Week 11: Normal Forms

Database Design

Database Redundancies and Anomalies Functional Dependencies
Entailment, Closure and Equivalence Lossless Decompositions
The Third Normal Form (3NF)
The Boyce-Codd Normal Form (BCNF)
Normal Forms and Database Design

Normal Forms and Normalization

- A normal form is a property of a database schema.
- When a database schema is un-normalized (that is, does not satisfy the normal form), it allows redundancies of various types which can lead to anomalies and inconsistencies.
- Normal forms can serve as basis for evaluating the quality of a database schema and constitutes a useful tool for database design.
- Normalization is a procedure that transforms an unnormalized schema into a normalized one.

Logical Database Design

- We have seen how to design a relational schema by first designing an ER schema and then transforming it into a relational one.
- Now we focus on how to transform the generated relational schema into a "better" one.
$■$ Goodness of relational schemas is defined in terms of the notion of normal form.

Examples of Redundancy

Employee	Salary	Project	Budget	Function
Brown	20	Mars	2	technician
Green	35	Jupiter	15	designer
Green	35	Venus	15	designer
Hoskins	55	Venus	15	manager
Hoskins	55	Jupiter	15	consultant
Hoskins	55	Mars	2	consultant
Moore	48	Mars	2	manager
Moore	48	Venus	15	designer
Kemp	48	Venus	15	designer
Kemp	48	Jupiter	15	manager

CSC343 - Introduction to Databases
Normal Forms - 4

Anomalies

The value of the salary of an employee is repeated in every tuple where the employee is mentioned, leading to a redundancy. Redundancies lead to anomalies:

- If salary of an employee changes, we have to modify the value in all corresponding tuples (update anomaly)
■ If an employee ceases to work in projects, but stays with company, all corresponding tuples are deleted, leading to loss of information (deletion anomaly)
- A new employee cannot be inserted in the relation until the employee is assigned to a project (insertion anomaly)

Functional Dependencies (FDs) in the Example

■ Each employee has a unique salary. We represent this dependency as
Employee \rightarrow Salary
and say "Salary functionally depends on Employee".

- Meaning: if two tuples have the same Employee attribute value, they must also have the same Salary attribute value
Likewise,
Project \rightarrow Budget
i.e., each project has a unique budget

What's Wrong???

- We are using a single relation to represent data of very different types.
- In particular, we are using a single relation to store the following types of entities, relationships and attributes:
\checkmark Employees and their salaries;
\checkmark Projects and their budgets;
\checkmark Participation of employees in projects, along with their functions.
- To set the problem on a formal footing, we introduce the notion of functional dependency (FD).

Functional Dependencies

- Given schema $\mathrm{R}(\mathrm{X})$ and non-empty subsets \mathbf{Y} and \mathbf{z} of the attributes \mathbf{X}, we say that there is a functional dependency between \mathbf{Y} and $\mathbf{z}(\mathbf{Y} \rightarrow \mathbf{z})$, iff for every relation instance r of $R(X)$ and every pair of tuples t_{1}, t_{2} of r, if $t_{1} \cdot Y=t_{2} \cdot Y$, then $t_{1} \cdot z=t_{2} \cdot z$.
- A functional dependency is a statement about all allowable relations for a given schema.
- Functional dependencies have to be identified by understanding the semantics of the application.
- Given a particular relation r_{0} of $R(X)$, we can tell if a dependency holds or not; but just because it holds for r_{0}, doesn't mean that it also holds for $R(X)$!

Looking for FDs

Employee	Salary	Project	Budget	Function
Brown	20	Mars	2	technician
Green	35	Jupiter	15	designer
Green	35	Venus	15	designer
Hoskins	55	Venus	15	manager
Hoskins	55	Jupiter	15	consultant
Hoskins	55	Mars	2	consultant
Moore	48	Mars	2	manager
Moore	48	Venus	15	designer
Kemp	48	Venus	15	designer
Kemp	48	Jupiter	15	manager

Dependencies Cause Anomalies,

 ...Sometimes!- The first two dependencies cause undesirable redundancies and anomalies.
- The third dependency, however, does not cause redundancies because
\{Employee, Project \} constitutes a key of the relation (...and a relation cannot contain two tuples with the same values for the key attributes.)

Dependencies on keys are OK, other dependencies are not!

Non-Trivial Dependencies

- A functional dependency $\mathbf{Y} \rightarrow \mathbf{Z}$ is non-trivial if no attribute in \mathbf{z} appears among attributes of \mathbf{Y}, e.g.,
\checkmark Employee \rightarrow Salary is non-trivial;
\checkmark Employee, Project \rightarrow Project is trivial.
- Anomalies arise precisely for the attributes which are involved in (non-trivial) functional dependencies:
\checkmark Employee \rightarrow Salary;
\checkmark Project \rightarrow Budget.
- Moreover, note that our example includes another functional dependency:
\checkmark Employee, Project \rightarrow Function.

CSC343 - Introduction to Databases

How Do We Eliminate Redundancy?

- Decomposition: Use two relations to store Person information:
\checkmark Person1 (SI\#, Name, Address)
\checkmark Hobbies (SI\#, Hobby)
- The decomposition is more general: people with hobbies can now be described independently of their name and address.
- No update anomalies:
\checkmark Name and address stored once;
\checkmark A hobby can be separately supplied or deleted;
\checkmark We can represent persons with no hobbies.

More Examples

- Address \rightarrow PostalCode
\checkmark DCS's postal code is M5S 3H5
- Author, Title, Edition \rightarrow PublicationDate
\checkmark Ramakrishnan, et al., Database Management Systems, $3^{\text {rd }}$ publication date is 2003
- CourseID \rightarrow ExamDate, ExamTime
\checkmark CSC343's exam date is December 18, starting at 7pm

CSC343 - Introduction to Databases

Superkey Constraints

- A superkey constraint is a special functional dependency: Let K be a set of attributes of R , and U the set of all attributes of R . Then K is a superkey iff the functional dependency $K \rightarrow U$ is satisfied in R.
\checkmark E.g., SI\# \rightarrow SI\#,Name,Address (for a Person relation)
A key is a minimal superkey, I.e., for each $\mathrm{X} \subset \mathrm{K}, X$ is not a superkey
\checkmark SI\#, Hobby \rightarrow SI\#, Name, Address, Hobby but
\checkmark SI\# \rightarrow SI\#, Name, Address, Hobby
\checkmark Hobby \nrightarrow SI\#, Name, Address, Hobby
A key attribute is an attribute that is part of a key.

CSC343 - Introduction to Databases

When are FDs "Equivalent"?

■ Sometimes functional dependencies (FDs) seem to be saying the same thing,
e.g., Addr \rightarrow PostalCode,Str\#
vs Addr \rightarrow PostalCode, Addr \rightarrow Str\#

- Another example

Addr \rightarrow PostalCode, PostalCode \rightarrow Province
$v s$ Addr \rightarrow PostalCode, PostalCode \rightarrow Province
vs Addr \rightarrow Province

- When are two sets of FDs equivalent? How do we "infer" new FDs from given FDs?

Entailment, Closure, Equivalence

If F is a set of FDs on schema R and f is another FD on R, then F entails f (written $F \mid=f$) if every instance r of R that satisfies every $F D$ in F also satisfies f.
Example: $F=\{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
\checkmark If Phone\# \rightarrow Address and Address \rightarrow ZipCode, then Phone\# \rightarrow ZipCode
\square The closure of F, denoted F^{+}, is the set of all FDs entailed by F.
$\square F$ and G are equivalent if F entails G and G entails F.

Armstrong's Axioms for FDs

\square This is the syntactic way of computing/testing semantic properties of FDs

```
    \(\checkmark\) Reflexivity: \(Y \subseteq X \mid-X \rightarrow Y\) (trivial FD)
        e.g., |- Name, Address \(\rightarrow\) Name
    \(\checkmark\) Augmentation: \(X \rightarrow Y \mid-X Z \rightarrow Y Z\)
        e.g., Address \(\rightarrow\) ZipCode |-
            Address,Name \(\rightarrow\) ZipCode, Name
    \(\checkmark\) Transitivity: \(X \rightarrow Y, Y \rightarrow Z \mid-X \rightarrow Z\)
    e.g., Phone\# \(\rightarrow\) Address, Address \(\rightarrow\) ZipCode
            |- Phone\# \(\rightarrow\) ZipCode
    CSC343-Introduction to Databases

\section*{How Do We Compute Entailment?}
- Satisfaction, entailment, and equivalence are semantic concepts - defined in terms of the
"meaning" of relations in the "real world."
\(\square\) How to check if \(F\) entails \(f, F\) and \(G\) are equivalent?
\(\checkmark\) Apply the respective definitions for all possible relation instances for a schema R ... - ...
\(\checkmark\) Find algorithmic, syntactic ways to compute these notions.
■ Note: The syntactic solution must be "correct" with respect to the semantic definitions.
■ Correctness has two aspects: soundness and completeness - see later.

\section*{Soundness}
- Theorem: F |- fimplies F |= f
- In words: If FD \(f: X \rightarrow Y\) can be derived from a set of FDs \(F\) using the axioms, then \(f\) holds in every relation that satisfies every FD in \(F\).
Example: Given \(X \rightarrow Y\) and \(X \rightarrow Z\) then
\[
\begin{array}{ll}
X \rightarrow X Y & \text { Augmentation by } X \\
Y X \rightarrow Y Z & \text { Augmentation by } Y \\
X \rightarrow Y Z & \text { Transitivity }
\end{array}
\]
- Thus, \(X \rightarrow Y Z\) is satisfied in every relation where both \(X \rightarrow Y\) and \(X \rightarrow Z\) are satisfied. We have derived the union rule for FDs.

\section*{Completeness}
- Theorem: F |= fimplies F |-f
\(\square\) In words: If \(F\) entails \(f\), then \(f\) can be derived from \(F\) using Armstrong's axioms.
\(\square\) A consequence of completeness is the following (naïve) algorithm to determining if \(F\) entails \(f\) :

Algorithm: Use the axioms in all possible ways to generate \(F^{+}\)(the set of possible FD's is finite so this can be done) and see if \(f\) is in \(F^{+}\)

\section*{Decomposition Rule}
- Another example of a derivation rule we can use in generating \(\mathrm{F}^{+}\):
\(X \rightarrow A B, A B \rightarrow A\) (refl), \(X \rightarrow A\) (trans)
\(\square\) So, whenever we have \(X \rightarrow A B\), we can "decompose" this functional dependency to two functional dependencies \(X \rightarrow A, X \rightarrow B\)

\section*{Correctness}
- The notions of soundness and completeness link the syntax (Armstrong's axioms) with semantics, i.e., entailment defined in terms of relational instances.
- This is a precise way of saying that the algorithm for entailment based on the axioms is "'correct" with respect to the definitions.

\section*{Generating \(\mathrm{F}^{+}\)}


Thus, \(A B \rightarrow B D, A B \rightarrow B C D, A B \rightarrow B C D E\), and \(A B \rightarrow E\) are all elements of \(F^{+}\).

\section*{Attribute Closure}

■ Calculating attribute closure leads to a more efficient way of checking entailment.
\(\square\) The attribute closure of a set of attributes \(X\) with respect to a set of FDs \(F\), denoted \(X^{+}{ }_{F}\), is the set of all attributes \(A\) such that \(X \rightarrow A\) \(\checkmark X^{+}{ }_{F}\) is not necessarily same as \(X^{+}{ }_{G}\) if \(F \neq G\) \(\square\) Attribute closure and entailment:
```

Algorithm: Given a set of FDs, F, then X
if and only if Y\subseteq X+}\mp@subsup{}{F}{

```

\section*{Computing Attribute Closure:}

An Example
\[
\begin{gathered}
F: A B \rightarrow C \\
A \rightarrow D \\
D \rightarrow E \\
A C \rightarrow B
\end{gathered}
\]
\begin{tabular}{ll}
\(X\) & \multicolumn{1}{c}{\(X_{F}{ }^{+}\)} \\
\hline\(A\) & \(\{A, D, E\}\) \\
\(A B\) & \(\{A, B, C, D, E\}\) \\
\(A C\) & \(\{A, C, B, D, E\}\) \\
\(B\) & \(\{B\}\) \\
\(D\) & \(\{D, E\}\)
\end{tabular}

Is \(A B \rightarrow E\) entailed by \(\boldsymbol{F}\) ? Yes
Is \(D \rightarrow C\) entailed by \(\boldsymbol{F}\) ? No
Result: \(X_{F}{ }^{+}\)allows us to determine all FDs of the form \(X \rightarrow Y\) entailed by \(\boldsymbol{F}\)

\section*{Computing the Attribute Closure \(\mathbf{X}^{+}{ }_{F}\)}
```

closure := X; // since X\subseteq X
repeat
old := closure;
if there is an FD Z }->V\mathrm{ in F}\mathrm{ such that
Z\subseteq closure and V}\subseteq\mathrm{ closure
then closure:= closure \cup V
until old = closure

- If T\subseteqclosure then X }->T\mathrm{ is entailed by F

```

\section*{Normal Forms}
- Each normal form is a set of conditions on a schema that together guarantee certain properties (relating to redundancy and update anomalies).
- First normal form (1NF) is the same as the definition of relational model (relations \(=\) sets of tuples; each tuple \(=\) sequence of atomic values).
- Second normal form (2NF) 1NF plus every attribute that is not part of a candidate key (that is, a non-prime attribute) must depend on an entire candidate key (not part of it).
- The two most used are third normal form (3NF) and Boyce-Codd normal form (BCNF).
- We will discuss in detail the 3NF.

\section*{The Third Normal Form}
- A relation \(R(X)\) is in third normal form (3NF) if, for each (non-trivial) functional dependency \(Y \rightarrow Z\), at least one of the following is true:
\(\checkmark Y\) contains a key \(K\) of \(R(X)\);
\(\checkmark\) Each attribute in \(Z\) is contained in at least one (candidate) key of \(R(X)\). That is, each attribute in \(Z\) is a prime attribute.
- 3NF does not remove all redundancies.
- 3NF decompositions founded on the notion of minimal cover.

\section*{Basic Idea}
- \(R(A B C D), A \rightarrow D\)
- Projection:
\(\checkmark\) R1(AD), A \(\rightarrow\) D
\(\checkmark\) R2(ABC)

\section*{Decomposition into 3NF: Basic Idea}
- Decomposition into 3NF can proceed as follows.
\(\checkmark\) For each functional dependency of the form \(\mathrm{y} \rightarrow\) \(Z\), where \(y\) contains a subset of a key \(k\) of \(R(X)\), create a projection on all the attributes \(\mathrm{Y}, \mathrm{z}\) (2NF).
\(\checkmark\) For each dependency of the form \(\mathrm{Y} \rightarrow \mathrm{z}\), where y, doesn't contain any key, and not all attributes of z are key attributes, create a projection on all the attributes \(\mathrm{Y}, \mathrm{Z}\) ( 3 NF ).
- The new relations only include dependencies \(\mathrm{Y} \rightarrow\) \(Z\), where \(y\) contains a key \(K\) of \(R(X)\), or \(Z\) contains only key attributes.

CSC343 - Introduction to Databases

\section*{Normalization Through Decomposition}
- A relation that is not in 3NF, can be replaced with one or more normalized relations using normalization.
- We can eliminate redundancies and anomalies for the example relation

Emp(Employee,Salary,Project,Budget,Function)
if we replace it with the three relations obtained by projections on the sets of attributes corresponding to the three functional dependencies:
\(\checkmark\) Employee \(\rightarrow\) Salary;
\(\checkmark\) Project \(\rightarrow\) Budget.
\(\checkmark\) Employee, Project \(\rightarrow\) Function.

\section*{...Start with...}
\begin{tabular}{|c|c|c|c|c|}
\hline Employee & Salary & Project & Budget & Function \\
\hline Brown & 20 & Mars & 2 & technician \\
Green & 35 & Jupiter & 15 & designer \\
Green & 35 & Venus & 15 & designer \\
Hoskins & 55 & Venus & 15 & manager \\
Hoskins & 55 & Jupiter & 15 & consultant \\
Hoskins & 55 & Mars & 2 & consultant \\
Moore & 48 & Mars & 2 & manager \\
Moore & 48 & Venus & 15 & designer \\
Kemp & 48 & Venus & 15 & designer \\
Kemp & 48 & Jupiter & 15 & manager \\
\hline
\end{tabular}

\section*{Another Example}
\begin{tabular}{|c|c|c|}
\hline Employee & Project & Branch \\
\hline Brown & Mars & Chicago \\
Green & Jupiter & Birmingham \\
Green & Venus & Birmingham \\
Hoskins & Saturn & Birmingham \\
Hoskins & Venus & Birmingham \\
\hline
\end{tabular}

This relation satisfies the functional dependencies: Employee \(\rightarrow\) Branch
Project \(\rightarrow\) Branch

\section*{Result of Normalization}
\begin{tabular}{|c|c|}
\hline Employee & Salary \\
\hline Brown & 20 \\
Green & 35 \\
Hoskins & 55 \\
Moore & 48 \\
Kemp & 48 \\
\hline
\end{tabular}
 Brown \(\quad\) Mars \(\quad\) technician \begin{tabular}{l|l|l} 
Green & Jupiter & designer \\
Green & Venus & designer
\end{tabular} Green Hoskins
Hoskins Hoskins Hoskins Moore Moore Kemp
Kem
Kem

Venus
Jupiter

Mars
Mars
Venus
Venus designer manager


The keys of new relations are lefthand sides of functional dependencies: satisfaction of \(3 N F\) is therefore guaranteed for the new relations.

\section*{A Possible Decomposition}

...but now we don't know each employee's projects!

\section*{The Join of the Projections}
\begin{tabular}{|c|c|c|}
\hline Employee & Project & Branch \\
\hline Brown & Mars & Chicago \\
Green & Jupiter & Birmingham \\
Green & Venus & Birmingham \\
Hoskins & Saturn & Birmingham \\
Hoskins & Venus & Birmingham \\
Green & Saturn & Birmingham \\
Hoskins & Jupiter & Birmingham \\
\hline
\end{tabular}

The result of the join is different from the original relation.

We lost some information during the decomposition!

\section*{A Condition for Lossless Decomposition}
- Let \(R(X)\) be a relation schema and let \(X_{1}\) and \(X_{2}\) be two subsets of \(x\) such that \(X_{1} \cup x_{2}=x\). Also, let \(X_{0}=X_{1} \cap X_{2}\).
\(\square\) If \(R(X)\) satisfies the functional dependency \(X_{0} \rightarrow X_{1}\) or \(X_{0} \rightarrow X_{2}\), then the decomposition of \(R(X)\) on \(X_{1}\) and \(X_{2}\) is lossless.
- In other words, \(R(X)\) has a lossless decomposition on two relations if the set of attributes common to the relations is a superkey for at least one of the decomposed relations.

\section*{Lossless Decomposition}
- The decomposition of a relation \(\mathrm{R}(\mathrm{X})\) on \(\mathrm{X}_{1}\) and \(X_{2}\) is lossless if for every instance \(r\) of \(R(X)\) the join of the projections of \(R\) on \(X_{1}\) and \(X_{2}\) is equal to \(r\) itself (that is, does not contain spurious tuples).
■ Of course, it is clearly desirable to allow only lossless decompositions during normalization.

CSC343-Introduction to Databases

\section*{Intuition Behind the Test for Losslessness}
\(\square\) Suppose \(R_{1} \cap R_{2} \rightarrow R_{2}\). Then a row of \(\mathrm{r}_{1}\) can combine with exactly one row of \(r_{2}\) in the natural join (since in \(r_{2}\) a particular set of values for the attributes in \(R_{1} \cap R_{2}\) defines a unique row)


CSC343 - Introduction to Databases
Normal Forms - 40

\section*{A Lossless Decomposition}
\begin{tabular}{|c|c|}
\hline Employee & Branch \\
\hline Brown & Chicago \\
Green & Birmingham \\
Hoskins & Birmingham \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Employee & Project \\
\hline Brown & Mars \\
Green & Jupiter \\
Green & Venus \\
Hoskins & Saturn \\
Hoskins & Venus \\
\hline
\end{tabular}

\section*{Another Example}
- Schema ( \(R, F\) ) where
\(R=\{S I \#\), Name, Address, Hobby\}
\(F=\{S I \# \rightarrow\) Name, Address \(\}\)
can be decomposed into
\(R_{1}=\{\) SI\#, Name, Address \(\}\)
\(F_{1}=\{S I \# \rightarrow\) Name, Address \(\}\)
and
\(R_{2}=\{S I \#, H o b b y\}\)
\(F_{2}=\{ \}\)
since \(R_{1} \cap R_{2}=S I \#, S I \# \rightarrow R_{1}\) the decomposition is lossless.

\section*{Notation}
\(\square\) Instead of saying that we have relation schema \(R(X)\) with functional dependencies \(F\), we will say that we have schema
\[
R=(R, F)
\]
where \(R\) is a set of attributes and \(F\) is a set of functional dependencies.
\(\square\) The 3NF normalization problem is then to generate a set of relation schemas \(\mathbb{R}_{1}=\left(R_{1}, F_{1}\right)\), \(\ldots, \mathbb{R}_{u}=\left(R_{n}, F_{n}\right)\), such that \(\mathbb{R}_{i}\) is in 3NF.

\section*{Another Problem...}
- Assume we wish to insert a new tuple that specifies that employee Armstrong works in the Birmingham branch and participates in project Mars.
- In the original relation, this update would be identified as illegal, because it would cause a violation of the Project \(\rightarrow\) Branch dependency.
\(\square\) For the decomposed relations, however, this is not possible because the two attributes Project and Branch have been moved to different relations.

\section*{Preserving Dependencies (Intuition)}
\(\square\) A decomposition preserves dependencies if each of the functional dependencies of the original relation schema involves attributes that appear together in one of the decomposed relation schemas.
- It is clearly desirable that a decomposition preserves dependencies because then it is possible to (efficiently) ensure that the decomposed schema satisfies the same constraints as the original schema.


\section*{Example}
- Schema ( \(R, F\) ) where
\(R=\{S I \#\), Name,Address,Hobby \(\}\)
\(F=\{\) SI\# \(\rightarrow\) Name,Address \(\}\)
can be decomposed into
\[
R_{1}=\{S I \#, \text { Name,Address }\}
\]
\(F_{1}=\{S I \# \rightarrow\) Name,Address \(\}\)
and
\(R_{2}=\{S I \#, H o b b y\}\)
\(F_{2}=\{ \}\)
- Since \(F=F_{1} \cup F_{2}\) the decomposition is
dependency preserving.

\section*{Dependency Preservation}

■ If \(f\) is a FD in \(F\), but \(f\) is not in \(F_{1} \cup F_{2}\), there are two possibilities:
\[
\checkmark f \in\left(F_{1} \cup F_{2}\right)^{+}
\]
\(\checkmark\) If the constraints in \(F_{1}\) and \(F_{2}\) are maintained, \(f\) will be maintained automatically.
\(\checkmark f \notin\left(F_{1} \cup F_{2}\right)^{+}\)
\(\checkmark f\) can be checked only by first
taking the join of \(r_{1}\) and \(r_{2}\)....This
is costly...

CSC343 - Introduction to Databases
Normal Forms - 48

\section*{Desirable Qualities for Decompositions}

Decompositions should always satisfy the properties of lossless decomposition and dependency preservation:
- Lossless decomposition ensures that the information in the original relation can be accurately reconstructed based on the information represented in the decomposed relations.
- Dependency preservation ensures that the decomposed relations have the same capacity to represent the integrity constraints as the original relations and therefore to reveal illegal updates.

\section*{Computing the Minimal Cover}

Example: \(F=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E\),
\[
B G H \rightarrow L, L \rightarrow A D, E \rightarrow L, B H \rightarrow E\}
\]
- Step 1: Make RHS of each FD into a single attribute: Use decomposition rule for FDs.
\(\checkmark\) Example: \(L \rightarrow A D\) replaced by \(L \rightarrow A, L \rightarrow D ; A B H \rightarrow C K\) by \(A B H \rightarrow C, A B H \rightarrow K\)
\(\square\) Step 2: Eliminate redundant attributes from LHS: If \(B\) is a single attribute and \(\mathrm{FD} X B \rightarrow A \in F, X \rightarrow A\) is entailed by \(F\), then \(B\) is unnecessary.
e.g., Can an attribute be deleted from \(A B H \rightarrow C\) ?

Compute \(A B^{+}{ }_{F}, A H^{+}{ }_{F}, B H^{+}{ }_{F}\); Since \(C \in(B H)^{+}{ }_{F}, \quad B H \rightarrow C\)
is entailed by \({ }^{F}\) and \(A\) is redundant in \(A B H \rightarrow{ }^{\prime} C\).

\section*{Minimal Cover}
- A minimal cover for a set of dependencies \(F\) is a set of dependencies \(U\) such that:
\(\checkmark U\) is equivalent to \(F \quad\) (I.e., \(F^{+}=U^{+}\))
\(\checkmark\) All FDs in \(U\) have the form \(X \rightarrow A\) where \(A\) is a single attribute
\(\checkmark\) It is not possible to make \(U\) smaller (while preserving equivalence) by
\(\checkmark\) Deleting an FD
\(\checkmark\) Deleting an attribute from an FD (its LHS)
- FDs and attributes that can be deleted in this way are called redundant.

CSC343 - Introduction to Databases Normal Forms - 50

\section*{Computing the Minimal Cover (cont'd)}

■ Step 3: Delete redundant FDs from F: If \(F-\{f\}\) entails \(f\), then \(f\) is redundant; if \(f\) is \(X \rightarrow A\) then check if \(A \in X^{+}{ }_{F-}\{f\}\)
e.g., \(B G H \rightarrow L\) is entailed by \(E \rightarrow L, B H \rightarrow E\), so it is redundant
■ Note: The order of steps 2, 3 can't be interchanged!! See textbook for a counterexample.
\(F_{1}=\{A B H \rightarrow C, A B H \rightarrow K, A \rightarrow D, C \rightarrow E, B G H \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, B H \rightarrow E\}\)
\(F_{2}=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, B H \rightarrow L, L \rightarrow A, L \rightarrow D, E \rightarrow L, B H \rightarrow E\}\) \(F_{3}=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}\)

\section*{Synthesizing a 3NF Schema}

Starting with a schema \(\mathrm{R}=(R, F)\) :
- Step 1: Compute minimal cover \(U\) of \(F\). The decomposition is based on \(U\), but since \(U^{+}=F^{+}\) the same functional dependencies will hold.
\(\checkmark\) A minimal cover for
\[
F=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E, B G H \rightarrow L, L \rightarrow A D,
\]
\[
E \rightarrow L, B H \rightarrow E\}
\]
is
\[
U=\{B H \rightarrow C, B H \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}
\]

\section*{Synthesizing ... Step 3}

■ Step 3: For each \(U_{i}\) form schema \(R_{i}=\left(R_{i}, U_{i}\right)\), where \(R_{i}\) is the set of all attributes mentioned in \(U_{i}\)
\(\checkmark\) Each FD of \(U\) will be in some \(R_{i}\). Hence the decomposition is dependency preserving:
\(\checkmark \mathrm{R}_{1}=(B H C K ; B H \rightarrow C, B H \rightarrow K)\),
\(\checkmark \mathrm{R}_{2}=(A D ; A \rightarrow D)\),
\(\checkmark \mathrm{R}_{3}=(C E ; \quad C \rightarrow E)\),
\(\checkmark \mathrm{R}_{4}=(A L ; L \rightarrow A)\),
\(\checkmark \mathrm{R}_{5}=(E L ; E \rightarrow L)\)
CSC343- Introduction to Databases

\section*{Synthesizing ... Step 2}
\(■\) Step 2: Partition \(U\) into sets \(U_{1}, U_{2}, \ldots U_{n}\) such that the LHS of all elements of \(U_{i}\) are the same:
\[
\begin{aligned}
\checkmark U_{1} & =\{B H \rightarrow C, B H \rightarrow K\}, U_{2}=\{A \rightarrow D\}, \\
U_{3} & =\{C \rightarrow E\}, U_{4}=\{L \rightarrow A\}, U_{5}=\{E \rightarrow L\}
\end{aligned}
\]

\section*{Synthesizing ... Step 4}
- Step 4: If no \(R_{i}\) is a superkey of R , add schema \(R_{0}=\left(R_{0},\{ \}\right)\) where \(R_{0}\) is a key of \(R\).
\(\checkmark \mathrm{R}_{0}=(B G H,\{ \}) ; \mathrm{R}_{0}\) might be needed when not all attributes are contained in \(R_{1} \cup R_{2} \ldots \cup\) \(R_{n}\);
\(\checkmark\) A missing attribute \(A\) must be part of all keys (since it's not in any FD of \(U\), deriving a key constraint from \(U\) involves the augmentation axiom);
\(\checkmark \mathrm{R}_{0}\) might be needed even if all attributes are accounted for in \(R_{1} \cup R_{2} \ldots \cup R_{\mathrm{n}}\)

\section*{Synthesizing ... Step 4 (cont'd)}
\(\square\) Example: \((A B C D ;\{A \rightarrow B, C \rightarrow D\})\), with step 3 decomposition: \(R_{1}=(A B ;\{A \rightarrow B\}), R_{2}\) \(=(C D ;\{C \rightarrow D\})\).
Lossy! Need to add (AC; \{\}), for losslessness
■ Step 4 guarantees lossless decomposition:
\[
\begin{aligned}
A B C D & -- \text { decomp--> AB,ACD } \\
& \text {--decomp-->AB,AC,CD }
\end{aligned}
\]

\section*{Non-BCNF Examples}
- Person(SI\#, Name, Address, Hobby)
\(\checkmark\) The FD SI\# \(\rightarrow\) Name, Address does not satisfy conditions for BCNF since the key is (SSN, Hobby)
- HasAccount(AcctNum, ClientId, OfficeId)
\(\checkmark\) The FD AcctNum \(\rightarrow\) OfficeId does not satisfy BCNF conditions if we assume that keys for HasAccount are (ClientId, OfficeId) and (AcctNum, ClientId); rather than AcctNum.

\section*{Boyce-Codd Normal Form (BCNF)}
- A relation \(\mathrm{R}(\mathrm{X})\) is in Boyce-Codd Normal Form if for every non-trivial functional dependency \(\mathrm{Y} \rightarrow \mathrm{Z}\) defined on it, y contains a key \(K\) of \(R(X)\). That is, \(Y\) is a superkey for R(X).
- Example: Person1(SI\#, Name, Address)
\(\checkmark\) The only FD is SI\# \(\rightarrow\) Name, Address
\(\checkmark\) Since SI\# is a key, Person 1 is in BCNF
\(\square\) Anomalies and redundancies, as discussed earlier, do not occur in databases with relations in BCNF.

\section*{A Relation not in BCNF}
\begin{tabular}{|c|c|c|}
\hline Manager & Project & Branch \\
\hline Brown & Mars & Chicago \\
Green & Jupiter & Birmingham \\
Green & Mars & Birmingham \\
Hoskins & Saturn & Birmingham \\
Hoskins & Venus & Birmingham \\
\hline
\end{tabular}

Assume the following dependencies:
\(\rightarrow\) Manager \(\rightarrow\) Branch - each manager works in a particular branch;
\(\rightarrow\) Project,Branch \(\rightarrow\) Manager - each project has several managers, and runs on several branches; however, a project has a unique manager for each branch.

CSC343 - Introduction to Databases

\section*{A Problematic Decomposition}

The relation is not in BCNF because the left hand side of the first dependency is not a superkey.
\(\square\) At the same time, no decomposition of this relation will work: Project, Branch \(\rightarrow\) Manager involves all the attributes and thus no decomposition is possible.
- Sometimes BCNF cannot be achieved for a particular relation and set of functional dependencies without violating the principles of lossless decomposition and dependency preservation.

CSC343-Introduction to Databases

\section*{Denormalization}
- Tradeoff: Judiciously introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript \(\rightarrow\) Transcript'

SELECT T.Name, T.Grade
FROM Transcript' \({ }^{\text {T }}\)
WHERE T.CrsCode = 'CS305' AND T. Semester = 'S2002' \(\checkmark\) Join is avoided;
\(\checkmark\) If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance;
\(\checkmark\) But, Transcript' is no longer in BCNF since key is (StudId,CrsCode,Semester) and StudId \(\rightarrow\) Name.

CSC343-Introduction to Databases Normal Forms - 63

\section*{Normalization Drawbacks}
- By limiting redundancy, normalization helps maintain consistency and saves space.
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
\(\square\) Example: A join is required to get the names and grades of all students taking CS343 in 2006F.
```

Student(Id, Name)
Transcript (StudId, CrsCode, Sem, Grade)

```

\section*{SELECT S.Name, T.Grade}

FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
T.CrsCode = 'CS343' AND T.Semester \(=\mathbf{~} 2006 \mathrm{~F}^{\prime}\)

CSC343 - Tion to Databases

\section*{BCNF and 3NF}
- The Project-Branch-Manager schema is not in BCNF, but it is in 3NF.
- In particular, the Project, Branch \(\rightarrow\) Manager dependency has as its left hand side a key, while Manager \(\rightarrow\) Branch has a unique attribute for the right hand side, which is part of the \{Project, Branch\} key.
- The 3NF is less restrictive than the BCNF and for this reason does not offer the same guarantees of quality for a relation; it has the advantage however, of always being achievable.


\section*{BCNF Normalization (Partial)}
\(\rightarrow\) Given: \(\mathrm{R}=(R ; F)\) where \(R=A B C D E G H K\) and
\(F=\{A B H \rightarrow C, A \rightarrow D E, B G H \rightarrow K, K \rightarrow A D H, B H \rightarrow G E\}\)
\(\checkmark\) Step 1: Find a FD that violates BCNF
Note \(A B H \rightarrow C,(A B H)^{+}\)includes all attributes ( \(B H\) is a key)
\(A \rightarrow D E\) violates \(B C N F\) since \(A\) is not a superkey \(\left(A^{+}=A D E\right)\)
\(\checkmark\) Step 2: Split R into:
\(\mathrm{R}_{1}=\left(A D E ; F_{1}=\{A \rightarrow D E\}\right) \xrightarrow{\text { Remove } D E-A}\)
\(\mathrm{R}_{2}=\left(A B C G H K ; F_{1}=\{A B H \rightarrow C, B G H \rightarrow K, K \rightarrow A H, B H \rightarrow G\}\right)\)
\(\rightarrow\) Note 1: \(R_{1}\) is in BCNF
\(\rightarrow\) Note 2: Decomposition is lossless since \(A\) is a key of \(R_{1}\).
\(\rightarrow\) Note 3: FDs \(K \rightarrow D\) and \(B H \rightarrow E\) are not in \(F_{1}\) or \(F_{2}\).
But both can be derived from \(F_{1} \cup F_{2}\)
(E.g., \(K \rightarrow A\) and \(A \rightarrow D\) implies \(K \rightarrow D\) )

Hence, decomposition is dependency preserving.

\section*{A Revised Example}
\begin{tabular}{|c|c|c|c|}
\hline Manager & Project & Branch & Division \\
\hline Brown & Mars & Chicago & 1 \\
Green & Jupiter & Birmingham & 1 \\
Green & Mars & Birmingham & 1 \\
Hoskins & Saturn & Birmingham & 2 \\
Hoskins & Venus & Birmingham & 2 \\
\hline
\end{tabular}

\section*{Functional dependencies:}
- Manager \(\rightarrow\) Branch,Division -- each manager works at one branch and manages one division:
- Branch,Division \(\rightarrow\) Manager -- for each branch and division there is a single manager:
- Project, Branch \(\rightarrow\) Division, Manager -- for each branch, a project is allocated to a single division and has a sole manager responsible.

CSC343 - Introduction to Databases

\section*{BCNF Decomposition Algorithm}

\section*{Input: \(\mathbf{R}=(R ; \boldsymbol{F})\)}

Decomp := \(\mathbf{R}\)
while there is \(\mathbf{S}=\left(S ; \boldsymbol{F}^{\prime}\right) \in\) Decomp and \(\mathbf{S}\) not in BCNF do Find \(X \rightarrow Y \in \boldsymbol{F}^{\prime}\) that violates BCNF \(/ / X\) isn't a superkey in \(\mathbf{S}\) Replace \(\mathbf{S}\) in Decomp with \(\mathbf{S}_{\mathbf{1}}=\left(X Y ; \boldsymbol{F}_{1}\right), \mathbf{S}_{\mathbf{2}}=\left(S-(Y-X) ; \boldsymbol{F}_{2}\right)\) // \(\boldsymbol{F}_{1}=\) all FDs of \(\boldsymbol{F}^{\prime}\) involving only attributes of \(X Y\) \(/ / \boldsymbol{F}_{2}=\) all \(F D s\) of \(\boldsymbol{F}^{\prime}\) involving only attributes of \(S-(Y-X)\) end
return Decomp

\section*{A Good Decomposition}
\begin{tabular}{|c|c|c|}
\hline Manager & Branch & Division \\
\hline Brown & Chicago & 1 \\
Green & Birmingham & 1 \\
Hoskins & Birmingham & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Project & Branch & Division \\
\hline Mars & Chicago & 1 \\
Jupiter & Birmingham & 1 \\
Mars & Birmingham & 1 \\
Saturn & Birmingham & 2 \\
Venus & Birmingham & 2 \\
\hline
\end{tabular}
- Note: The first relation has a second key \{Branch,Division\}.
- The decomposition is in 3NF but not in BCNF; moreover, it is lossless and dependencies are preserved.
- This example demonstrates that BCNF may be too strong a condition to impose on a relational schema.

CSC343 - Introduction to Databases

\section*{Analysis of an Entity}

- The functional dependency

\section*{SupplierCode \(\rightarrow\) Supplier,Address}
holds here: all properties of a supplier are identified by its SupplierCode.
- The entity violates 3NF since this dependency has a left-hand-side that does not contain the identifier and a right-hand-side made up of attributes that are not part of the key.

\section*{Database Design and Normalization}

■ The theory of normalization can be used as a basis for quality control operations on schemas, during both conceptual and logical design.
- Analysis of the relations obtained during the logical design phase can identify places where the conceptual design was inaccurate: such a validation of the design is usually relatively easy.
- Normalization can also be used during conceptual design for quality control of each element of a conceptual schema (entity or relationship).

CSC343 - Introduction to Databases Normal Forms - 70

\section*{Decomposing Product}
\(\square\) Supplier is (or should be) an independent entity, with its own attributes (code, surname and address)
\(\square\) If Product and Supplier are distinct entities, they should be linked through a relationship.
- Since there is a functional dependency from code to Suppliercode, we are sure that each product has at most one supplier (maximum cardinality 1 ).
\(\square\) Since there is no dependency from SupplierCode to Code, we have an unrestricted maximum cardinality ( \(N\) ) for Supplier in the relationship.

\section*{Decomposing Product}

- This decomposition satisfies fundamental properties:
\(\checkmark\) It is a lossless decomposition, because of one-to-many relationship that allows us to recostruct the values of the attributes of the original entity;
\(\checkmark\) Moreover, it preserves dependencies because each dependency is embedded in one of the entities or can be reconstructed from them.

\section*{Some Functional Dependencies}
\(\checkmark\) Student \(\rightarrow\) DegreeProgramme (each student is enrolled in one degree programme)
\(\checkmark\) Student \(\rightarrow\) Professor (each student writes a thesis under the supervision of a single professor)
\(\checkmark\) Professor \(\rightarrow\) Department (each professor is associated with a single department and the students under her supervision are students in that department)
\(\square\) The (unique) key of the relationship is Student (given a student, the degree programme, the professor and the department are identified uniquely)
- The third FD causes a violation of 3NF.

\section*{Analysis of a Relationship}

■ Now we show how to analyze n-ary relationships for \(n \geq 3\), in order to determine whether they should be decomposed.
- Consider

Consider Department


CSC343 - Introduction to Databases
Normal Forms - 74

\section*{Decomposing Thesis}
- The following is a decomposition of Thesis where the two decomposed relationships are both in 3NF(also in BCNF)


Normal Forms - 76

\section*{More Observations...}
- The relationship Thesis is in 3NF, because its key is made up of the student entity, and its dependencies all have this entity on the left hand side.
■ However, not all students write theses, therefore not all students have supervisors.
- From a normal form point of view, this is not a problem.
■ However, our conceptual schema should reflect the fact that being in a degree programme and having a supervisor are independent facts.

\section*{Another Decomposition}
```

