CSC343 -- Introduction to Databases

Weeks 7 and 9:
XML Data and Query Processing

Semistructured Data, HTML
XML and DTDs
XPath, XQuery

XML --1

CSC343 -- Introduction to Databases

HTML: HyperText Markup Language

—~>Motivation: Exchange data on the Internet;
documents are published by servers and are
presented by clients (browsers).

—->HTML was created by Tim Berners-Lee and
Robert Caillau at CERN in 1991; they wanted to
keep track of experimental data.

—->HTML describes only the logical structure of
documents:
v'browsers are free to interpret markup tags as

they please;
v'the document even makes sense if the tags
are ignored.

XML --3

CSC343 -- Introduction to Databases

Hypertext

—>Most human knowledge exists today in document
format (books etc.)

—~>Need technologies that store, and retrieve such
unstructured data same way as structured datal
—>From text to hypertext: add annotations (tags,
markups) in a document, to be used for indexing.

—>0ld idea (Vannevar Bush,Atlantic Monthly, 1945)
http://www.theatlantic.com/doc/194507/bush.

—~>Markup languages exist since 1970 -- SGML,

->Great tutorial:
http://www.brics.dk/~amoeller/ XML/

XML --2

CSC343 -- Introduction to Databases

HTML Data

—>An HTML document to be displayed on the
Web:
<dt>Name: John Doe
<dd>Id: s111111111
<dd>Address:
<l¥>Number: 123</fli>
Street: Mains/li>

0l 5 \‘\::::\\\\
</dt>) HTML does not
<dt>Name: Joe Public § distinguish !
<dd>ld: $222222222 between attributes |

and values

</ dt;

CSC343 -- Introduction to Databases

What's Great About HTML?

—>Many document formats are bulky: author controls
precise layout, formatting details stored with
content.

—2>In comparison, HTML is light-weight: author
sacrifices control for compactness, only content and
logical structure is represented.

—>Sizes of documents containing just the text "Hello
World!":

PostScript hello.ps 11,274 bytes
PDF hello.pdf 4,915 bytes
MS Word hello.doc 19,456 bytes
HTML hello.html 44 bytes

XML --

CSC343 -- Introduction to Databases

Cascading Style Sheets (CSS)

- Specify physical properties (layout) of HTML tags; are
(usually) written in separate files; can be shared for
many HTML documents.

- There are many advantages:
v'logical and physical properties may be separated;
v"document groups can have consistent looks;
v'the look can easily be changed.

- A CSS stylesheet works by:
v"allowing >50 properties to be defined for each tag;
v definitions for a tag may depend on its context;
v'undefined properties are inherited;
v'normal HTML corresponds to default properties.

- Using stylesheets, all tags become logical.

XML --7

CSC343 -- Introduction to Databases

From Logical to Physical Structure

—>Originally, HTML described logical structure:
v'h2: "this is a header at level 2";
v'em: "this text should be emphasized";
v ul: "this is a list of items".

—>Quickly, users wanted more control:
v"this header is centered and written in

Times-Roman in size 28pt","italicize text";
—->The early hack for commercial pages was to
make everything a huge image:
HTML hello.html 44 bytes
GIF hello.gif 32,700 bytes

—->HTML developers kept adding layout tags.

XML --6

CSC343 -- Introduction to Databases

Why XML?

—>XML is a standard for data exchange that is
taking over the World.

—->All major database products have been
retrofitted with facilities to store and construct
XML documents.

—~>There are already database products that are
specifically designed to work with XML
documents rather than relational or object-
oriented data.

—->XML is closely related to object-oriented and
so-called semistructured data.

XML --8

CSC343 -- Introduction to Databases

Semistructured Data

—->To make the HTML student list (earlier example)
suitable for machine consumption on the Web, it
should have these characteristics:

v'Be object-like;
v'Be schema-less — no guarantee it conforms

exactly to any schema, but different objects
share some commonalities;

v'Be self-describing — some schema-like
information, e.g., attribute names, is part of the
data itself.

—>Data with these characteristics are referred to as
semistructured.

XML --9

CSC343 -- Introduction to Databases

Self-Describing Data

- Attribute names embedded in the data itself, but are
distinguished from values.

- Doesn’t need schema to figure out what is what (but schema
might be useful nonetheless)
(#12345, [ListName: “Students™,
Contents:{ [Name: “John Doe”,
Id: “s1111111117,
Address: [Num: 123,
Str: “Main St.”]] ,
[Name: “Joe Public™,
Id: “s222222222”,
Address:[Num:321,Str:“Pine St.”]]

1)

XML -- 11

CSC343 -- Introduction to Databases

What is Self-Describing Data?

Non-self-describing first (relational, object-oriented):
Data part:
(#123, [“Students”,
{[“John”, s111111111, [123,”Main St’]],
[“Joe”, s222222222, [321, “Pine St”]]1 } 1)
Schema part:
PersonList[ListName: String,
Contents: [Name: String,ld: String,
Address: [Number: Integer, Street: String]]]

XML -- 10

CSC343 -- Introduction to Databases

XML — The De Facto Standard for
Semistructured Data
—> XML, the eXtensible Markup Language — suitable

for semistructured data and has become a
standard:

v'Easy to describe object-like data;

v'Self-describing;

v'Doesn’t require a schema — but can use one.
—>We will study:

v'DTDs — an early technique for specifying XML
schemas;

v'Query and transformation languages — XPath
and XQuery.

XML -- 12

CSC343 -- Introduction to Databases CSC343 -- Introduction to Databases

Overview of XML

—>Like HTML, but any number of different tags can be
used (up to the document author) — hence extensible.

- Unlike HTML, no semantics behind the tags:

v'For instance, HTML's <table>...</table> means:
render content as table; in XML doesn't mean
anything special;

a brief segway

- Stylus Studio is a development tool which can
be used to create and query XML.

—~>Data Direct Technologies has allowed us to
use it for the duration of this course.

vSome semantics can be specified using XML —>Take the time to download Stylus Studio to
Schema (types); some using stylesheets (browser your PC.
rendering) —lItis a valuable learning tool and can be used
- Unlike HTML, XML is intolerant to bugs: to verify your assignments.
= Browsers will render buggy HTML pages; 1t is fairly easy to do — the following slides will
= XML processors are not supposed to process guide you through the process.
buggy XML documents. i 15 B
l'Dg\évtr:)lct)r?:lleitygiziosuzl?;;gzoal:r PC Running Stylus Studio for the first time

http://www.stylusstudio.com/

2. From there, navigate to the download page. 1. Click on the Stylus Studio icon.

2. The registration screen will appear. Fill in
> Download Stylus Studio®

Click on. EDcwnh:.ad a free tr\a\.of our award-winning XML editor used by the necessary Informatlon'
Download R L oy s T T 3. You will be required to enter the following
development productivity by simplifying the development and registration COde:

deployment of XML data integration applications.

3. _Download the software

Select: Download NO"D 4. You are encouraged to download it early

and start using XML. Have fun!!

4. Install it on your PC. XML 15 XML 16

CSC343 -- Introduction to Databases

Conceptual View of XML

—>An XML document is (isomorphic to) an

ordered, labeled tree.

—~>Character data leaf nodes contain the
actual data (text strings); usually, character
data nodes must be non-empty and non-
adjacent to other character data nodes

—~>Elements nodes, are each labeled with
v‘a name (often called the element type),

and

va set of attributes, each consisting of a

name and a value,

Domain-Specific
Markups

recipe
id L7
categoly dessert

CSC343 -- Introduction to Databases

<h1>Rhubarb Cobbler</h1>
<h2>Maggie.Herrick@bbs.mhv.net</h
2>

<h3>Wed, 14 Jun 95</h3>
Rhubarb Cobbler made with bananas
as the main sweetener. It was
delicious. Basicly it was
<table>
<tr><td> 2 1/2 cups <td> diced
rhubarb
<tr><td> 2 tablespoons <td> sugar
<tr><td> 2 <td> fairly ripe bananas
<tr><td> 1/4 teaspoon <td>
cinnamon
<tr><td> dash of <td> nutmeg
</table>
Combine all and use as cobbler, pie,
or crisp.
Related recipes: Garden

ftle | | anthar | | date

r——Quiche
[

Rhubarh Cobbler email

Maggie.Herrick @bbs.mbv.net

and these nodes can have child nodes

CSC343 -- Introduction to Databases

An XML Document

XML -- 17

XML -- 18

CSC343 -- Introduction to Databases

More Terminology

<?xml version="1.0" ?>

<PersonList Typé‘=“Student” Date="2002-02-02" > ~

<Title Value="Student List” />
<Person>

</Person>

<Person>:
</Person>}>

</PersonList>

Sjuswia|a

- Elements are nested.@

- Root element contains all others.

'
JUBWISY3 100y

XML --19

<Person Name =*“John” Id ="“sl11

11111117>

(" John is a nice fellow-=
<Address>

<Number>21</Number>
<Street>Main St.</Street>
</Address>

Content of Person
AN

</Person>

XML --20

CSC343 -- Introduction to Databases

Well-formed XML Documents

—->Must have a root element.
—>Every opening tag has a matching closing tag.
—>Elements must be properly nested

» <foo><bar></foo></bar> is a no-no

—>An attribute name can occur at most once in an
opening tag. If it occurs,
VIt must have an explicitly specified value
(Boolean attrs are not allowed);
v'The value must be quoted (with “ or).

—-> XML processors are not supposed to try and fix ill-
formed documents (unlike HTML browsers).

XML -- 21

CSC343 -- Introduction to Databases

Report Document with Cross-Refs

<?xml version="1.0" ?>
<Report Date="2002-12-12">
<Students>

<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>

<CrsTaken CrsCode="CS308" Semester="F1997" />
<CrsTaken CrsCode="MAT123" Semester="F1997" />
</Student>
<Student Studld="s666666666">

<Name><First>Joe</First><Last>Public</Last></Name>
<Status>U3</Status>

<CrsTaken CrsCode="“CS308” Semester="F1994" />
<CrsTaken CrsCode="MAT123" Semester="F1997" />
</Student>
<Student Studld="s987654321">

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>

<CrsTaken CrsCode="CS308" Semester="F1994" />
</Student>)

</Students>
...... continued XML -- 23

CSC343 -- Introduction to Databases

Identifiers and References with
Attributes

An attribute can be declared to have type:

- ID: unique identifier of an element; if attrl and attr2 are
both of type ID, then it is illegal to have <something
attrl="abc”> ... <somethingelse attr2="abc”> within the
same document

-> IDREF: references a unique element with matching 1D
attribute; if attrl has type ID and attr2 has type IDREF
then we can have <something attrl="abc™> ...
<somethingelse attr2="abc">

- IDREFS - a list of references, if attrl is ID and attr2 is
IDREFS, then we can have <something attrl="abc"> ...
<§omething1 attrl="cde">...<something2 attr2="abc
cde”>

XML -- 22

CSC343 -- Introduction to Databases

Report Document (cont'd.)

<Classes>
<Class>
<CrsCode>CS308</CrsCode> <Semester>F1994</Semester>

</Class> \

<Class>
<CrsCode>CS308</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members="s111111111" />

</Class>

<Class>
<CrsCode>MAT123</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members="s111111111 s666666666" />

</Class>

</Classes>

...... continued

XML --24

CSC343 -- Introduction to Databases

Report Document cont'd

<Courses> . S

<Course CrsCode = “CS308" >
<CrsName>Market Analysis</CrsName>

</Course>

<Course CrsCode = “MAT123" >
<CrsName>Market Analysis</CrsName>

</Course>

</Courses>
</Report>

XML -- 25

CSC343 -- Introduction to Databases

Example

<item xmins =
http://www.acmeinc. com/lp#supplles
xmlns toy ="http://www.acmeinc. com/1p#toys”>
e <name>backpack</name> "=

reserved toy
keyword <feature= . namespace
<toy:.item><toy:name>cyberpet</toy:name>
</toy:item>
<[/feature>
</item>

XML --27

CSC343 -- Introduction to Databases

XML Namespaces

—>A mechanism to prevent name clashes, like
scoping rules.

—~>Namespace declaration
v'"Namespace — a symbol, typically a URL;
v'Prefix — an abbreviation of the namespace;

v'Actual name (element or attribute) —
prefix:name

v'Declarations/prefixes behave like a
begin/end.

XML --

CSC343 -- Introduction to Databases

More Namespaces

-> Scopes of declarations are color-coded:
<item xmlns="http://www.foo.org/abc”
xmins:cde="http://www.bar. com/cde”>
<name>...</name> T Newerl
<feature> ._overshadows old default__.:

<cde:item><cde:name>...</cde: name></cde item>
</feature> A
<item xmlns="http://www. foobar org/”
xmins:cde="http://iww.foobar.org/cde” >
<name>...</name>
<cde:name>:: </cde :name>

</item> 777 Redeclaration of !
</item> i cde; overshadows old |
‘ declaration ‘

XML --

26

28

CSC343 -- Introduction to Databases

Namespaces (cont'd)

—->xmlns="http://foo.com/bar” doesn’t mean there is
a document at this URL: using URLs is just a
convention; a namespace is just an identifier.

—>Namespaces aren’t part of XML 1.0, but all XML
processors understand this feature now

—->A number of prefixes have become “standard”
and some XML processors might understand
them without any declaration. E.g.,

v'xs for http://www.w3.0rg/2001/XMLSchema
v'xsl for http://www.w3.0rg/1999/XSL/Transform
v Etc.

XML -- 29

CSC343 -- Introduction to Databases

Attaching a DTD to a Document

—>DTD specified as part of a document:

<?xml version="1.0" ?>
<IDOCTYPE Report [
... DTD Report spec ...

’ [J
<Report> </Report>

—->DTD can also be specified as a standalone thing
<?xml version="1.0" ?>

<IDOCTYPE Report
“http://foo.org/Report.dtd”>

<Report> </Report>

XML --31

CSC343 -- Introduction to Databases

Document Type Definition (DTD)

—->A DTD is a grammar specification for an XML
document — you can think of it as a schema.
—>DTDs are optional — don't need to be
specified; if specified, a DTD can be part of
the document (at the top); or it can be given
as a URL

—>A document that conforms (i.e., parses) w.r.t.
its DTD is said to be valid.

—->XML processors are not required to check
validity, even if DTD is specified; but they are
required to test well-formedness.

XML -- 30

CSC343 -- Introduction to Databases

Example DTD Constructs

Element’s
contents
2><IELEMENT elt-name
(...contents...)/EMPTY/ANY >
S<IATTLIST elt-name attr-name An attr for elt
CDATA/ID/IDREF/IDREFS
#IMPLIED/#REQUIRED Type of attribute

Optional/mandatory

- Can define other things, like macros (called
entities in XML jargon)

XML -- 32

CSC343 -- Introduction to Databases

DTD Language

—-><IDOCTYPE root-element [doctype-
declaration... |> — determines name of root
element and contains document type
declarations

><!ELEMENT element-name content-model> —
associates a content model to every element

—>Content models:
vEMPTY: no content is allowed
v'/ANY: any content is allowed
v (#PCDATA|element-name|...)*: "mixed
content", arbitrary sequence of character data
and listed elements;
v'Deterministic regular expression (cont'd). ., ..

CSC343 -- Introduction to Databases

DTD Language: Attributes

><IATTLIST element-name attr-name attr-type
attr-default ...> — declares which attributes
are allowed or required in which elements

—>Attribute types:

v'CDATA: any value is allowed (the default)

v/(valuel...): enumeration of allowed values

v'ID, IDREF, IDREFS: ID attribute values must
be unique (contain "element identity"),
IDREF attribute values must match some ID
(reference to an element)

vENTITY, ENTITIES, NMTOKEN,
NMTOKENS, NOTATION: just forget these...

XML -- 35

CSC343 -- Introduction to Databases

DTD Language: Regular Expressions

—~>Deterministic regular expression over
element names: sequence of elements
matching the expression

+ choice: (...]...|...)

+ sequence: (...,...,...)
+ optional: ...?

+ zero or more: ...*

+ one or more: ...+

XML -- 34

CSC343 -- Introduction to Databases

DTD Language:
Attribute Defaults

>#REQUIRED: the attribute must be explicitly
provided.

—>#IMPLIED: attribute is optional, no default
provided.

—>"value": if not explicitly provided, this value is
inserted by default.

2>#FIXED "value": as above, but only this value
is allowed.

XML -- 36

CSC343 -- Introduction to Databases

DTD Example

<IDOCTYPE Report [

>

<IELEMENT Report (Students, Classes, Courses)>
<IELEMENT Students (Student*)>

<IELEMENT Classes (Class*)>

<IELEMENT Courses (Course*)>

<IELEMENT Student (Name, Status,>

<IELEMENT Name (First,Last)>

<IELEMENT First (#PCDATA)>.....
--------- . Empty element,
<IELEMENT CrsTaken n%){:ontent

<IELEMENT Class (CrsCode,Semester,ClassRoster)>
<IELEMENT Course (CrsName)>

Zero or more

Has text content

<IATTLIST Report Date CDATA #IMPLIED>
<IATTLIST Student Studld ID #REQUIRED>

<IATTLIST Course (CrsCode~D-#REQUIRED>
<IATTLIST CrsTakgn CrsCode¢ IDREF #REQUIRED>
<IATTLIST ClassRoster Members IDREFS #IMPLIED>

Same attribute in
different elements

XML -- 37

CSC343 -- Introduction to Databases

Limitations of DTDs

—~>Don’'t understand namespaces.
—>Very limited assortment of data types (just

strings).

—>Very weak wrt consistency constraints

(ID/IDREF/ IDREFS only).

—>Can’t express unordered contents conveniently.
—All element names are global: can’t have one

Name type for people and another for

companies, e.g.,
<IELEMENT Name (Last, First)>
<IELEMENT Name (#PCDATA)>

can’t be in the same DTD B

CSC343 -- Introduction to Databases

<IELEMENT collection (description,recipe*)>
<IELEMENT description ANY>

<IELEMENT recipe (title, ingredient*, preparation, comment?,
nutrition)>

<IELEMENT title (#PCDATA)> Another
<IELEMENT ingredient (ingredient*,preparation)?>
<IATTLIST ingredient name CDATA #REQUIRED Exam ple

amount CDATA #IMPLIED
unit CDATA #IMPLIED>
<IELEMENT preparation (step*)>
<IELEMENT step (#PCDATA)>
<IELEMENT comment (#PCDATA)>
<IELEMENT nutrition EMPTY>
<IATTLIST nutrition protein CDATA #REQUIRED
carbohydrates CDATA #REQUIRED
fat CDATA #REQUIRED
calories CDATA #REQUIRED

alcohol CDATA #IMPLIED>
XML --

CSC343 -- Introduction to Databases

XML Schema

—>Proposed in order to rectify drawbacks of DTDs.
—>Advantages:

v'Integrated with namespaces;

v'Many built-in types;

v'User-defined types;

v'Has local element names;

v'Powerful key and referential constraints.

—>Disadvantages: Unwieldy, much more complex
than DTDs

XML --

38

40

10

CSC343 -- Introduction to Databases

XML Query Languages

—>XPath — core query language. Very limited, a
glorified selection operator. Very useful, though:
used in XML Schema, XSLT, XQuery, many other
XML standards.

—>XSLT - a functional document transformation
language. Very powerful, very complicated.
->XQuery — W3C standard. Very powerful, fairly
intuitive, SQL-style

—->SQL/XML — attempt to marry SQL and XML, part of
SQL:2003

XML --41

CSC343 -- Introduction to Databases

XPath
—~>Analogous to path expressions in object-
oriented languages (e.g., OQL).
—~>Extends path expressions with query facility.
—>XPath views an XML document as a tree

v'Root of the tree is a new node, which doesn’t
correspond to anything in the document
v'Internal nodes are elements;
v'Leaves are either
= Attributes, Text nodes, Comments;

= Or other things that we won't discuss (e.qg.,
processing instructions, ...)

XML --43

CSC343 -- Introduction to Databases

Why Query XML?

—->Need to extract parts of XML documents.

->Need to transform documents into different
forms.

—~>Need to relate — join — parts of the same or
different documents.

XML -- 42

CSC343 -- Introduction to Databases

XPath Document Tree
Root of XML tree —____

—— Root of XML document
Root -
Comment Students Comment
/
Student ..
_‘__,___,'—-"' _Student
Nans 7| sStudld 1 N
/ \ Status
First Last CrsTaken CrsTaken
John Doe U4 CrsCode | Semester CrsCode | Semester
Legend: Text Element Attribute Comment Root

XML -- 44

11

CSC343 -- Introduction to Databases

...and Corresponding Document...

- A fragment of the report document used earlier:

<?xml version="1.0" ?>
<l-- Some comment -->
<Students>
<Student Studld="111111111" >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode="CS308" Semester="F1997" />
<CrsTaken CrsCode="MAT123" Semester="F1997" />
</Student>
<Student Studld="987654321" >
<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode="CS308" Semester="F1994" />
</Student>
</Students>
<!-- Some other comment -->

XML -- 45

CSC343 -- Introduction to Databases

XPath Basics

—->An XPath expression takes a document tree as
input and returns a multi-set of nodes of the tree.

—>Expressions that start with / are absolute path
expressions
v Expression / —returns root node of XPath tree;
v [Students/Student — returns all Student-

elements that are children of Students elements,
which in turn must be children of the root;

v' [Student — returns empty set (no such children
at root).

—>The basic idea here is similar to that of directory
paths.

XML -- 47

CSC343 -- Introduction to Databases

Terminology

—>Parent/child nodes, as usual.
—>Child nodes (that are of interest to us) are of
types text, element, attribute.

—>Ancestor/descendant nodes — as usual in
trees.

XML -- 46

CSC343 -- Introduction to Databases

More XPath Basics

—>Current (or context node) — exists during the
evaluation of XPath expressions (and in other
XML query languages)

- . — denotes the current node; .. — denotes the
parent

= foo/bar — returns all bar-elements that are
children of foo nodes, which in turn are
children of the current node;

= [foo/bar — same;

= _/abc/cde — all cde e-children of abc e-
children of the parent of the current node.

—>Expressions that don't start with / are relative
(to the current node).

XML -- 48

12

CSC343 -- Introduction to Databases

Attributes, Text, etc.

Denotes an
attribute

9/Students/8tudent/@tudentld — returns all
Studentld a-children of Student, which are e-
children of Students, which are children of the
root.

—>/Students/Student/Name/Last/text() — returns all
t-children of Last e-children of ...

—>XPath provides means to select other document
components as well.

XML -- 49

CSC343 -- Introduction to Databases

Complete Set of Axes

—>Child — the children of the context node

—>Descendants — all descendants (children+);

—>Parent — the parent (empty if at the root)

—->Ancestor — all ancestors from the parent to the root

—>Following-sibling — siblings to the right

—->Preceding-sibling — siblings to the left

—->Following — all following nodes in the document,
excluding descendants

—->Preceding — all preceding nodes in the document,
excluding ancestors

—2>Attribute — the attributes of the context node

9Na(;nespace — namespace declarations in context
node

- Self — the context node itself

9de|?cendant—or—self — the union of descendant and
se

—~ancestor-or-self — the union of ancestor and self

51

CSC343 -- Introduction to Databases

Basic ldea and Semantics

- An XPath expression is: locationStepl/locationStep2/...
-> Location step: Axis::nodeSelector[predicate]
- Navigation axis:

v child, parent — have seen;

v ancestor, descendant, ancestor-or-self, descendant-
or-self — will see later; -
This is called full (rather

v'some other -- will see later. than abbreviated) syntax.
- Node selector: node name-or-wildcard; e.g:;

v [child::Sttident (we used ./Student, which is an
abbreviation)

v .[child::* —any e-child (abbreviation: ./*)
-> Predicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode =

“CSC3437
XML -- 50
CSC343 -- Introduction to Databases
. ancestor
AXis R
Directions

o -

descendant

o

XML -- 52

13

CSC343 -- Introduction to Databases

Node Tests

—>Testing by node type:
v'text() — chardata node;
v'’comment() — comment node;

v'processing-instruction() — processing
instruction node;

v'node() — any node (not including attributes
and namespace declarations);

—>Testing by node name:
v'"Name — nodes with that name
v* — any node

XML -- 53

CSC343 -- Introduction to Databases

XPath Semantics

The meaning of the expression locStepl/locStep2/... is
the set of all document nodes obtained as follows:

v'Find all nodes reachable by locStepl from the
current node;

v'For each node N in the result, find all nodes
reachable from N by locStep2; take the union of
all these nodes;

v'For each node in the result, find all nodes
reachable by locStep3, etc.;

v'The value of the path expression on a document
is the set of all document nodes found after
processing the last location step in the
expression. XML 55

CSC343 -- Introduction to Databases

Essential Predicates

—>[attribute::name="flour"]: test equality of an attribute

—>[attribute::name!="flour"]: test inequality of an
attribute

—>[attribute::amount="0.5" and attribute::unit="cup']: test
two things at once (also or)

—>[position()=2]: test position among siblings

->[attribute::amount<'0.5": a syntax error

—>[attribute::amount<'0.5": a useless test of
lexicographical order

—>[number(attribute::amount)<number('0.5")]: what
you meant to write instead!

An entire location path may be used as a predicate

—>[attribute::amount]: the node has an amount attribute

—>[descendant::ingredient]: the node has a nested
ingredient XWL 54

CSC343 -- Introduction to Databases

...More Generally...

—locationStepl/locationStep2/... means:
v'Find all nodes specified by locationStepl
v'For each such node N:

* Find all nodes specified by locationStep2
using N as the current node

= Take union

v'For each node returned by locationStep2 do the
same using locationStep3, ...

—>locationStep = axis::node[predicate]
v'Find all nodes specified by axis::node
v'Select only those that satisfy predicate

XML -- 56

14

CSC343 -- Introduction to Databases

More Navigational Primitives

—->Second CrsTaken child of first Student child of
Students:

/Students/Student[1]/CrsTaken[2]

—>All last CourseTaken elements within each
Student element:

/Students/Student/CrsTaken[last()]

->All href attributes in cite elements in the first 5
sections of an article document:

child::section[position()<6] / descendant::cite /
attribute::href

XML -- 57

CSC343 -- Introduction to Databases

Selection Predicates
—>Recall: Location step = Axis::nodeSelector[predicate]

->Predicate:

v’ XPath expression = const | built-in function |
XPath expression (equality predicate);

v XPath expression (returns false if result is empty);

v built-in predicate;

v a Boolean combination thereof;

-2 Axis::nodeSelector[predicate] < Axis::nodeSelector

but contains only the nodes that satisfy predicate.

—>Built-in predicates include ones for string matching,

set manipulation, etc. Built-in function include large

assortment of functions for string manipulation,

aggregation, etc.

XML -- 59

CSC343 -- Introduction to Databases

Wildcards

->Wildcards are useful for unknown document structures.
—->The /I wildcard descends down any number of levels
(including 0):
v [ICrsTaken - all CrsTaken nodes under the root;

v" Students//@Name — all Name attribute nodes under
the elements Students, who are children under the
current node.

—->Note: ./Last and Last are same; but .//Last and //Last
are different.

->The * wildcard:
= * — any element: Student/*/text()
= @* — any attribute: Students//@*

XML -- 58

CSC343 -- Introduction to Databases

XPath Queries — Examples

- Students who have taken CSC343:
/[Student[CrsTaken/@CrsCode="CSC343"]
—->Complex example:
//Student[Status="U3” and starts-with(.//Last,
“A%)
and contains(concat(.//[@CrsCode),
“ESE”)
and not(.//Last = ./[First)]
—>Aggregation: sum(), count()

//Student[sum(.//@Grade) div count(.//@Grade)
> 3.5]

XML -- 60

15

CSC343 -- Introduction to Databases

XPath Queries cont’d
—>Testing whether a subnode exists:

v'[IStudent[CrsTaken/@Grade] - students who
have a grade (for some course)

v'[/Student[Name/First or CrsTaken/@Semester

or Status/text() = “U4”"] — students
who have either a first name or have taken a
course in some semester or have status U4

—>Union operator, | :

v'[ICrsTaken[@Semester="F2001"] |
//Class[Semester="F1990"]

union lets us define heterogeneous collections of
nodes.

XML -- 61

CSC343 -- Introduction to Databases

An Example
<BOOKS>

<BOOK YEAR="1999 2003">
<AUTHOR>Abiteboul</AUTHOR>
<AUTHOR>Buneman</AUTHOR>
<AUTHOR>Suciu</AUTHOR>
<TITLE>Data on the Web</TITLE>
<REVIEW>A fine book.</REVIEW>

</BO0K>

<BOOK YEAR="2002">
<AUTHOR>Buneman</AUTHOR>
<TITLE>XML in Scotland</TITLE>
<REVIEW>The best ever!</REVIEW>

</BO0DK>

</BODKS>

- 63

CSC343 -- Introduction to Databases

XQuery — XML Query Language

—>Integrates XPath with earlier proposed query
languages: XQL, XML-QL

->SQL-style, not functional-style

—>2004: XQuery 1.0

XML -- 62

CSC343 -- Introduction to Databases

Titles of all books published before 2000 Some

/BOOKS/BOOK [@YEAR < 2000]/TITLE

Year and title of all books published before 2000

for $book in /BOOKS/BOOK
where $book/@YEAR < 2000
return <BOOK>{ $book/@YEAR, $book/TITLE }</BOOK>

Books grouped by author

for $author in distinct (/BOOKS/BO0K/AUTHOR) return
<AUTHOR NAME="{ $author }">{
/BOOKS/BOOK [AUTHOR = $author]/TITLE
}</AUTHOR>

Queries

XML -- 64

16

CSC343 -- Introduction to Databases

transcript.xmi

<Transcripts>

<Transcript>
<Student Studld="111111111" Name=“John Doe" />
<CrsTaken CrsCode="CS308” Sem="F97" Gr="B” />
<CrsTaken CrsCode="MAT123” Sem="F97" Gr="B" />
<CrsTaken CrsCode="EE101" Sem="F1997" Gr="A" />
<CrsTaken CrsCode="CS305" Sem="F1995" Gr="A" />

</Transcript>

<Transcript>
<Student Studld="987654321" Name="Bart Simpson” />
<CrsTaken CrsCode="CS305” Sem="F1995" Gr="C" />
<CrsTaken CrsCode="CS308” Sem="F1994" Gr="B" />
</Transcript>

...... contd
XML -- 65
CSC343 -- Introduction to Databases
XQuery Basics
XQuery
- General structure: expression
FOR variable declarationg
WHERE condition]
RETURN document comment
- Example:
(: students who took MAT123 :) See rext lide
FOR $t IN

doc(“http://uoft.edu/transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student
- Result:
<Student Studld="111111111" Name="John Doe” />
<Student Studld="123454321" Name="Joe Blow" />

XML -- 67

CSC343 -- Introduction to Databases

transcript.xml (cont’d)

<Transcript>
<Student Studld="123454321" Name="Joe Blow” />
<CrsTaken CrsCode="CS315" Sem="S97" Gr="A"/>
<CrsTaken CrsCode="CS305" Sem="S96" Gr="A" />
<CrsTaken CrsCode="MAT123" Sem="S96" Gr="C" />

</Transcript>

<Transcript>

</Student Studld="023456789" Name="Homer Simpson”
>

<CrsTaken CrsCode="EE101” Sem="F1995" Gr="B” />
<CrsTaken CrsCode="CS305" Sem="“S1996" Gr="A" />
</Transcript>
</Transcripts>

XML --

CSC343 -- Introduction to Databases

XQuery Basics (cont’d)

- Previous query doesn’t produce a well-formed XML
document; the following does:

. Query inside
<StudentList> XML
{
FOR $tIN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student
}
</StudentList>

- FOR binds $t to Transcript elements one by one, filters
using WHERE, then places Student-children as e-
children of StudentList using RETURN.

XML --

66

68

17

CSC343 -- Introduction to Databases

Doc Restructuring with XQuery

- Reconstruct lists of students taking each class using
the Transcript records:

FOR $c IN distinct(doc(“transcript.xml”)//CrsTaken)
RETURN
<ClassRoster CrsCode={$c/@CrsCode}
Sem={$c/@Sem}>
{FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/[@CrsCode = $c/@CrsCode
and @Semester = $c/@Sem]
RETURN $t/Student ORDER BY
$t/Student/@ Studld}
</ClassRoster>
ORDER BY $c/@CrsCode

XML -- 69

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)

- Solution: instead of

FOR $c IN
distinct(doc(“transcript.xml”)//CrsTaken) ocument on

use next slide

FOR $c IN doc(“classes.xml”)//Class

where classes.xml lists course offerings (course
code/semester) explicitly (no need to extract
them from transcript records).

->Then $c is bound to each class exactly once, so
each class roster will be output exactly once.

XML --71

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)

- Output elements have the form:

<ClassRoster CrsCode="CS305" Sem="F1995" > <Student
Studld="111111111" Name="John Doe” /> <Student
Studld="987654321" Name="Bart Simpson” />
</ClassRoster>

- Problem: the above element will be output twice —
once when $c is bound to ~ John Doe’s

<CrsTaken CrsCode="CS305" Sem="F1995" Grade="A" />
and once when it is bound to- Bart Simpson’s
<CrsTaken CrsCode="CS305” Sem="F1995” Grade="C" />

- Note: grades are different — distinct() won't eliminate
transcript records that refer to same class!

XML -- 70

CSC343 -- Introduction to Databases

http://uoft.edu/classes.xml

<Classes>
<Class CrsCode="CS308" Semester="F1997" >

<CrsName>SE</CrsName> <Instructor>Adrian
Jones</Instructor>

</Class>
<Class CrsCode="CS305" Semester="F1995" >

<CrsName>Databases</CrsName> <Instructor>Mary
Doe</Instructor>

</Class>

<Class CrsCode="CS315" Semester="S1997" >
<CrsName>TP</CrsName> <Instructor>John

Smyth</Instructor>

</Class>

<Class CrsCode="MAR123" Semester="F1997" >

<CrsName>Algebra</CrsName> <Instructor>Ann
White</Instructor>

</Class>
</Classes> XML - 72

18

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)

- More problems: the previous query will list classes with no
students. Reformulation that avoids this:

FOR $c IN doc(“classes.xml")//Class
WHERE doc(“transcripts.xml”)
/ICrsTaken[@CrsCode = $c/@CrsCode

and @Sem = $c/@Sem]

Test that classes
aren’t empty

RETURN
<ClassRoster CrsCode = {$c/@CrsCode} Sem= {$c/@Sem}>
{ FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and
@Sem = $c/@Sem]
RETURN $t/Student ORDER BY $t/Student/@Studld
} </ClassRoster>
ORDER BY $c/@CrsCode

XML --73

CSC343 -- Introduction to Databases

Evaluate XQuery Queries — Step 1

Produce a list of bindings for variables

—->The FOR clause binds each variable to a list
of nodes specified by an XQuery expression.

—>The expression can be:
v'An XPath expression;
v'An XQuery query;
v'A function that returns a list of nodes.
—End result of a FOR clause:
v'Ordered list of tuples of document nodes;
v'Each tuple is a binding for the variables in
the FOR clause.

XML -- 75

CSC343 -- Introduction to Databases

XQuery Semantics

—>So far the discussion was informal.

—>XQuery semantics defines what the
expected result of a query is.

- Defined analogously to the semantics of SQL.

XML -- 74

CSC343 -- Introduction to Databases

Step 1 — Example

Example (bindings):
~Let FOR declare $A and $B
- Bind $A to document nodes {v,w}; $B to
{xy.z}
—~>Then FOR clause produces the following list
of bindings for $A and $B:
v $Alv, $B/x
v $Al, $Bly
v $Alv, $B/z
v $A/w, $B/x
v $A/w, $Bly
v $A/w, $B/z

XML --76

19

CSC343 -- Introduction to Databases

Evaluate Queries — Step 2

—>Filter bindings via the WHERE clause -- Use each
tuple binding to substitute its components for
variables; retain those that satisfy WHERE clause.

—~>Example:
WHERE $A/CrsTaken/@CrsCode = B/Class/@CrsCode
Binding:
$A/w, where w = <CrsTaken CrsCode="“CS308" .../>
$B/x, where x = <Class CrsCode="CS308"... />

Then w/CrsTaken/@CrsCode = x/Class/@CrsCode, so
WHERE condition is satisfied & binding retained

XML -- 77

CSC343 -- Introduction to Databases

User-Defined Functions

- Can define functions, even recursive ones.

—->Functions can be called from within an
XQuery expression.

—>Body of function is an XQuery expression.

—~>Result of expression is returned; result can
be a primitive data type (integer, string), an
element, a list of elements, a list of arbitrary
document nodes, ...

XML --79

CSC343 -- Introduction to Databases

Evaluate Queries — Step 3

—>Construct result

v'For each retained tuple of bindings,
instantiate the RETURN clause;

v'This creates a fragment of the output
document;

v'Do this for each retained tuple of bindings in
sequence.

XML --78

CSC343 -- Introduction to Databases

XQuery Functions: Example

—>Count the number of e-decendants recursively:

Function
signature

DECLARE FUNCTION countNodes($e AS
element()) AS integer {
RETURN
XQuery IF empty($e/*) THEN O
expression| ELSE
sum(FOR $n IN $e/* RETURN

countNodes($n)) T
+ Ccou nt($e/*) functions sum,
} __count, empty

XML -- 80

20

Grouping and Aggregation

—>Does not use separate grouping operator.
v'[OQL does not need one either];

v'Subqueries inside RETURN clause obviate
this need.

—~>Uses built-in aggregate functions count, avg,
sum, etc. (some borrowed from XPath).

XML -- 81

CSC343 -- Introduction to Databases

Quantification in XQuery

- XQuery supports explicit quantification: SOME (3)
and EVERY (V).

- Example:

FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE SOME $ct IN $t/CrsTaken
SATISFIES $ct/@CrsCode = “MAT123”

RETURN $t/Student

- This is almost equivalent to:
FOR $t IN fn:doc(“transcript.xml”)//Transcript,

$ct IN $t/CrsTaken

WHERE $ct/@CrsCode = “MAT123”
RETURN $t/Student

- Not quite equivalent, if students can take same course
twice! XML -- 83

CSC343 -- Introduction to Databases

Aggregation Example

—~>Produce a list of students along with the number of
courses each student took:

FOR $t IN fn:doc(“transcripts.xml”)//Transcript,

$s IN $t/Student
LET $c:= $t/CrsTaken
RETURN
<StudSummary Studld={$s/@StudId}
Name={$s/@Name}

TotalCourses = {fn:count(fn:distinct($c))} />

ORDER BY StudSummary/@TotalCourses

->The grouping effect is achieved because $c is
bound to a new set of nodes for each binding of $t.

XML -- 82

CSC343 -- Introduction to Databases
Implicit Quantification
- 1In SQL, variables that occur in FROM but not SELECT,
are implicitly quantified with 3. Likewise in XQuery, for
variables that occur in FOR, but not RETURN.
- However, XQuery variables are bound to doc nodes:

v Two nodes may look textually identical but are still
different nodes and thus different variable bindings;

v'Instantiations of the RETURN expression produced
by binding variables to different nodes are output
even if these instantiations are textually identical.

—>1In SQL a variable can be bound to the same value only
once; identical tuples are not output twice (in theory);
This is why the two queries in the previous slide are
not equivalent

XML -- 84

21

CSC343 -- Introduction to Databases

More on Quantification

- Retrieve all classes (from classes.xml) where each student
took MAT123

- Hard to do in SQL (before SQL-99) because of the lack of
explicit quantification.
FOR $c IN fn:doc(classes.xml)//Class
LET $g:={(: Transcript records that correspond to class
$c)
FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@Semester = $c/@Semester
AND $t/CrsTaken/@CrsCode = $c/@CrsCode
RETURN $t }

WHERE EVERY $tr IN $g SATISFIES
NOT fn:empty($tr[CrsTaken/@CrsCode="MAT123"])
RETURN $c ORDER BY $c/@CrsCode

XML -- 85

22

