
1

Normal Forms — 1CSC343 – Introduction to Databases

Week 11: Normal Forms

Database Design
Database Redundancies and Anomalies

Functional Dependencies
Entailment, Closure and Equivalence

Lossless Decompositions
The Third Normal Form (3NF)

The Boyce-Codd Normal Form (BCNF)
Normal Forms and Database Design

Normal Forms — 2CSC343 – Introduction to Databases

Logical Database Design

 We have seen how to design a relational
schema by first designing an ER schema
and then transforming it into a relational
one.

 Now we focus on how to transform the
generated relational schema into a "better"
one.

 Goodness of relational schemas is defined
in terms of the notion of normal form.

2

Normal Forms — 3CSC343 – Introduction to Databases

Normal Forms and Normalization
 A normal form is a property of a database schema.
 When a database schema is un-normalized (that is,

does not satisfy the normal form), it allows
redundancies of various types which can lead to
anomalies and inconsistencies.

 Normal forms can serve as basis for evaluating the
quality of a database schema and constitutes a useful
tool for database design.

 Normalization is a procedure that transforms an un-
normalized schema into a normalized one.

Normal Forms — 4CSC343 – Introduction to Databases

Examples of Redundancy

Employee Salary Project Budget Function

Brown 20 Mars 2 technician
Green 35 Jupiter 15 designer
Green 35 Venus 15 designer
Hoskins 55 Venus 15 manager
Hoskins 55 Jupiter 15 consultant
Hoskins 55 Mars 2 consultant
Moore 48 Mars 2 manager
Moore 48 Venus 15 designer
Kemp 48 Venus 15 designer
Kemp 48 Jupiter 15 manager

3

Normal Forms — 5CSC343 – Introduction to Databases

Anomalies
The value of the salary of an employee is repeated

in every tuple where the employee is mentioned,
leading to a redundancy. Redundancies lead to
anomalies:

 If salary of an employee changes, we have to
modify the value in all corresponding tuples
(update anomaly)

 If an employee ceases to work in projects, but
stays with company, all corresponding tuples are
deleted, leading to loss of information (deletion
anomaly)

 A new employee cannot be inserted in the
relation until the employee is assigned to a
project (insertion anomaly)

Normal Forms — 6CSC343 – Introduction to Databases

What’s Wrong???
 We are using a single relation to represent data of

very different types.
 In particular, we are using a single relation to store

the following types of entities, relationships and
attributes:
Employees and their salaries;
Projects and their budgets;
Participation of employees in projects, along with

their functions.
 To set the problem on a formal footing, we introduce

the notion of functional dependency (FD).

4

Normal Forms — 7CSC343 – Introduction to Databases

Functional Dependencies (FDs)
 in the Example

 Each employee has a unique salary. We
represent this dependency as

Employee → Salary
and say "Salary functionally depends on
Employee".

 Meaning: if two tuples have the same
Employee attribute value, they must also
have the same Salary attribute value

 Likewise,
Project → Budget

i.e., each project has a unique budget

Normal Forms — 8CSC343 – Introduction to Databases

Functional Dependencies
 Given schema R(X) and non-empty subsets Y and Z of

the attributes X, we say that there is a functional
dependency between Y and Z (Y→Z), iff for every
relation instance r of R(X) and every pair of tuples t1, t2
of r, if t1.Y = t2.Y, then t1.Z = t2.Z.

 A functional dependency is a statement about all
allowable relations for a given schema.

 Functional dependencies have to be identified by
understanding the semantics of the application.

 Given a particular relation r0 of R(X), we can tell if a
dependency holds or not; but just because it holds for
r0, doesn’t mean that it also holds for R(X)!

5

Normal Forms — 9CSC343 – Introduction to Databases

Looking for FDs

Employee Salary Project Budget Function

Brown 20 Mars 2 technician
Green 35 Jupiter 15 designer
Green 35 Venus 15 designer
Hoskins 55 Venus 15 manager
Hoskins 55 Jupiter 15 consultant
Hoskins 55 Mars 2 consultant
Moore 48 Mars 2 manager
Moore 48 Venus 15 designer
Kemp 48 Venus 15 designer
Kemp 48 Jupiter 15 manager

Normal Forms — 10CSC343 – Introduction to Databases

Non-Trivial Dependencies
 A functional dependency Y→Z is non-trivial if no

attribute in Z appears among attributes of Y, e.g.,
Employee → Salary is non-trivial;

Employee,Project → Project is trivial.

 Anomalies arise precisely for the attributes which are
involved in (non-trivial) functional dependencies:
Employee → Salary;

Project → Budget.

 Moreover, note that our example includes another
functional dependency:
Employee,Project → Function.

6

Normal Forms — 11CSC343 – Introduction to Databases

Dependencies Cause Anomalies,
...Sometimes!

 The first two dependencies cause undesirable
redundancies and anomalies.

 The third dependency, however, does not
cause redundancies because
{Employee,Project} constitutes a key of the
relation (...and a relation cannot contain two
tuples with the same values for the key
attributes.)

Dependencies on keys are OK,
other dependencies are not!

Normal Forms — 12CSC343 – Introduction to Databases

Another Example
ER Model

Relational Model

 SI# Name Address Hobbies
1111 Joe 123 Main {biking, hiking}

 SI# Name Address Hobby
1111 Joe 123 Main biking
1111 Joe 123 Main hiking
 …………….

Redundancy

(0.N)

This is NOT a relation

7

Normal Forms — 13CSC343 – Introduction to Databases

How Do We Eliminate Redundancy?
 Decomposition: Use two relations to store

PersonPerson information:
Person1Person1 (SI#, Name, Address)
HobbiesHobbies (SI#, Hobby)

 The decomposition is more general: people with
hobbies can now be described independently of
their name and address.

 No update anomalies:
Name and address stored once;
A hobby can be separately supplied or

deleted;
We can represent persons with no hobbies.

Normal Forms — 14CSC343 – Introduction to Databases

Superkey Constraints
 A superkey constraint is a special functional

dependency: Let K be a set of attributes of R, and U
the set of all attributes of R. Then K is a superkey
iff the functional dependency K → U is satisfied in
R.

E.g., SI# → SI#,Name,Address (for a Person
relation)

 A key is a minimal superkey, I.e., for each X ⊂ K, X
is not a superkey

SI#, Hobby → SI#, Name, Address, Hobby but
SI# → SI#, Name, Address, Hobby
Hobby → SI#, Name, Address, Hobby

 A key attribute is an attribute that is part of a key.

8

Normal Forms — 15CSC343 – Introduction to Databases

More Examples

 Address → PostalCode

DCS’s postal code is M5S 3H5
 Author, Title, Edition → PublicationDate

Ramakrishnan, et al., Database
Management Systems, 3rd publication date
is 2003

 CourseID → ExamDate, ExamTime

CSC343’s exam date is December 18,
starting at 7pm

Normal Forms — 16CSC343 – Introduction to Databases

When are FDs "Equivalent"?

 Sometimes functional dependencies (FDs)
seem to be saying the same thing,
e.g., Addr → PostalCode,Str#

vs Addr → PostalCode, Addr → Str#

 Another example
Addr → PostalCode, PostalCode → Province
vs Addr → PostalCode, PostalCode → Province
vs Addr → Province

 When are two sets of FDs equivalent? How do
we "infer" new FDs from given FDs?

9

Normal Forms — 17CSC343 – Introduction to Databases

Entailment, Closure, Equivalence

 If F is a set of FDs on schema R and f is another
FD on R, then F entailsentails f (written F |= f) if every
instance r of R that satisfies every FD in F also
satisfies f.
Example: F = {A → B, B → C} and f is A → C

If Phone# → Address and Address →
ZipCode, then Phone# → ZipCode

 The closureclosure of F, denoted F+, is the set of all FDs
entailed by F.

 F and G are equivalentequivalent if F entails G and G
entails F.

Normal Forms — 18CSC343 – Introduction to Databases

How Do We Compute Entailment?
 Satisfaction, entailment, and equivalence are

semantic concepts – defined in terms of the
"meaning" of relations in the “real world.”

 How to check if F entails f, F and G are
equivalent?
Apply the respective definitions for all possible

relation instances for a schema R ……
Find algorithmic, syntactic ways to compute

these notions.
 Note: The syntactic solution must be "correct” with

respect to the semantic definitions.
 Correctness has two aspects: soundnesssoundness and

completenesscompleteness – see later.

10

Normal Forms — 19CSC343 – Introduction to Databases

Armstrong’s Axioms for FDs
 This is the syntactic way of computing/testing

semantic properties of FDs
Reflexivity: Y ⊆ X |- X → Y (trivial FD)

e.g., |- Name, Address → Name
Augmentation: X → Y |- XZ → YZ

e.g., Address → ZipCode |-
 Address,Name → ZipCode, Name

Transitivity: X → Y, Y → Z |- X → Z
e.g., Phone# → Address, Address → ZipCode

 |- Phone# → ZipCode

Normal Forms — 20CSC343 – Introduction to Databases

Soundness
 Theorem: F |- f implies F |= f
 In words: If FD f: X → Y can be derived from a set of

FDs F using the axioms, then f holds in every relation
that satisfies every FD in F.

 Example: Given X → Y and X → Z then

 Thus, X → YZ is satisfied in every relation where both
X → Y and X → Z are satisfied. We have derived
the union ruleunion rule for FDs.

X → XY Augmentation by X
YX → YZ Augmentation by Y
X → YZ Transitivity

11

Normal Forms — 21CSC343 – Introduction to Databases

Completeness

 Theorem: F |= f implies F |- f
 In words: If F entails f, then f can be derived

from F using Armstrong's axioms.
 A consequence of completeness is the

following (naïve) algorithm to determining if
F entails f:
AlgorithmAlgorithm: Use the axioms in all possible

ways to generate F+ (the set of possible
FD’s is finite so this can be done) and see
if f is in F+

Normal Forms — 22CSC343 – Introduction to Databases

Correctness
 The notions of soundness and

completeness link the syntax (Armstrong’s
axioms) with semantics, i.e., entailment
defined in terms of relational instances.

 This is a precise way of saying that the
algorithm for entailment based on the
axioms is ``correct’’ with respect to the
definitions.

12

Normal Forms — 23CSC343 – Introduction to Databases

Decomposition Rule
 Another example of a derivation rule we can

use in generating F+:
 X → AB, AB → A (refl), X → A (trans)
 So, whenever we have X → AB, we can

"decompose" this functional dependency to
two functional dependencies X → A, X → B

Normal Forms — 24CSC343 – Introduction to Databases

Generating F+

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB → E
are all elements of F+.

 F
AB→ C
 AB→ BCD
A→ D AB→ BD AB→ BCDE AB→ E

D→ E BCD → BCDE

union
aug

trans

aug

decomp

13

Normal Forms — 25CSC343 – Introduction to Databases

Attribute Closure

 Calculating attribute closure leads to a more
efficient way of checking entailment.

 The attribute closureattribute closure of a set of attributes X
with respect to a set of FDs F, denoted X+

F, is
the set of all attributes A such that X → A
X +F is not necessarily same as X+

G if F ≠ G

 Attribute closure and entailment:

AlgorithmAlgorithm: Given a set of FDs, F, then X → Y
if and only if Y ⊆ X+

F

Normal Forms — 26CSC343 – Introduction to Databases

Computing the
Attribute Closure X+F

closure := X; // since X ⊆ X+
F

repeat
 old := closure;
 if there is an FD Z → V in F such that
 Z ⊆ closure and V ⊆ closure
 then closure := closure ∪ V
until old = closure

– If T ⊆ closure then X → T is entailed by F

14

Normal Forms — 27CSC343 – Introduction to Databases

Computing Attribute Closure:
An Example

F: AB → C
 A → D
 D → E
 AC → B

X XF
+

A {A, D, E}
AB {A, B, C, D, E}
AC {A, C, B, D, E}
B {B}
D {D, E}

Is AB → E entailed by F? Yes
Is D → C entailed by F? No

Result: XF
+ allows us to determine all FDs of the form

 X → Y entailed by F
Normal Forms — 28CSC343 – Introduction to Databases

Normal Forms
 Each normal form is a set of conditions on a schema that

together guarantee certain properties (relating to
redundancy and update anomalies).

 First normal form (1NF) is the same as the definition of
relational model (relations = sets of tuples; each tuple =
sequence of atomic values).

 Second normal form (2NF) 1NF plus every attribute that
is not part of a candidate key (that is, a non-prime
attribute) must depend on an entire candidate key (not
part of it).

 The two most used are third normal formthird normal form (3NF) and
Boyce-Codd Boyce-Codd normal formnormal form (BCNF).

 We will discuss in detail the 3NF.

15

Normal Forms — 29CSC343 – Introduction to Databases

The Third Normal Form
 A relation R(X) is in third normal form (3NF) if, for

each (non-trivial) functional dependency Y → Z, at
least one of the following is true:
Y contains a key K of R(X);
Each attribute in Z is contained in at least one

(candidate) key of R(X). That is, each attribute in
Z is a prime attribute.

 3NF does not remove all redundancies.
 3NF decompositions founded on the notion of minimal

cover.

Normal Forms — 30CSC343 – Introduction to Databases

Decomposition into 3NF: Basic Idea
 Decomposition into 3NF can proceed as follows.

For each functional dependency of the form Y →
Z, where Y contains a subset of a key K of R(X),
create a projection on all the attributes Y, Z
(2NF).

For each dependency of the form Y → Z, where
Y, doesn’t contain any key, and not all
attributes of Z are key attributes, create a
projection on all the attributes Y, Z (3NF).

 The new relations only include dependencies Y →
Z, where Y contains a key K of R(X), or Z contains
only key attributes.

16

Normal Forms — 31CSC343 – Introduction to Databases

Basic Idea
 R(ABCD), A → D
 Projection:

 R1(AD), A → D
 R2(ABC)

Normal Forms — 32CSC343 – Introduction to Databases

 A relation that is not in 3NF, can be replaced with
one or more normalized relations using
normalization.

 We can eliminate redundancies and anomalies for
the example relation

Emp(Employee,Salary,Project,Budget,Function)
if we replace it with the three relations obtained by

projections on the sets of attributes corresponding
to the three functional dependencies:
Employee → Salary;
Project → Budget.
Employee,Project → Function.

Normalization Through Decomposition

17

Normal Forms — 33CSC343 – Introduction to Databases

…Start with…

Employee Salary Project Budget Function

Brown 20 Mars 2 technician
Green 35 Jupiter 15 designer
Green 35 Venus 15 designer

Hoskins 55 Venus 15 manager
Hoskins 55 Jupiter 15 consultant
Hoskins 55 Mars 2 consultant
Moore 48 Mars 2 manager
Moore 48 Venus 15 designer
Kemp 48 Venus 15 designer
Kemp 48 Jupiter 15 manager

Normal Forms — 34CSC343 – Introduction to Databases

Result of Normalization
Employee Salary

Brown 20
Green 35
Hoskins 55
Moore 48
Kemp 48

Employee Project Function

Brown Mars technician
Green Jupiter designer
Green Venus designer
Hoskins Venus manager
Hoskins Jupiter consultant
Hoskins Mars consultant
Moore Mars manager
Moore Venus designer
Kemp Venus designer
Kemp Jupiter manager

Project Budget

Mars 2

Jupiter 15

Venus 15

The keys of new relations
are lefthand sides of

 functional dependencies;
satisfaction of 3NF is

therefore guaranteed for
the new relations.

18

Normal Forms — 35CSC343 – Introduction to Databases

Another Example

Employee Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham

This relation satisfies the functional dependencies:
 Employee → Branch
 Project → Branch

Normal Forms — 36CSC343 – Introduction to Databases

A Possible Decomposition

Employee Branch

Brown Chicago
Green Birmingham
Hoskins Birmingham

Project Branch

Mars Chicago
Jupiter Birmingham
Saturn Birmingham
Venus Birmingham

...but now we don’t know
each employee’s projects!

19

Normal Forms — 37CSC343 – Introduction to Databases

The Join of the Projections
Employee Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham
Green Saturn Birmingham
Hoskins Jupiter Birmingham

The result of the join is different from the
original relation.

We lost some information
during the decomposition!

Normal Forms — 38CSC343 – Introduction to Databases

Lossless Decomposition

 The decomposition of a relation R(X) on X1
and X2 is lossless if for every instance r of
R(X) the join of the projections of R on X1
and X2 is equal to r itself (that is, does not
contain spurious tuples).

 Of course, it is clearly desirable to allow
only lossless decompositions during
normalization.

20

Normal Forms — 39CSC343 – Introduction to Databases

A Condition for Lossless
Decomposition

 Let R(X) be a relation schema and let X1 and
X2 be two subsets of X such that X1 ∪ X2 = X.
Also, let X0 = X1 ∩ X2.

 If R(X) satisfies the functional dependency
X0 → X1 or X0 → X2, then the decomposition
of R(X) on X1 and X2 is lossless.

 In other words, R(X) has a lossless
decomposition on two relations if the set of
attributes common to the relations is a
superkey for at least one of the
decomposed relations.

Normal Forms — 40CSC343 – Introduction to Databases

Intuition Behind the Test for
Losslessness

 Suppose R1 ∩ R2 → R2. Then a row of r1

can combine with exactly one row of r2 in
the natural join (since in r2 a particular set
of values for the attributes in R1 ∩ R2

defines a unique row)
 R1 ∩ R2 R1 ∩ R2
…………. a a ………...
………… a b ………….
………… b c ………….
………… c
 r1 r2

21

Normal Forms — 41CSC343 – Introduction to Databases

A Lossless Decomposition

Employee Branch

Brown Chicago
Green Birmingham
Hoskins Birmingham

Employee Project

Brown Mars
Green Jupiter
Green Venus

Hoskins Saturn
Hoskins Venus

Normal Forms — 42CSC343 – Introduction to Databases

Notation
 Instead of saying that we have relation

schema R(X) with functional dependencies F,
we will say that we have schema

R = (R, F)

 where R is a set of attributes and F is a
set of functional dependencies.

 The 3NF normalization problem is then to
generate a set of relation schemas R1=(R1,F1),
…, Rn=(Rn,Fn), such that Ri is in 3NF.

22

Normal Forms — 43CSC343 – Introduction to Databases

Another Example
 Schema (R, F) where
 R = {SI#, Name, Address, Hobby}
 F = {SI# → Name, Address}
 can be decomposed into

R1 = {SI#, Name, Address}
F1 = {SI# → Name, Address}

 and
R2 = {SI#, Hobby}
F2 = { }

since R1∩R2 = SI#, SI#→R1 the decomposition
is lossless.

Normal Forms — 44CSC343 – Introduction to Databases

Another Problem...
 Assume we wish to insert a new tuple that

specifies that employee Armstrong works in
the Birmingham branch and participates in
project Mars.

 In the original relation, this update would be
identified as illegal, because it would cause a
violation of the Project → Branch
dependency.

 For the decomposed relations, however, this
is not possible because the two attributes
Project and Branch have been moved to
different relations.

23

Normal Forms — 45CSC343 – Introduction to Databases

Preserving Dependencies (Intuition)

 A decomposition preserves dependencies if
each of the functional dependencies of the
original relation schema involves attributes
that appear together in one of the
decomposed relation schemas.

 It is clearly desirable that a decomposition
preserves dependencies because then it is
possible to (efficiently) ensure that the
decomposed schema satisfies the same
constraints as the original schema.

Normal Forms — 46CSC343 – Introduction to Databases

Example
 Schema (R, F) where
 R = {SI#,Name,Address,Hobby}
 F = {SI# → Name,Address}
can be decomposed into
 R1 = {SI#, Name,Address}
 F1 = {SI# → Name,Address}
and
 R2 = {SI#, Hobby}
 F2 = { }
 Since F = F1 ∪ F2 the decomposition is
dependency preserving.

24

Normal Forms — 47CSC343 – Introduction to Databases

Another Example

 Schema: (ABC; F) , F = {A B, B C, C B}
 Decomposition:

(AC, F1), F1 = {A C}
[Note: A C ∉ F, but in F+]

(BC, F2), F2 = {B C, C B}

 A B ∉ (F1 ∪ F2), but A B ∈ (F1 ∪ F2)+.
So F+ = (F1 ∪ F2)+ and thus the

decomposition is still dependency preserving

Normal Forms — 48CSC343 – Introduction to Databases

Dependency Preservation
 If f is a FD in F, but f is not in F1 ∪ F2,

there are two possibilities:
f ∈ (F1 ∪ F2)+

If the constraints in F1 and F2 are
maintained, f will be maintained
automatically.

f ∉ (F1 ∪ F2)+

f can be checked only by first
taking the join of r1 and r2. …This
is costly…

25

Normal Forms — 49CSC343 – Introduction to Databases

Desirable Qualities for
Decompositions

Decompositions should always satisfy the properties of
lossless decomposition and dependency preservation:

 Lossless decomposition ensures that the information in
the original relation can be accurately reconstructed
based on the information represented in the decomposed
relations.

 Dependency preservation ensures that the decomposed
relations have the same capacity to represent the
integrity constraints as the original relations and
therefore to reveal illegal updates.

Normal Forms — 50CSC343 – Introduction to Databases

Minimal Cover
 A minimal cover for a set of dependencies F is a set

of dependencies U such that:
U is equivalent to F (I.e., F+ = U+)
All FDs in U have the form X → A where A is a

single attribute
 It is not possible to make U smaller (while

preserving equivalence) by
Deleting an FD
Deleting an attribute from an FD (its LHS)

 FDs and attributes that can be deleted in this way
are called redundantredundant..

26

Normal Forms — 51CSC343 – Introduction to Databases

Computing the Minimal Cover
Example: F = {ABH → CK, A → D, C → E,

 BGH → L, L → AD, E → L, BH → E}
 Step 1: Make RHS of each FD into a single attribute: Use

decomposition rule for FDs.
Example: L→ AD replaced by L → A, L → D ; ABH → CK

by ABH →C, ABH →K
 Step 2: Eliminate redundant attributes from LHS: If B is a

single attribute and FD XB → A ∈ F, X → A is entailed by F,
then B is unnecessary.
e.g., Can an attribute be deleted from ABH → C ?
Compute AB+

F, AH+
F, BH+

F; Since C ∈ (BH)+
F , BH → C

is entailed by F and A is redundant in ABH → C.

Normal Forms — 52CSC343 – Introduction to Databases

Computing the Minimal Cover (cont’d)

 Step 3: Delete redundant FDs from F: If F – {f}
entails f, then f is redundant; if f is X → A then
check if A ∈ X+

F- {f}

e.g., BGH → L is entailed by E → L, BH → E, so it is
redundant

 Note: The order of steps 2, 3 can't be interchanged!!
See textbook for a counterexample.

F1 = {ABH→C, ABH→K, A→D, C→E, BGH→L, L→A, L→D, E→L, BH→E}
F2 = {BH→C, BH→K, A→D, C→E, BH→L, L→A, L→D, E→L, BH→E}
F3 = {BH → C, BH → K, A → D, C → E, L → A, E → L}

27

Normal Forms — 53CSC343 – Introduction to Databases

Synthesizing a 3NF Schema
Starting with a schema R = (R, F):
 Step 1: Compute minimal cover U of F. The

decomposition is based on U, but since U+ = F+

the same functional dependencies will hold.
A minimal cover for

F = {ABH →CK, A →D, C →E, BGH →L, L→AD,
E → L, BH → E}
is

 U = {BH→C, BH→K, A→D, C→E, L→A, E→L}

Normal Forms — 54CSC343 – Introduction to Databases

Synthesizing … Step 2

 Step 2: Partition U into sets U1, U2, … Un
such that the LHS of all elements of Ui are
the same:
U1 = {BH → C, BH → K}, U2 = {A → D},

U3 = {C → E}, U4 = {L → A}, U5 = {E → L}

28

Normal Forms — 55CSC343 – Introduction to Databases

Synthesizing … Step 3

 Step 3: For each Ui form schema Ri = (Ri, Ui),
where Ri is the set of all attributes mentioned
in Ui

Each FD of U will be in some Ri. Hence the
decomposition is dependency preserving:

R1 = (BHCK; BH→C, BH→ K),
R2 = (AD; A→D),
R3 = (CE; C → E),
R4 = (AL; L→A),
R5 = (EL; E → L)

Normal Forms — 56CSC343 – Introduction to Databases

Synthesizing … Step 4
 Step 4: If no Ri is a superkey of R, add

schema R0 = (R0,{}) where R0 is a key of R.
R0 = (BGH, {}); R0 might be needed when

not all attributes are contained in R1∪R2 …∪
Rn;

A missing attribute A must be part of all
keys (since it’s not in any FD of U, deriving
a key constraint from U involves the
augmentation axiom);

R0 might be needed even if all attributes
are accounted for in R1∪R2 …∪Rn

29

Normal Forms — 57CSC343 – Introduction to Databases

Synthesizing … Step 4 (cont'd)

 Example: (ABCD; {A B,C D}), with
step 3 decomposition: R1 = (AB; {AB}),R2
= (CD; {CD}).

Lossy! Need to add (AC; { }), for losslessness
 Step 4 guarantees lossless decomposition:

ABCD --decomp--> AB,ACD
 --decomp-->AB,AC,CD

Normal Forms — 58CSC343 – Introduction to Databases

Boyce–Codd Normal Form (BCNF)
 A relation R(X) is in Boyce–Codd Normal

Form if for every non-trivial functional
dependency Y → Z defined on it, Y contains
a key K of R(X). That is, Y is a superkey for
R(X).

 Example: Person1Person1(SI#, Name, Address)
The only FD is SI# → Name, Address
Since SI# is a key, Person1Person1 is in BCNF

 Anomalies and redundancies, as discussed
earlier, do not occur in databases with
relations in BCNF.

30

Normal Forms — 59CSC343 – Introduction to Databases

Non-BCNF Examples

 Person Person(SI#, Name, Address, Hobby)
The FD SI# → Name, Address does not

satisfy conditions for BCNF since the key
is (SSN, Hobby)

 HasAccountHasAccount(AcctNum, ClientId, OfficeId)
The FD AcctNum → OfficeId does not

satisfy BCNF conditions if we assume that
keys for HasAccount are (ClientId,
OfficeId) and (AcctNum, ClientId); rather
than AcctNum.

Normal Forms — 60CSC343 – Introduction to Databases

Assume the following dependencies:
 Manager → Branch — each manager works in a

particular branch;
 Project,Branch → Manager — each project has

several managers, and runs on several branches;
however, a project has a unique manager for each
branch.

A Relation not in BCNF
Manager Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Mars Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham

31

Normal Forms — 61CSC343 – Introduction to Databases

A Problematic Decomposition

 The relation is not in BCNF because the left
hand side of the first dependency is not a
superkey.

 At the same time, no decomposition of this
relation will work: Project,Branch → Manager
involves all the attributes and thus no
decomposition is possible.

 Sometimes BCNF cannot be achieved for a
particular relation and set of functional
dependencies without violating the principles of
lossless decomposition and dependency
preservation.

Normal Forms — 62CSC343 – Introduction to Databases

Normalization Drawbacks
 By limiting redundancy, normalization helps

maintain consistency and saves space.
 But performance of querying can suffer because

related information that was stored in a single
relation is now distributed among several

 Example: A join is required to get the names and
grades of all students taking CS343 in 2006F.

SELECT S.Name, T.Grade
FROM StudentStudent S, TranscriptTranscript T
WHERE S.Id = T.StudId AND
 T.CrsCode = ‘CS343’ AND T.Semester = ‘2006F’

Student(Id,Name)
Transcript(StudId,CrsCode,Sem,Grade)

32

Normal Forms — 63CSC343 – Introduction to Databases

Denormalization
 Tradeoff: Judiciously introduce redundancy to

improve performance of certain queries
 Example: Add attribute Name to Transcript Transcript →→

Transcript'Transcript'

 Join is avoided;
 If queries are asked more frequently than

TranscriptTranscript is modified, added redundancy might
improve average performance;

But, TranscriptTranscript’’ is no longer in BCNF since key is
(StudId,CrsCode,Semester) and StudId → Name.

SELECT T.Name, T.Grade
FROM TranscriptTranscript’’ T
WHERE T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

Normal Forms — 64CSC343 – Introduction to Databases

BCNF and 3NF
 The Project-Branch-Manager schema is not in

BCNF, but it is in 3NF.
 In particular, the Project,Branch → Manager

dependency has as its left hand side a key,
while Manager → Branch has a unique attribute
for the right hand side, which is part of the
{Project,Branch} key.

 The 3NF is less restrictive than the BCNF and
for this reason does not offer the same
guarantees of quality for a relation; it has the
advantage however, of always being
achievable.

33

Normal Forms — 65CSC343 – Introduction to Databases

3NF Tolerates
Some Redundancies!

Manager Project Branch

Brown Mars Chicago
Green Jupiter Birmingham
Green Mars Birmingham
Hoskins Saturn Birmingham
Hoskins Venus Birmingham!!

Normal Forms — 66CSC343 – Introduction to Databases

Functional dependencies:
 Manager → Branch,Division -- each manager works

at one branch and manages one division;
 Branch,Division → Manager -- for each branch

and division there is a single manager;
 Project,Branch → Division,Manager -- for each

branch, a project is allocated to a single division and
has a sole manager responsible.

A Revised Example
Manager Project Branch Division

Brown Mars Chicago 1
Green Jupiter Birmingham 1
Green Mars Birmingham 1
Hoskins Saturn Birmingham 2
Hoskins Venus Birmingham 2

34

Normal Forms — 67CSC343 – Introduction to Databases

BCNF Normalization (Partial)
Given: R = (R; F) where R = ABCDEGHK and

F = {ABH → C, A → DE, BGH → K, K → ADH, BH → GE}
Step 1: Find a FD that violates BCNF

Note ABH → C, (ABH)+ includes all attributes (BH is a key)
A → DE violates BCNF since A is not a superkey (A+ = ADE)

Step 2: Split R into:
R1 = (ADE; F1 = {A → DE })
R2 = (ABCGHK; F1 = {ABH→C, BGH→K, K→AH, BH→G})

Note 1: R1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R1.

Note 3: FDs K → D and BH → E are not in F1 or F2.
But both can be derived from F1 ∪ F2
 (E.g., K→A and A→D implies K→D)
Hence, decomposition is dependency preserving.

Remove DE - A

Normal Forms — 68CSC343 – Introduction to Databases

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp := R
while there is S = (S; F’) ∈ Decomp and S not in BCNF do
 Find X → Y ∈ F’ that violates BCNF // X isn’t a superkey in S
 Replace S in Decomp with S1 = (XY; F1), S2 = (S - (Y - X); F2)
 // F1 = all FDs of F’ involving only attributes of XY
 // F2 = all FDs of F’ involving only attributes of S - (Y - X)
end
return Decomp

35

Normal Forms — 69CSC343 – Introduction to Databases

A Good Decomposition

Manager Branch Division

Brown Chicago 1
Green Birmingham 1
Hoskins Birmingham 2

Project Branch Division

Mars Chicago 1
Jupiter Birmingham 1
Mars Birmingham 1
Saturn Birmingham 2
Venus Birmingham 2

 Note: The first relation has a second key
{Branch,Division}.

 The decomposition is in 3NF but not in BCNF;
moreover, it is lossless and dependencies are
preserved.

 This example demonstrates that BCNF may be too
strong a condition to impose on a relational
schema.

Normal Forms — 70CSC343 – Introduction to Databases

Database Design and Normalization

 The theory of normalization can be used as a basis for
quality control operations on schemas, during both
conceptual and logical design.

 Analysis of the relations obtained during the logical design
phase can identify places where the conceptual design
was inaccurate: such a validation of the design is usually
relatively easy.

 Normalization can also be used during conceptual design
for quality control of each element of a conceptual schema
(entity or relationship).

36

Normal Forms — 71CSC343 – Introduction to Databases

Analysis of an Entity

 The functional dependency

SupplierCode → Supplier,Address

holds here: all properties of a supplier are identified by
its SupplierCode.

 The entity violates 3NF since this dependency has a
left-hand-side that does not contain the identifier and
a right-hand-side made up of attributes that are not
part of the key.

Normal Forms — 72CSC343 – Introduction to Databases

Decomposing Product
 Supplier is (or should be) an independent entity,

with its own attributes (code, surname and
address)

 If Product and Supplier are distinct entities, they
should be linked through a relationship.

 Since there is a functional dependency from Code
to SupplierCode, we are sure that each product
has at most one supplier (maximum cardinality 1).

 Since there is no dependency from SupplierCode
to Code, we have an unrestricted maximum
cardinality (N) for Supplier in the relationship.

37

Normal Forms — 73CSC343 – Introduction to Databases

Decomposing Product

 This decomposition satisfies fundamental properties:
 It is a lossless decomposition, because of one-to-many

relationship that allows us to recostruct the values of
the attributes of the original entity;

Moreover, it preserves dependencies because each
dependency is embedded in one of the entities or can
be reconstructed from them.

Normal Forms — 74CSC343 – Introduction to Databases

Analysis of a Relationship
 Now we show how to analyze n-ary

relationships for n≥3, in order to determine
whether they should be decomposed.

 Consider

38

Normal Forms — 75CSC343 – Introduction to Databases

Some Functional Dependencies
Student → DegreeProgramme (each student is enrolled

in one degree programme)
Student → Professor (each student writes a thesis

under the supervision of a single professor)
Professor → Department (each professor is associated

with a single department and the students under her
supervision are students in that department)

 The (unique) key of the relationship is Student (given a
student, the degree programme, the professor and the
department are identified uniquely)

 The third FD causes a violation of 3NF.

Normal Forms — 76CSC343 – Introduction to Databases

Decomposing Thesis
 The following is a decomposition of Thesis

where the two decomposed relationships
are both in 3NF(also in BCNF)

39

Normal Forms — 77CSC343 – Introduction to Databases

More Observations...
 The relationship Thesis is in 3NF, because its

key is made up of the Student entity, and its
dependencies all have this entity on the left hand
side.

 However, not all students write theses, therefore
not all students have supervisors.

 From a normal form point of view, this is not a
problem.

 However, our conceptual schema should reflect
the fact that being in a degree programme and
having a supervisor are independent facts.

Normal Forms — 78CSC343 – Introduction to Databases

Another Decomposition

