Week 13: Data Warehousing

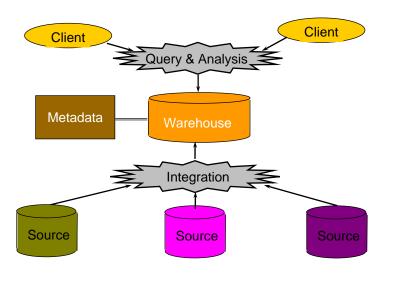
Warehousing

- Growing industry: \$8 billion in 1998
- Range from desktop to huge:
 - Walmart: 900-CPU, 2,700 disk, 23TB Teradata system
- Lots of buzzwords, hype
 - slice & dice, rollup, MOLAP, pivot, …

Outline

- What is a data warehouse?
- Why a warehouse?
- Models & operations
- Implementing a warehouse
- Future directions

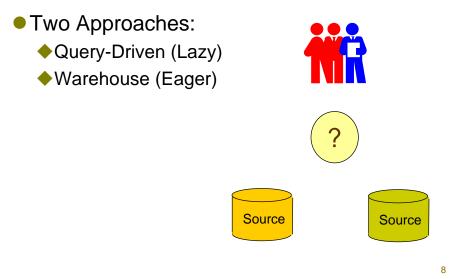
What is a Warehouse?


- Collection of diverse data
 - subject oriented
 - aimed at executive, decision maker
 - often a copy of operational data
 - with value-added data (e.g., summaries, history)
 - integrated
 - time-varying
 - non-volatile

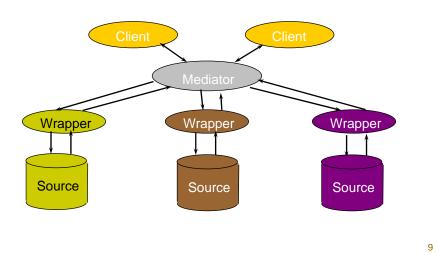
What is a Warehouse?

- Collection of tools
 - gathering data
 - cleansing, integrating, …
 - querying, reporting, analysis
 - data mining
 - monitoring, administering warehouse

Warehouse Architecture



6


Motivating Examples

- Forecasting
- Comparing performance of units
- Monitoring, detecting fraud
- Visualization

Why a Warehouse?

Query-Driven Approach

Advantages of Warehousing

- High query performance
- Queries not visible outside warehouse
- Local processing at sources unaffected
- Can operate when sources unavailable
- Can query data not stored in a DBMS
- Extra information at warehouse
 - Modify, summarize (store aggregates)
 - Add historical information

Advantages of Query-Driven

- No need to copy data
 - less storage
 - no need to purchase data
- More up-to-date data
- Query needs can be unknown
- Only query interface needed at sources
- May be less draining on sources

OLTP vs. OLAP

OLTP: On Line Transaction Processing
 Describes processing at operational sites
 OLAP: On Line Analytical Processing
 Describes processing at warehouse

6

OLTP vs. OLAP

OLTP

- Mostly updates
- Many small transactions
- Mb-Tb of data
- Raw data
- Clerical users
- Up-to-date data
- Consistency, recoverability critical

OLAP

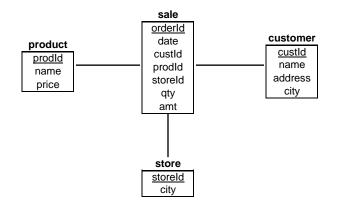
- Mostly reads
- Queries long, complex
- Gb-Tb of data
- Summarized, consolidated data
- Decision-makers, analysts as users

13

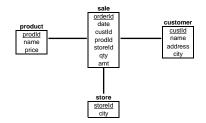
Data Marts

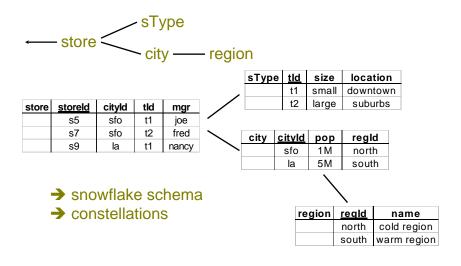
- Smaller warehouses
- Spans part of organization
 - e.g., marketing (customers, products, sales)
- Do not require enterprise-wide consensus
 - but long term integration problems?

Warehouse Models & Operators


- Data Models
 - relations
 - stars & snowflakes
 - cubes
- Operators
 - slice & dice
 - roll-up, drill down
 - pivoting
 - other

product	prod	d name	e price				store	storeld	city
	p1	bolt	10					c1	nyc
	p2	nut	5					c2	sfo
							-	c3	la
	sale	oderld	date	custld	prodid	storeld	qty	amt	
		o100	1/7/97	53	p1	c1	1	12	
		o102	2/7/97	53	p2	c1	2	11	
		105	3/8/97	111	p1	c3	5	50	
				Ì					
	customer		custld	name	ad	address		ity	
			53	joe	10	10 main		sfo	
			81	fred	12 main		s	sfo	
		111 sally 80 willow		willow		la			


Star Schema


17

Terms

- Fact table
- Dimension tables
- Measures

Dimension Hierarchies

19

Cube

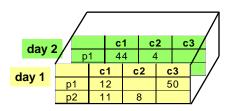
Fact table view:

Multi-dimensional cube:

c3

50

sale	prodld	storeld	amt				
	p1	c1	12			c1	c2
	p2	c1	11	\leftrightarrow	p1	12	
	p2 p1	c3	50		p2	11	8
	P .		50				
	p2	c2	8				


dimensions = 2

3-D Cube

Fact table view:

sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3 c2	1	50
	p2	c2	1	8
	p1	c1 c2	2	44
	p1	c2	2	4

Multi-dimensional cube:

dimensions = 3

21

ROLAP vs. MOLAP

ROLAP:

Relational On-Line Analytical Processing

• MOLAP:

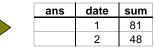
Multi-Dimensional On-Line Analytical Processing

Aggregates

Add up amounts for day 1

In SQL: SELECT sum(amt) FROM SALE
 WHERE date = 1

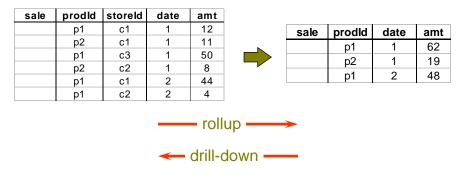
sale	prodld	storeld	date	amt
	p1	c1	1	12
	p2	c1	1	11
	p1	c3 c2	1	50
	p2 p1 p2 p1	c2	1	8
	p1	c1	2	44
	p1	c2	2	4


23

Aggregates

• Add up amounts by day

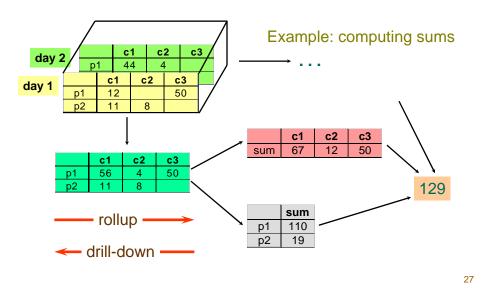
• In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date


sale	prodld	storeld	date	amt]
	p1	c1	1	12	
	p2	c1	1	11	
	p1	c3	1	50	
	p2	c2	1	8	
	p1	c1	2	44	
	p1	c2	2	4]

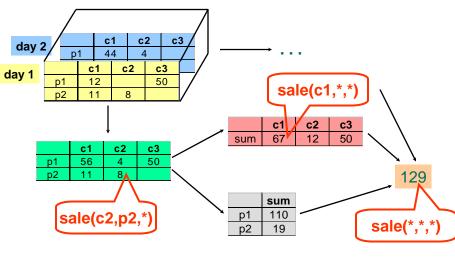
Another Example

• Add up amounts by day, product

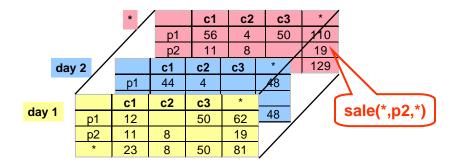
 In SQL: SELECT date, sum(amt) FROM SALE GROUP BY date, prodld



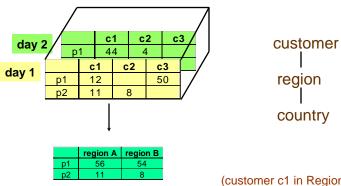
25


Aggregates

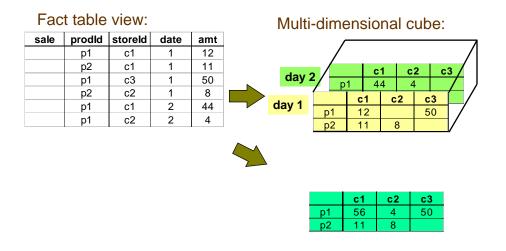
- Operators: sum, count, max, min, median, ave
- "Having" clause
- Using dimension hierarchy
 - average by region (within store)
 - maximum by month (within date)


Cube Aggregation

Cube Operators



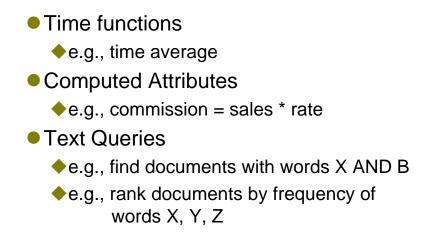
Extended Cube


29

Aggregation Using Hierarchies

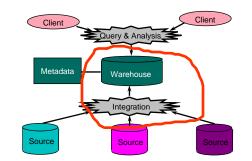
(customer c1 in Region A; customers c2, c3 in Region B)

Pivoting



31

Query & Analysis Tools


- Query Building
- Report Writers (comparisons, growth, graphs,...)
- Spreadsheet Systems
- Web Interfaces
- Data Mining

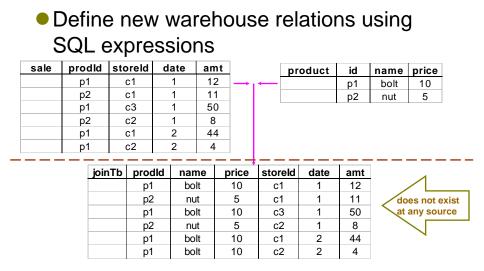
Other Operations

Integration

- Data Cleaning
- Data Loading
- Derived Data

Data Cleaning

- Migration (e.g., yen ⇒ dollars)
 Scrubbing: use domain-specific knowledge (e.g., social security numbers)
 Fusion (e.g., mail list, customer merging)
 billing DB → customer1(Joe) merged_customer(Joe)
 service DB → customer2(Joe)
- Auditing: discover rules & relationships (like data mining)


Loading Data

- Incremental vs. refresh
- Off-line vs. on-line
- Frequency of loading
 - At night, 1x a week/month, continuously
- Parallel/Partitioned load

Derived Data

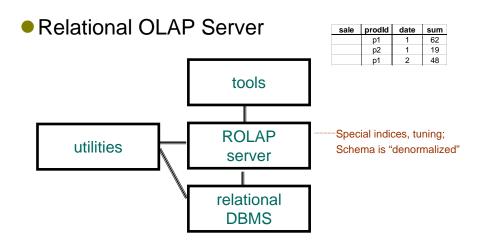
- Derived Warehouse Data
 - indexes
 - aggregates
 - materialized views (next slide)
- When to update derived data?
- Incremental vs. refresh

Materialized Views

Processing

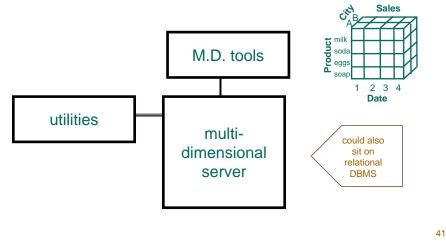
- ROLAP servers vs. MOLAP servers
- Index Structures
- What to Materialize?
 Algorithms

Metadata

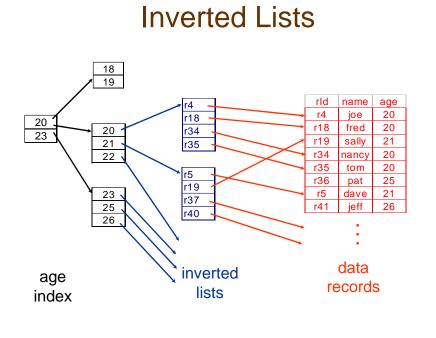

Sourc

Warehouse

Integration


Source

ROLAP Server

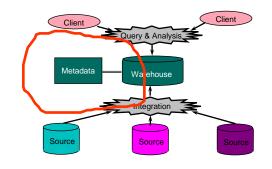

MOLAP Server

Multi-Dimensional OLAP Server

Index Structures

- Traditional Access Methods
 - B-trees, hash tables, R-trees, grids, …
- Popular in Warehouses
 - inverted lists
 - bit map indexes
 - join indexes
 - text indexes

Using Inverted Lists


• Query:

Get people with age = 20 and name = "fred"

- List for age = 20: r4, r18, r34, r35
- List for name = "fred": r18, r52
- Answer is intersection: r18

Managing

- Metadata
- Warehouse Design
- Tools

45

Metadata

- Administrative
 - definition of sources, tools, ...
 - schemas, dimension hierarchies, …
 - rules for extraction, cleaning, …
 - refresh, purging policies
 - user profiles, access control, ...

Metadata

Business

- business terms & definition
- data ownership, charging
- Operational
 - data lineage
 - data currency (e.g., active, archived, purged)
 - use stats, error reports, audit trails

Design

- What data is needed?
- Where does it come from?
- How to clean data?
- How to represent in warehouse (schema)?
- What to summarize?
- What to materialize?
- What to index?

Tools

Development

design & edit: schemas, views, scripts, rules, queries, reports

Planning & Analysis

what-if scenarios (schema changes, refresh rates), capacity planning

Warehouse Management

performance monitoring, usage patterns, exception reporting

System & Network Management

measure traffic (sources, warehouse, clients)

Workflow Management

"reliable scripts" for cleaning & analyzing data

49

Current State of Industry

Extraction and integration done off-line
Usually in large, time-consuming, batches
Everything copied at warehouse
Not selective about what is stored
Query benefit vs storage & update cost
Query optimization aimed at OLTP
High throughput instead of fast response
Process whole query before displaying anything

Future Directions

- Better performance
- Larger warehouses
- Easier to use
- What are companies & research labs working on?

Research (1)

- Incremental Maintenance
- Data Consistency
- Data Expiration
- Recovery
- Data Quality
- Error Handling

Research (2)

- Rapid Monitor Construction
- Temporal Warehouses
- Materialization & Index Selection
- Data Fusion
- Data Mining
- Integration of Text & Relational Data

Conclusions

- Massive amounts of data and complexity of queries will push limits of current warehouses
- Need better systems:
 - easier to use
 - provide quality information