Week 1 – Part 2: The Relational Model

The Relational Model
Mathematical Relations
Attributes and Database Schema
Null Values and Database Constraints
Keys, Primary and Foreign Keys

cscC43/343 - Introduction to Databases

The Relational Model — 1

The Relational Model

- Proposed by E. F. Codd in 1970 as a data model which strongly supports data independence.
- Made available in commercial DBMSs in 1981 -- it is not easy to implement data independence efficiently and reliably!
- It is based on (a variant of) the mathematical notion of *relation*.
- Relations are represented as tables.

cscC43/343 - Introduction to Databases

Mathematical Relations

- Given sets D₁, D₂, ..., D_n, not necessarily distinct.
- The *Cartesian product* $D_1xD_2x...xD_n$ is the set of all (ordered) n-tuples < d_1 , d_2 , ..., d_n > such that $d_1 \in D_1$, $d_2 \in D_2$, ..., $d_n \in D_n$
- A mathematical relation on D_1 , D_2 , ..., D_n is a subset of the Cartesian product $D_1 \times D_2 \times ... \times D_n$.
- D₁, D₂, ..., D_n are the **domains** of the relation.
- n is the degree of the relation.
- The number of n-tuples in a given relation is the cardinality of that relation; the cardinality of a relation is always finite.

cscC43/343 - Introduction to Databases

The Relational Model — 3

An Example

Games ⊆ String × String × Integer × Integer

		9 –.	_
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

- Note that String and Integer each play two roles, distinguished by means of position.
- The structure of a relation is positional.

cscC43/343 - Introduction to Databases

Attributes

- We would like to have a non-positional structure for relations. To do so, we associate a unique name (attribute) with each domain of a relation which describes the role of the domain.
- In the tabular representation, attributes are used as column headings

HomeTeam	VisitingTeam	HomeGoals	VisitorGoals
Juve	Lazio	3	1
Lazio	Milan	2	0
Juve	Roma	1	2
Roma	Milan	0	1

cscC43/343 - Introduction to Databases

The Relational Model — 5

Notation

- t[A] (or t.A) denotes the value on A of a tuple t
- In the example, if t is the first tuple in the table t[VisitingTeam] = Lazio
- The same notation is extended to sets of attributes, thus denoting tuples:

t[VisitingTeam, VisitorGoals]

is a tuple on two attributes, <Lazio,1>

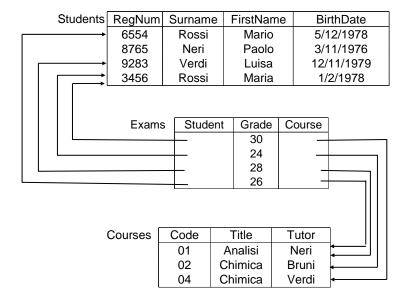
 More generally, if X is a sequence of attribute names A₁,...A_n, t[X] is <t[A₁],t[A₂],...t[A_n]>

cscC43/343 - Introduction to Databases

Value-Based References

Students

RegNum	Surname	FirstName	BirthDate
6554	Rossi	Mario	5/12/1978
8765	Neri	Paolo	3/11/1976
9283	Verdi	Luisa	12/11/1979
3456	Rossi	Maria	1/2/1978


Exams	Student	Grade	Course
	3456	30	04
	3456	24	02
	9283	28	01
Tutor	6554	26	∩1

Courses

Code	Title	Tutor
01	Analisi	Neri
02	Chimica	Bruni
04	Chimica	Verdi

cscC43/343 - Introduction to Databases

The Relational Model — 7

cscC43/343 - Introduction to Databases

Advantages of Value-Based References

- Value-based references lead to independence from physical structures, such as pointers.
- Pointers are implemented differently on different hardware, inhibit portability of a database.

Notes:

- Pointers usually exist at the physical level, but they are not visible at the logical level
- Object identifiers in object databases share some features with pointers, at a higher level of abstraction.

Definitions

Relation schema:

A name (of the relation) R with a set of attributes $A_1,..., A_n$: $R(A_1,..., A_n)$

Database schema:

A set of relation schemas with different names $D = \{R_1(X_1), ..., R_n(X_n)\}$

Relation (instance) on a relation schema R(X): Set r of tuples on X

Database (instance) on a schema $D = \{R_1(X_1), ..., R_n(X_n)\}$: Set of relations $r = \{r, r\}$ (with r relation or

Set of relations $r = \{r_1, ..., r_n\}$ (with r_i relation on R_i)

cscC43/343 - Introduction to Databases

Examples

 Relations on a single attribute are admissible:

Students

ts	RegNum	Surname	FirstName	BirthDate
	6554	Rossi	Mario	5/12/1978
	8765	Neri	Paolo	3/11/1976
	9283	Verdi	Luisa	12/11/1979
	3456	Rossi	Maria	1/2/1978

Workers

RegNum
6554
8765

cscC43/343 - Introduction to Databases

The Relational Model — 11

Nested structures

	Receipt No:	1357
	Date: 5	/5/92
3	covers	3.00
2	hors d'oeuvre	5.00
3	first course	9.00
2	steak	12.00
	Total:	29.00

Receipt No: 2334			
Date: 4/7/92			
2	covers	2.00	
2	hors d'oeuvre	2.50	
2	first course	6.00	
2	bream	15.00	
2	coffee	2.00	
	Total:	27.50	

	Receipt No: Date: 4	,
2	covers	3.00
2	hors d'oeuvre	6.00
3	first course	8.00
1	bream	7.50
1	salad	3.00
2	coffee	2.00
	Total:	29.50

cscC43/343 - Introduction to Databases

Representating Nested Structures

$\overline{}$	- 4 -	•••
. 1		III C
u	CLO	шэ

Receipts

Number	Date	Total
1357	5/5/92	29.00
2334	4/7/92	27.50
3007	4/8/92	29.50

Number	Quantity	Description	Cost
1357	3	Covers	3.00
1357	2	Hors d'oeuvre	5.00
1357	3	First course	9.00
1357	2	Steak	12.00
2334	2	Covers	2.00
2334	2	Hors d'oeuvre	2.50
2334	2	First course	6.00
2334	2	Bream	15.00
2334	2	Coffee	2.00
3007	2	Covers	3.00
3007	2	Hors d'oeuvre	6.00
3007	3	First course	8.00
3007	1	Bream	7.50
3007	1	Salad	3.00
3007	2	Coffee	2.00

cscC43/343 - Introduction to Databases

The Relational Model — 13

Questions

- Have we represented all details of receipts?
- Well, it depends on what we are really interested in:

What else could we require?				

If needed, an alternative organization is possible

cscC43/343 - Introduction to Databases

More Detailed Representation

How could we Preserve the Detail sequence Or allow duplicates?

Receipts

Number	Date	Total
1357	5/5/92	29.00
2334	4/7/92	27.50
3007	4/8/92	29.50

Number	Quantity	Description	Cost
1357	3	Covers	3.00
1357	2	Hors d'oeuvre	5.00
1357	3	First course	9.00
1357	2	Steak	12.00
2334	2	Covers	2.00
2334	2	Hors d'oeuvre	2.50
2334	2	First course	6.00
2334	2	Bream	15.00
2334	2	Coffee	2.00
3007	2	Covers	3.00
3007	2	Hors d'oeuvre	6.00
3007	3	First course	8.00
3007	1	Bream	7.50
3007	1	Salad	3.00
3007	2	Coffee	2.00

cscC43/343 - Introduction to Databases

The Relational Model — 15

Incomplete Information

- The relational model imposes a rigid structure on data:
 - information is represented by means of tuples;
 - tuples must conform to relation schemas.
- In practice, available data need not conform to the required formats. In particular, values of attributes may be missing for a particular tuple we want to add to a relational database.

cscC43/343 - Introduction to Databases

Incomplete information: Motivation

(County towns have government offices, other towns do not.)

- Florence is a county town; so it has a government office, but we do not know its address.
- Tivoli is not a county town; so it has no government office.
- Prato has recently become a county town; has the government office been established? We don't know!

City	GovtAddress
Roma	Via IV novembre
Florence	?
Tivoli	??
Prato	???

cscC43/343 - Introduction to Databases

The Relational Model — 17

Incomplete information: Solutions

We should not use domain values (0, 99, empty string, etc.) to represent lack of information:

- Using unused values may lead to ambiguity and confusion.
- Unused values could become meaningful.
- Within applications, we should be able to distinguish between actual values and placeholders.
- For example, in order to calculate the average age of a set of people, use 50 as default value for unknown ages!

cscC43/343 - Introduction to Databases

Incomplete Information in the Relational Model

- A simple but effective technique is adopted by the Relational Model: use null values.
- A null value is a special value (i.e., not a value of the domain) which denotes the absence of a domain value.
- We could (and often should) put restrictions on the presence of null values in tuples (more on this later.)

cscC43/343 - Introduction to Databases

The Relational Model — 19

Types of Null Values

- At least three different types are useful:
 - unknown value: there is a domain value, but it is not known (Florence);
 - non-existent value: the attribute is not applicable for the tuple (Tivoli);
 - no-information value: we don't know whether a value exists or not (Prato); this is the disjunction (logical or) of the other two.
- DBMSs do not distinguish between these types: they implicitly adopt the noinformation value.

cscC43/343 - Introduction to Databases

A Meaningless Database

Exams	RegNum	Name	Course	Grade	Honours
	6554	Rossi	B01	K	
	8765	Neri	B03	С	
	3456	Bruni	B04	В	honours
	3456	Verdi	B03	Α	honours

Courses	Code	Title
	B01	Physics
	B02	Calculus
	B03	Chemistry

WHAT ARE SOME PROBLEMS WITH THIS DATABASE?

cscC43/343 - Introduction to Databases

The Relational Model — 21

Integrity Constraints

- An integrity constraint is a property that must be satisfied by all meaningful database instances.
- A constraint can be seen as a predicate; a database is legal if it satisfies all integrity constraints.
- Types of constraints
 - Intra-relational constraints, with domain constraints and tuple constraints as special cases;
 - Inter-relational constraints.

cscC43/343 - Introduction to Databases

Rationale for Integrity Constraints

- Useful for describing the application in greater detail.
- Contribute to data quality.
- An element in the design process; we will discuss later normal forms.
- Used by the system in choosing a strategy for query processing

Note: It is not the case that all desirable properties of the data in a database can be described by means of integrity constraints! e.g., "data in the relation **Employee** must be valid"

cscC43/343 - Introduction to Databases

The Relational Model — 23

Tuple and Domain Constraints

- A tuple constraint expresses conditions on the values of each tuple, independently of other tuples.
- For example,
 (NOT (Honours =
 'honours'))OR(Grade = 'A')
- Another example (derivation rule)
 Net = Amount-Deductions
- A domain constraint is a tuple constraint that involves a single attribute

```
e.g., (Grade \leq 'A') AND (Grade \geq 'F')
```

cscC43/343 - Introduction to Databases

Unique Identification for Tuples

RegNum	Surname	FirstName	BirthDate	DegreeProg
284328	Smith	Luigi	29/04/59	Computing
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Fine Art

- Registration number identifies students, i.e., there is no pair of tuples with the same value for RegNum.
- Personal data could identify students as well, i.e., there is no pair of tuples with the same values for all of Surname,
 FirstName, BirthDate.

cscC43/343 - Introduction to Databases

The Relational Model — 25

Keys

- A key is a set of attributes that uniquely identifies tuples in a relation.
- More precisely:
 - A set of attributes K is a superkey for a relation r if r can not contain two distinct tuples t₁ and t₂ such that t₁[K]=t₂[K];
 - K is a key for r if K is a minimal superkey (that is, there exists no other superkey K' of r that is contained in K as proper subset.)

cscC43/343 - Introduction to Databases

An Example

ĺ	RegNum	Surname	FirstName	BirthDate	DegreeProg
ĺ	284328	Smith	Luigi	29/04/59	Computing
Ì	296328	Smith	John	29/04/59	Computing
İ	587614	Smith	Lucy	01/05/61	Engineering
	934856	Black	Lucy	01/05/61	Fine Art
	965536	Black	Lucy	05/03/58	Fine Art

- RegNum is a key: i.e., RegNum is a superkey and it contains a sole attribute, so it is minimal.
- Surname, Firstname, BirthDate is another key: the three attributes form a superkey and there is no proper subset that is also a superkey.

cscC43/343 - Introduction to Databases

The Relational Model — 27

Beware!

RegNum	Surname	FirstName	BirthDate	DegreeProg
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Engineering

- There is no pair of tuples with the same values on both Surname and DegreeProg;
 i.e., in each programme students have different surnames; can we conclude that Surname and DegreeProg form a key for this relation?
- No! There could be students with the same surname in the same programme34

cscC43/343 - Introduction to Databases

Existence of Keys

- Relations are sets; therefore each relation is composed of <u>distinct</u> tuples.
- It follows that the whole set of attributes for a relation defines a superkey.
- Therefore each relation has a key, which is the set of all its attributes, or a subset thereof.
- The existence of keys guarantees that <u>each</u> <u>piece of data in the database can be accessed</u>,
- Keys are a major feature of the Relational Model and allow us to say that it is "valuebased".

cscC43/343 - Introduction to Databases

The Relational Model - 29

Keys and Null Values

- If there are nulls, keys do not work that well:
 - They do not guarantee unique identification;
 - They do not help in establishing correspondences between data in different relations

RegNum	Surname	FirstName	BirthDate	DegreeProg
NULL	Smith	John	NULL	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	NULL	NULL
NULL	Black	Lucy	05/03/58	Engineering

- Are the third and fourth tuple the same?
- How do we access the first tuple?

cscC43/343 - Introduction to Databases

Primary Keys

- The presence of nulls in keys has to be limited.
- Each relation must have a primary key on which nulls are not allowed,
- Notation: the attributes of the primary key are underlined.
- References between relations are realized through primary keys,

	<u>RegNum</u>	Surname	FirstName	BirthDate	DegreeProg	
	643976	Smith	John	NULL	Computing	
	587614	Smith	Lucy	01/05/61	Engineering	
	934856	Black	Lucy	NULL	NULL	
	735591	Black	Lucy	05/03/58	Engineering	
scC4	cC43/343 - Introduction to Databases The Relational Model - 3					

Do we Always Have Primary Keys?

- In most cases we do have reasonable primary keys.
- In other cases we don't, so we need to introduced new attributes by identifying codes.
- Note that most of the "obvious" codes we have now (social security number, student number, area code, ...) were introduced before the adoption of databases with the same goal in mind, i.e. to offer an unambiguous identification of things.

cscC43/343 - Introduction to Databases

Referential Constraints (Foreign Keys)

- Pieces of data in different relations are correlated by means of values of (primary) keys.
- Referential integrity constraints are imposed in order to guarantee that the values refer to existing tuples in the referenced relation.
- For example, if the manager of the employee with employee# 76544 is an employee with employee# 87233, there better be an employee with such an employee number.
- Also called inclusion dependencies.

cscC43/343 - Introduction to Databases

The Relational Model — 33

Example of Referential Constraints

<i>,</i> ,	44	_	_	_	$\overline{}$	_
O		_	rı		_	٧.
\sim		v		v	v	J

<u>Code</u>	Date	Officer	Dept	Registration
143256	25/10/1992	567	75	5694 FR
987554	26/10/1992	456	75	5694 FR
987557	26/10/1992	456	75	6544 XY
630876	15/10/1992	456	47	6544 XY
539856	12/10/1992	567	47	6544 XY

Officers

RegNum	Surname	FirstName
567	Brun	Jean
456	Larue	Henri
638	Larue	Jacques

Cars

Registration	<u>Dept</u>	Owner	
6544 XY	75	Cordon Edouard	
7122 HT	75	Cordon Edouard	
5694 FR	75	Latour Hortense	
6544 XY	47	Mimault Bernard	

cscC43/343 - Introduction to Databases

Referential Constraints

- A referential constraint requires that the values on a set X of attributes of a relation R₁ must appear as values for the primary key of another relation R₂.
- In such a situation, we say that X is a foreign key of relation R₁.
- In the previous example, we have referential constraints between the attribute of the relation **Offences** and the relation **Officers**; also between the attributes of

Offences and the relation Cars.

cscC43/343 - Introduction to Databases

The Relational Model — 35

Violation of Referential Constraints

Offences

<u>Code</u>	Date	Officer	Dept	Registration
987554	26/10/1992	456	75	5694 FR
630876	15/10/1992	456	47	6544 XY

Officers

RegNum	Surname	FirstName
567	Brun	Jean
638	Larue	Jacques

Cars

Registration	<u>Dept</u>	Owner	
7122 HT	75	Cordon Edouard	
5694 FR	93	Latour Hortense	
6544 XY	47	Mimault Bernard	

cscC43/343 - Introduction to Databases

Referential Constraints: Comments

- Referential constraints play an important role in making the relational model valuebased.
- It is possible to have features that support the management of referential constraints ("actions" activated by violations).
- Care is needed in case of referential constraints that involve two or more attributes.

cscC43/343 - Introduction to Databases

The Relational Model - 37

Complications with Constraints

Accidents

<u>Code</u>	Dept1	Registration1	Dept2	Registration2
6207	75	6544 XY	93	9775 GF
6974	93	5694 FR	93	9775 GF

Cars

Registration	<u>Dept</u>	Owner	
7122 HT	75	Cordon Edouard	
5694 FR	93	Latour Hortense	
9775 GF	93	LeBlanc Pierre	
6544 XY	75	Mimault Bernard	

Here we have two referential constraints for Accidents: from Registration1, Dept1 to Cars; also from Registration2, Dept2 to Cars.

cscC43/343 - Introduction to Databases