

- Extraction and integration done off-line
 - ♦ Usually in large, time-consuming, batches
- Everything copied at warehouse
 - ◆Not selective about what is stored
 - ◆Query benefit vs storage & update cost
- Query optimization aimed at OLTP
 - High throughput instead of fast response
 - Process whole query before displaying anything

Research (1)

- Incremental Maintenance
- Data Consistency
- Data Expiration
- Recovery
- Data Quality
- Error Handling

50 52

1:

Research (2)

- Rapid Monitor Construction
- Temporal Warehouses
- Materialization & Index Selection
- Data Fusion
- Data Mining
- Integration of Text & Relational Data

53

Conclusions

- Massive amounts of data and complexity of queries will push limits of current warehouses
- Need better systems:
 - easier to use
 - provide quality information