Week 1 — Part 1: An Introduction
to Database Systems

Databases and DBMSs
Data Models and Data Independence
Concurrency Control and Database Transactions
Structure of a DBMS
DBMS Languages

cscC43/343 — Introduction to Databases Introduction — 1

Databases and DBMSs

* Database: A very large, integrated collection of
data.

* Examples: databases of customers, products,...

* There are huge databases out there, for satellite
and other scientific data, digitized movies,...; up
to hexabytes of data (i.e., 1018 bytes)

* A database usually models (some part of) a real-
world enterprise.

+ Entities (e.g., students, courses)
+ Relationships (e.g., Paolo is taking CS564)

A Database Management System (DBMS) is a
software package designed to store and manage
databases.

€scC43/343 — Introduction to Databases Introduction — 2

Why Use a DBMS?

* Data independence and efficient access — You
don’t need to know the implementation of the
database to access data; queries are optimized.

* Reduced application development time —
Queries can be expressed declaratively,
programmer doesn’t have to specify how they
are evaluated.

» Data integrity and security — (Certain)
constraints on the data are enforced
automatically.

e Uniform data administration.

* Concurrent access, recovery from crashes —
Many users can access/update the database at
the same time without any interference.

cscC43/343 — Introduction to Databases Introduction — 3

Why Study Databases??

* Shift from computation to information:
Computers were initially conceived as neat
devices for doing scientific calculations; more
and more they are used as data managers.
* Datasets increasing in diversity and volume:

Digital libraries, interactive video, Human
Genome project, EOS project

... need for DBMS technology is exploding!

* DBMS technology encompasses much of
Computer Science:

0S, languages, theory, Al, multimedia, logic,...

€scC43/343 — Introduction to Databases Introduction — 4

Data Models

* A data model is a collection of concepts for
describing data.
* A database schema is a description of the data
that are contained in a particular database.
* The relational model of data is the most widely
used data model today.
+ Main concept: relation, basically a table with
rows and columns.
+ A relation schema, describes the columns, or
attributes, or fields of a relation.

cscC43/343 — Introduction to Databases Introduction —5

Levels of Abstraction

Many views, single logical
schema and physical

sghema. [1view | [View 2] [View 3]
* Views (also called external ‘\

schemas) describe how [Logical Schema |

users see the data. i

Physicél Schema

e Logical schema* defines
logical structure

* Physical schema describes
the files and indexes used.

* Called conceptual schema back in the
old days.

€scC43/343 — Introduction to Databases Introduction — 6

Example: University Database

* Logical schema:
Students(Sid:String, Name:String, Login:
String, Age:Integer,Gpa:Real)
Courses(Cid:String, Cname:String, Credits:
Integer)
Enrolled(Sid:String, Cid:String,
Grade:String)
* Physical schema:
+ Relations stored as unordered files.
¢+ Index on first column of Students.

* (One) External Schema (View):
Courselnfo(Cid:String, Enrollment:Integer)

cscC43/343 — Introduction to Databases Introduction — 7

Tables Represent Relations

Sid Name |Login |Age Gpa
00243 |Paolo |pg 21 4.0
Students |01786 |Maria |mf 20 3.6
02699 |Klaus |klaus |19 3.4
02439 |Eric eric 19 3.1
Cid Cname Credits
csc340 Rgmts Engineering |4
Courses csc343 Databases 6
ece268 Operating Systems |3
csc324 Programming Langs |4

€scC43/343 — Introduction to Databases Introduction — 8

Data Independence

Applications insulated from how data is
structured and stored: (See also 3-layer
schema structure.)
¢+ Logical data independence: Protection from
changes in the logical structure of data.

* Physical data independence: Protection
from changes in the physical structure of
data.

One of the most important benefits
of database technology!

cscC43/343 — Introduction to Databases Introduction — 9

Concurrency Control

e Concurrent execution of user programs is
essential for good DBMS performance.

+ Because disk accesses are frequent, and
relatively slow, it is important to keep the CPU
humming by working on several user programs
concurrently.

* Interleaving actions of different user programs
can lead to inconsistency: e.g., cheque is cleared
while account balance is being computed.

e DBMS ensures that such problems don’t arise:
users can pretend they are using a single-user
system.

€scC43/343 — Introduction to Databases Introduction — 10

Database Transactions

* Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

e Each transaction executed completely, must leave
the DB in a consistent state, if DB is consistent
when the transaction begins.

e Users can specify some simple integrity
constraints on the data, and the DBMS will
enforce these constraints.

* Beyond this, the DBMS does not really understand
the semantics of the data. (e.g., it does not
understand how the interest on a bank account is
computed).

* Thus, ensuring that a transaction (run alone)
preserves consistency is ultimately the user’s
responsibility!

cscC43/343 — Introduction to Databases Introduction — 11

Scheduling Concurrent Transactions

DBMS ensures that execution of {T,, ... , T} is
equivalent to some serial execution of T,, ... ,T,..

* Before reading/writing an object, a transaction
requests a lock on the object, and waits till the
DBMS gives it the lock. All locks are released at
the end of the transaction. (Strict 2-phase
locking protocol.)

* I[dea: If an action of T, (say, writing X) affects T,
(which perhaps reads X), one of them, say T, will
obtain the lock on X first and T, is forced to wait
until T, completes; this effectively orders the
transactions.

* What if T, already has a lock on Y and T, later
requests a lock on Y? (Deadlock!) T, or T, is

«akofted.and.restarted! introduction — 12

Ensuring Atomicity

* DBMSs ensure atomicity (all-or-nothing property),
even if system crashes in the middle of a
transaction.

* |dea: Keep a log (history) of all actions carried out
by the DBMS while executing a set of
transactions:

+ Before a change is made to the database, the
corresponding log entry is forced to a safe
location. (WAL protocol; OS support for this is
often inadequate.)

+ After a crash, the effects of partially executed
transactions are undone using the log. (Thanks
to WAL, if log entry wasn’t saved before the
crash, corresponding change was not applied to
database!)

cscC43/343 — Introduction to Databases Introduction — 13

The Log

* The following actions are recorded in the log;:

+ T, writes an object: the old value and the new
value; log record must go to disk before the
changed page!

+ T.commits/aborts: a log record indicating this
action.

* Log records chained together by transaction id, so
it’s easy to undo a specific transaction (e.g., to
resolve a deadlock).

* Log is often duplexed and archived on “stable”
storage.

* All log related activities (and in fact, all CC-related
activities such as lock/unlock, dealing with
deadlocks etc.) are handled transparently by the

.
€scC43/343 — Introduction to Databases Introduction — 14

Databases Make Folks Happy...

* End users and DBMS vendors

* Database application programmers,
e.g. smart webmasters

» Database administrators (DBAs)

Design logical /physical schema

Handle security and authorization

Data availability, crash recovery \

Database tuning as needs evolve

*

*

*

*

Must understand how a DBMS works!

cscC43/343 — Introduction to Databases Introduction — 15

Structure Of a DBMS These layers

must consider
concurrency
control and
recovery

* A typical DBMS has a
layered architecture.

* The figure does not
show the concurrency
control and recovery Files and Access Methods
components. Buffer Management

b ThlS IS One Ofseveral DISk Space Management
possible architectures;

each system has its
own variation. E_j

€scC43/343 — Introduction to Databases Introduction — 16

Query Optimization
and Execution

Relational Operators

Database Languages

A DBMS supports several languages and
several modes of use:

* Interactive textual languages, such as SQL;

* Interactive commands embedded in a host
programming language (Pascal, C, Cobol,
Java, etc.)

* Interactive commands embedded in ad-hoc
development languages (known as 4GL),
usually with additional features (e.g., for the
production of forms, menus, reports, ...)

* Form-oriented, non-textual user-friendly
languages such as QBE.

cscC43/343 — Introduction to Databases Introduction — 17

SQL, an Interactive Language
SELECT Course, Room,
Building
FROM Rooms, Courses
WHERE Code = Room
AND Floor="Ground"

Rooms [Code |Building [Floor
DS1 Ex-OMI Ground
N3 Ex-OMI Ground
G Science Third

CouRrsEs |Course Room |Floor
Networks |N3 Ground
Systems |N3 Ground

€scC43/343 — Introduction to Databases Introduction — 18

SQL Embedded in Pascal

write(“city name®"?"); readln(city);
EXEC SQL DECLARE E CURSOR FOR
SELECT NAME, SALARY
FROM EMPLOYEES
WHERE CITY = :city ;
EXEC SQL OPEN E ;
EXEC SQL FETCH E INTO :name, :salary ;
while SQLCODE = O do begin
write(“employee:", name, “raise?");
readIn(raise);
EXEC SQL UPDATE PERSON SET
SALARY=SALARY+:raise
WHERE CURRENT OF E
EXEC SQL FETCH E INTO :name, :salary
end;
EXEC SQL CLOSE CURSOR E

cscC43/343 — Introduction to Databases Introduction — 19

SQL Embedded in ad-hoc Language
declare Sal number; (OraCIe PL/SQL)

begin
select Sal into Salary from Emp where
Code="5788"
for update of Sal;
if Salary>30M then
update Emp set Sal=Salary*1.1 where
Code="5788";
else
update Emp set Sal=Salary*1.2 where
Code="5788";
end if;
commit;
exception
when no_data_found then
insert Into Errors
values(“No employee has given
code” ,sysdate);

cscC43/343 — Introduction to Databases Introduction — 20

Form-Based Interface
(in Access)

@, Microzoft Access H=]

” File Modifica Wisualizza Inserisci Query Strumenti Figestra|3

=R = R = = A A =R

*

%= |m -la-

CorsihPianoT erra: Query di selezione

Campo: | Corso Aula Fiano
Tabella: |Corsi Corsi Aule
Ordinamenta; (] -
tostra; [
Criteri: "Tena"
Oppure:

4 | =
i —

Prerto T

mrrroaocton — 21

CsCCA3/3Fs=TrTrouuc o 10 Datau ases

DBMS Languages

Host Programming Language
DML — data manipulation language
— data definition language
(allows defini-tion of database
schema)
4GL — fourth generation language,
useful for declarative query proces-
sing, report generation

Database

€scC43/343 — Introduction to Databases Introduction — 22

DBMS Technology: Pros and Cons

Pros
* Data are handled as a common resource.
* Centralized management and economy of scale.

* Availability of integrated services, reduction of
redundancies and inconsistencies

* Data independence (useful for the development
and maintenance of applications)

Cons

* Costs of DBMS products (and associated tools),
also of data migration.

* Difficulty in separating features and services
(with potential lack of efficiency.)

cscC43/343 — Introduction to Databases Introduction — 23

Conventional Files vs Databases

Databases
Files Advantages — Good for
Advantages — many data integration; allow for
already exist; good for more flexible formats (not
simple applications; very just records)
efficient Disadvantages — high cost;
Disadvantages — data drawbacks in a centralized
duplication; hard to facility
evolve; hard to build for
complex applications

The future is with databases!

€scC43/343 — Introduction to Databases Introduction — 24

Types of DBMSs

* Conventional — relational, network, hierarchical,
consist of records of many different record types
(database looks like a collection of files)

* Object-Oriented — database consists of objects
(and possibly associated programs); database
schema consists of classes (which can be objects
too).

* Multimedia — database can store formatted data
(i.e., records) but also text, pictures,...

* Active databases — database includes event-
condition-action rules

* Deductive databases* — like Ilarge Prolog
programs, not available commercially

cscC43/343 — Introduction to Databases Introduction — 25

The Hierarchical Data Model

Database consists of hierarchical record
structures; a field may have as value a list of
records; every record has at most one parent

Book

B365 War&Peace|$8.99 I
parent

Borrower

j-----:2>" children
38 EIm || Toronto |l

Borrowing

I
I
I

Jan 28, 1994 || Feb 24, 1994

€scC43/343 — Introduction to Databases Introduction — 26

The Network Data Model

A database now consists of records with
pointers (links) to other records. Offers a
navigational view of a database.

Customer
1::n link

Order | cycles of links are allowed
Ordered e Sales
Part t e History

Region

cscC43/343 — Introduction to Databases Introduction — 27

Comparing Data Models

* The oldest DBMSs were hierarchical, dating back to
the mid-60s. IMS (IBM product) is the most popular
among them. Many old databases are hierarchical.

* The network data model came next (early ‘70s).
Views database programmer as “navigator”, chasing
links (pointers, actually) around a database.

e The network model was found to be too
implementation-oriented, not insulating sufficiently
the programmer from implementation features of
network DBMSs.

* The relational model is the most recent arrival.
Relational databases are cleaner because they don’t
allow links/pointers (necessarily implementation-
dependent).

* Even though the relational model was proposed in
5870, it didn’t take over the database market till the

S.

€scC43/343 — Introduction to Databases Introduction — 28

Summary

 DBMSs used to maintain and query large
datasets.

* Benefits include recovery from system crashes,
concurrent access, quick application
development, data integrity and security.

* Levels of abstraction give data independence.
* A DBMS typically has a layered architecture.
* DBAs hold responsible jobs and are well-paid !

* DBMS R&D is one of the broadest, ¢
most exciting areas in CS.

cscC43/343 — Introduction to Databases Introduction — 29

