
1

XML -- 1

CSC343 -- Introduction to Databases

Weeks 7 and 9:
XML Data and Query Processing

Semistructured Data, HTML
XML and DTDs
XPath, XQuery

XML -- 2

CSC343 -- Introduction to Databases

Hypertext
Most human knowledge exists today in document
format (books etc.)
Need technologies that store, and retrieve such
unstructured data same way as structured data!
From text to hypertext: add annotations (tags,
markups) in a document, to be used for indexing.
Old idea (Vannevar Bush,Atlantic Monthly, 1945)
http://www.theatlantic.com/doc/194507/bush.
Markup languages exist since 1970 -- SGML,
Great tutorial:
http://www.brics.dk/~amoeller/XML/

2

XML -- 3

CSC343 -- Introduction to Databases

HTML: HyperText Markup Language
Motivation: Exchange data on the Internet;
documents are published by servers and are
presented by clients (browsers).
HTML was created by Tim Berners-Lee and
Robert Caillau at CERN in 1991; they wanted to
keep track of experimental data.
HTML describes only the logical structure of
documents:

browsers are free to interpret markup tags as
they please;
the document even makes sense if the tags
are ignored.

XML -- 4

CSC343 -- Introduction to Databases

HTML Data
An HTML document to be displayed on the
Web:
<dt>Name: John Doe

<dd>Id: s111111111
<dd>Address:

Number: 123
Street: Main

</dt>
<dt>Name: Joe Public

<dd>Id: s222222222
...

</dt>

HTML does not
distinguish

between attributes
and values

3

XML -- 5

CSC343 -- Introduction to Databases

What's Great About HTML?
Many document formats are bulky: author controls
precise layout, formatting details stored with
content.
In comparison, HTML is light-weight: author
sacrifices control for compactness, only content and
logical structure is represented.
Sizes of documents containing just the text "Hello
World!":

PostScript hello.ps 11,274 bytes
PDF hello.pdf 4,915 bytes
MS Word hello.doc 19,456 bytes
HTML hello.html 44 bytes

XML -- 6

CSC343 -- Introduction to Databases

From Logical to Physical Structure
Originally, HTML described logical structure:

h2: "this is a header at level 2";
em: "this text should be emphasized";
ul: "this is a list of items".

Quickly, users wanted more control:
"this header is centered and written in
Times-Roman in size 28pt","italicize text";

The early hack for commercial pages was to
make everything a huge image:

HTML hello.html 44 bytes
GIF hello.gif 32,700 bytes

HTML developers kept adding layout tags.

4

XML -- 7

CSC343 -- Introduction to Databases

Cascading Style Sheets (CSS)
Specify physical properties (layout) of HTML tags; are
(usually) written in separate files; can be shared for
many HTML documents.
There are many advantages:

logical and physical properties may be separated;
document groups can have consistent looks;
the look can easily be changed.

A CSS stylesheet works by:
allowing >50 properties to be defined for each tag;
definitions for a tag may depend on its context;
undefined properties are inherited;
normal HTML corresponds to default properties.

Using stylesheets, all tags become logical.

XML -- 8

CSC343 -- Introduction to Databases

Why XML?

XML is a standard for data exchange that is
taking over the World.
All major database products have been
retrofitted with facilities to store and construct
XML documents.
There are already database products that are
specifically designed to work with XML
documents rather than relational or object-
oriented data.
XML is closely related to object-oriented and
so-called semistructured data.

5

XML -- 9

CSC343 -- Introduction to Databases

Semistructured Data
To make the HTML student list (earlier example)
suitable for machine consumption on the Web, it
should have these characteristics:

Be object-like;
Be schema-less — no guarantee it conforms
exactly to any schema, but different objects
share some commonalities;
Be self-describing — some schema-like
information, e.g., attribute names, is part of the
data itself.

Data with these characteristics are referred to as
semistructured.

XML -- 10

CSC343 -- Introduction to Databases

What is Self-Describing Data?

Non-self-describing first (relational, object-oriented):
Data part:
(#123, [“Students”,
{[“John”, s111111111, [123,”Main St”]],
[“Joe”, s222222222, [321, “Pine St”]] }])

Schema part:
PersonListPersonList[ListName: String,
Contents: [Name: String,Id: String,
Address: [Number: Integer, Street: String]]]

6

XML -- 11

CSC343 -- Introduction to Databases

Self-Describing Data
Attribute names embedded in the data itself, but are
distinguished from values.
Doesn’t need schema to figure out what is what (but schema
might be useful nonetheless)
(#12345, [ListName: “Students”,

Contents:{ [Name: “John Doe”,
Id: “s111111111”,

Address: [Num: 123,
Str: “Main St.”]] ,

[Name: “Joe Public”,
Id: “s222222222”,

Address:[Num:321,Str:“Pine St.”]]
}])

XML -- 12

CSC343 -- Introduction to Databases

XML – The De Facto Standard for
Semistructured Data

XML, the eXXtensible MMarkup LLanguage – suitable
for semistructured data and has become a
standard:

Easy to describe object-like data;
Self-describing;
Doesn’t require a schema – but can use one.

We will study:
DTDs – an early technique for specifying XML
schemas;
Query and transformation languages – XPath
and XQuery.

7

XML -- 13

CSC343 -- Introduction to Databases

Overview of XML
Like HTML, but any number of different tags can be
used (up to the document author) – hence extensible.
Unlike HTML, no semantics behind the tags:

For instance, HTML’s <table><table>……</table></table> means:
render content as table; in XML doesn’t mean
anything special;
Some semantics can be specified using XML
Schema (types); some using stylesheets (browser
rendering)

Unlike HTML, XML is intolerant to bugs:
Browsers will render buggy HTML pages;
XML processorsXML processors are not supposed to process
buggy XML documents.

XML -- 14

CSC343 -- Introduction to Databases

a brief segway

Stylus Studio is a development tool which can
be used to create and query XML.
Data Direct Technologies has allowed us to
use it for the duration of this course.
Take the time to download Stylus Studio to
your PC.
It is a valuable learning tool and can be used
to verify your assignments.
It is fairly easy to do – the following slides will
guide you through the process.

8

XML -- 15

CSC343 -- Introduction to Databases

Downloading Stylus Studio to your PC
1. Go to the Stylus Studio Web page at

http://www.stylusstudio.com/
2. From there, navigate to the download page.

3. Download the software

4. Install it on your PC.

Select: Download Now

Click on:
Download

XML -- 16

CSC343 -- Introduction to Databases

Running Stylus Studio for the first time

1. Click on the Stylus Studio icon.
2. The registration screen will appear. Fill in

the necessary information.
3. You will be required to enter the following

registration code:

D6EEY-EB29Y-C3BEP-B4JEN

4. You are encouraged to download it early
and start using XML. Have fun!!

9

XML -- 17

CSC343 -- Introduction to Databases

Conceptual View of XML

An XML document is (isomorphic to) an
ordered, labeled tree.
Character data leaf nodes contain the
actual data (text strings); usually, character
data nodes must be non-empty and non-
adjacent to other character data nodes
Elements nodes, are each labeled with

a name (often called the element type),
and
a set of attributes, each consisting of a
name and a value,

and these nodes can have child nodes

XML -- 18

CSC343 -- Introduction to Databases

Domain-Specific
Markups

<h1>Rhubarb Cobbler</h1>
<h2>Maggie.Herrick@bbs.mhv.net</h

2>
<h3>Wed, 14 Jun 95</h3>
Rhubarb Cobbler made with bananas

as the main sweetener. It was
delicious. Basicly it was

<table>
<tr><td> 2 1/2 cups <td> diced

rhubarb
<tr><td> 2 tablespoons <td> sugar
<tr><td> 2 <td> fairly ripe bananas
<tr><td> 1/4 teaspoon <td>

cinnamon
<tr><td> dash of <td> nutmeg
</table>

Combine all and use as cobbler, pie,
or crisp.

Related recipes: Garden
Quiche

10

XML -- 19

CSC343 -- Introduction to Databases

<?xml version=“1.0” ?>

<PersonList Type=“Student” Date=“2002-02-02” >
<Title Value=“Student List” />
<Person>
… … …
</Person>
<Person>
… … …
</Person>

</PersonList>

Elements are nested.
Root element contains all others.

Element (or
tag) names

An XML Document

elem
ents

Root
Rootelem

ent
attributes

XML -- 20

CSC343 -- Introduction to Databases

More Terminology

<Person Name = “John” Id = “s111111111”>
John is a nice fellow
<Address>

<Number>21</Number>
<Street>Main St.</Street>

</Address>
… … …

</Person>

Opening tag

Closing tag:
What is open must be closed

Nested element,
child of PersonPerson

Parent of
AddressAddress,
Ancestor of
NumberNumber

“standalone” text, not
very useful as data

Child of AddressAddress,
Descendant of PersonPerson

C
on

te
nt

 o
f

 P
er

so
n

Pe
rs

on

11

XML -- 21

CSC343 -- Introduction to Databases

Well-formed XML Documents
Must have a root element.
Every opening tag has a matching closing tag.
Elements must be properly nested

<foo><bar></foo></bar> is a no-no
An attribute name can occur at most once in an
opening tag. If it occurs,

It must have an explicitly specified value
(Boolean attrs are not allowed);
The value must be quoted (with “ or ‘).

XML processors are not supposed to try and fix ill-
formed documents (unlike HTML browsers).

XML -- 22

CSC343 -- Introduction to Databases

Identifiers and References with
Attributes

An attribute can be declared to have type:
IDID: unique identifier of an element; if attr1 and attr2 are
both of type ID, then it is illegal to have <something
attr1=“abc”> … <somethingelse attr2=“abc”> within the
same document
IDREFIDREF: references a unique element with matching ID
attribute; if attr1 has type ID and attr2 has type IDREF
then we can have <something attr1=“abc”> …
<somethingelse attr2=“abc”>
IDREFSIDREFS – a list of references, if attr1 is ID and attr2 is
IDREFS, then we can have <something attr1=“abc”> …
<something1 attr1=“cde”>…<something2 attr2=“abc
cde”>

12

XML -- 23

CSC343 -- Introduction to Databases

Report Document with Cross-Refs
<?xml version=“1.0” ?>
<Report Date=“2002-12-12”>

<Students>
<Student StudId=“s111111111”>

<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>

<CrsTaken CrsCode=“CS308” Semester=“F1997” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“s666666666”>

<Name><First>Joe</First><Last>Public</Last></Name>
<Status>U3</Status>

<CrsTaken CrsCode=“CS308” Semester=“F1994” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“s987654321”>

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>

<CrsTaken CrsCode=“CS308” Semester=“F1994” />
</Student>

</Students>
…… continued … … IDREF

ID

XML -- 24

CSC343 -- Introduction to Databases

Report Document (cont’d.)
<Classes>

<Class>
<CrsCode>CS308</CrsCode> <Semester>F1994</Semester>
<ClassRoster Members=“s666666666 s987654321” />

</Class>
<Class>

<CrsCode>CS308</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members=“s111111111” />

</Class>
<Class>

<CrsCode>MAT123</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members=“s111111111 s666666666” />

</Class>
</Classes>

…… continued … …

IDREFS

13

XML -- 25

CSC343 -- Introduction to Databases

Report Document cont’d

<Courses>
<Course CrsCode = “CS308” >

<CrsName>Market Analysis</CrsName>
</Course>
<Course CrsCode = “MAT123” >

<CrsName>Market Analysis</CrsName>
</Course>

</Courses>
</Report>

ID

XML -- 26

CSC343 -- Introduction to Databases

XML Namespaces
A mechanism to prevent name clashes, like
scoping rules.
Namespace declaration

NamespaceNamespace – a symbol, typically a URL;
Prefix Prefix –– an abbreviation of the namespace;
Actual name (element or attribute) –
prefix:name
Declarations/prefixes behave like a
begin/end.

14

XML -- 27

CSC343 -- Introduction to Databases

Example
<item xmlns =

http://www.acmeinc.com/jp#supplies
xmlns:toy =“http://www.acmeinc.com/jp#toys”>

<name>backpack</name>
<feature>

<toy:item><toy:name>cyberpet</toy:name>
</toy:item>

</feature>
</item>

reserved
keyword

Default
namespace

toy
namespace

XML -- 28

CSC343 -- Introduction to Databases

More Namespaces
Scopes of declarations are color-coded:

<item xmlns=“http://www.foo.org/abc”
xmlns:cde=“http://www.bar.com/cde”>

<name>…</name>
<feature>

<cde:item><cde:name>…</cde:name></cde:item>
</feature>

<item xmlns=“http://www.foobar.org/”
xmlns:cde=“http://www.foobar.org/cde” >

<name>…</name>
<cde:name>…</cde:name>

</item>
</item>

New default;
overshadows old default

Redeclaration of
cdecde; overshadows old

declaration

15

XML -- 29

CSC343 -- Introduction to Databases

Namespaces (cont’d)

xmlns=“http://foo.com/bar” doesn’t mean there is
a document at this URL: using URLs is just a
convention; a namespace is just an identifier.
Namespaces aren’t part of XML 1.0, but all XML
processors understand this feature now
A number of prefixes have become “standard”
and some XML processors might understand
them without any declaration. E.g.,

xs for http://www.w3.org/2001/XMLSchema
xsl for http://www.w3.org/1999/XSL/Transform
Etc.

XML -- 30

CSC343 -- Introduction to Databases

Document Type Definition (DTD)

A DTDDTD is a grammar specification for an XML
document – you can think of it as a schema.
DTDs are optional – don’t need to be
specified; if specified, a DTD can be part of
the document (at the top); or it can be given
as a URL
A document that conforms (i.e., parses) w.r.t.
its DTD is said to be validvalid.
XML processors are not required to check
validity, even if DTD is specified; but they are
required to test well-formedness.

16

XML -- 31

CSC343 -- Introduction to Databases

Attaching a DTD to a Document
DTD specified as part of a document:

<?xml version=“1.0” ?>
<!DOCTYPE Report [

… DTD Report spec …
]>
<Report> … … … </Report>

DTD can also be specified as a standalone thing
<?xml version=“1.0” ?>
<!DOCTYPE Report

“http://foo.org/Report.dtd”>
<Report> … … … </Report>

Name of the DTDName of the DTD

XML -- 32

CSC343 -- Introduction to Databases

Example DTD Constructs

<!ELEMENT elt-name
(…contents…)/EMPTY/ANY >

<!ATTLIST elt-name attr-name
CDATA/ID/IDREF/IDREFS
#IMPLIED/#REQUIRED

>

Can define other things, like macros (called
entities in XML jargon)

Type of attribute

Optional/mandatory

Element’s
contents

An attr for elt

17

XML -- 33

CSC343 -- Introduction to Databases

DTD Language
<!DOCTYPE root-element [doctype-
declaration...]> — determines name of root
element and contains document type
declarations
<!ELEMENT element-name content-model> —
associates a content model to every element
Content models:

EMPTY: no content is allowed
ANY: any content is allowed
(#PCDATA|element-name|...)*: "mixed
content", arbitrary sequence of character data
and listed elements;
Deterministic regular expression (cont'd).

XML -- 34

CSC343 -- Introduction to Databases

Deterministic regular expression over
element names: sequence of elements
matching the expression

+ choice: (...|...|...)
+ sequence: (...,...,...)
+ optional: ...?
+ zero or more: ...*
+ one or more: ...+

DTD Language: Regular Expressions

18

XML -- 35

CSC343 -- Introduction to Databases

DTD Language: Attributes
<!ATTLIST element-name attr-name attr-type
attr-default ...> — declares which attributes
are allowed or required in which elements
Attribute types:

CDATA: any value is allowed (the default)
(value|...): enumeration of allowed values
ID, IDREF, IDREFS: ID attribute values must
be unique (contain "element identity"),
IDREF attribute values must match some ID
(reference to an element)
ENTITY, ENTITIES, NMTOKEN,
NMTOKENS, NOTATION: just forget these...

XML -- 36

CSC343 -- Introduction to Databases

#REQUIRED: the attribute must be explicitly
provided.
#IMPLIED: attribute is optional, no default
provided.
"value": if not explicitly provided, this value is
inserted by default.
#FIXED "value": as above, but only this value
is allowed.

DTD Language:
Attribute Defaults

19

XML -- 37

CSC343 -- Introduction to Databases

DTD Example
<!DOCTYPE Report [

<!ELEMENT Report (Students, Classes, Courses)>
<!ELEMENT Students (Student*)>
<!ELEMENT Classes (Class*)>
<!ELEMENT Courses (Course*)>
<!ELEMENT Student (Name, Status, CrsTaken*)>
<!ELEMENT Name (First,Last)>
<!ELEMENT First (#PCDATA)>
… … …
<!ELEMENT CrsTaken EMPTY>
<!ELEMENT Class (CrsCode,Semester,ClassRoster)>
<!ELEMENT Course (CrsName)>
… … …
<!ATTLIST Report Date CDATA #IMPLIED>
<!ATTLIST Student StudId ID #REQUIRED>
<!ATTLIST Course CrsCode ID #REQUIRED>
<!ATTLIST CrsTaken CrsCode IDREF #REQUIRED>
<!ATTLIST ClassRoster Members IDREFS #IMPLIED>

]>

Zero or more

Has text content

Empty element,
no content

Same attribute in
different elements

XML -- 38

CSC343 -- Introduction to Databases

Another
Example

<!ELEMENT collection (description,recipe*)>
<!ELEMENT description ANY>
<!ELEMENT recipe (title, ingredient*, preparation, comment?,

nutrition)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT ingredient (ingredient*,preparation)?>
<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED
unit CDATA #IMPLIED>

<!ELEMENT preparation (step*)>
<!ELEMENT step (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT nutrition EMPTY>
<!ATTLIST nutrition protein CDATA #REQUIRED

carbohydrates CDATA #REQUIRED
fat CDATA #REQUIRED
calories CDATA #REQUIRED
alcohol CDATA #IMPLIED>

20

XML -- 39

CSC343 -- Introduction to Databases

Limitations of DTDs
Don’t understand namespaces.
Very limited assortment of data types (just
strings).
Very weak wrt consistency constraints
(ID/IDREF/ IDREFS only).
Can’t express unordered contents conveniently.
All element names are global: can’t have one
Name type for people and another for
companies, e.g.,

<!ELEMENT Name (Last, First)>
<!ELEMENT Name (#PCDATA)>

can’t be in the same DTD

XML -- 40

CSC343 -- Introduction to Databases

XML Schema
Proposed in order to rectify drawbacks of DTDs.
Advantages:

Integrated with namespaces;
Many built-in types;
User-defined types;
Has local element names;
Powerful key and referential constraints.

Disadvantages: Unwieldy, much more complex
than DTDs

21

XML -- 41

CSC343 -- Introduction to Databases

XML Query Languages
XPath – core query language. Very limited, a
glorified selection operator. Very useful, though:
used in XML Schema, XSLT, XQuery, many other
XML standards.
XSLT – a functional document transformation
language. Very powerful, very complicated.
XQuery – W3C standard. Very powerful, fairly
intuitive, SQL-style
SQL/XML – attempt to marry SQL and XML, part of
SQL:2003

XML -- 42

CSC343 -- Introduction to Databases

Why Query XML?
Need to extract parts of XML documents.
Need to transform documents into different
forms.
Need to relate – join – parts of the same or
different documents.

22

XML -- 43

CSC343 -- Introduction to Databases

XPath
Analogous to path expressions in object-
oriented languages (e.g., OQL).
Extends path expressions with query facility.
XPath views an XML document as a tree

Root of the tree is a new node, which doesn’t
correspond to anything in the document
Internal nodes are elements;
Leaves are either

Attributes, Text nodes, Comments;
Or other things that we won't discuss (e.g.,
processing instructions, …)

XML -- 44

CSC343 -- Introduction to Databases

XPath Document Tree
Root of XML documentRoot of XML tree

23

XML -- 45

CSC343 -- Introduction to Databases

…and Corresponding Document…
A fragment of the report document used earlier:
<?xml version=“1.0” ?>
<!-- Some comment -->
<Students>

<Student StudId=“111111111” >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1997” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“987654321” >

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1994” />

</Student>
</Students>
<!-- Some other comment -->

XML -- 46

CSC343 -- Introduction to Databases

Terminology
Parent/child nodes, as usual.
Child nodes (that are of interest to us) are of
types text, element, attribute.
Ancestor/descendant nodes – as usual in
trees.

24

XML -- 47

CSC343 -- Introduction to Databases

XPath Basics
An XPath expression takes a document tree as
input and returns a multi-set of nodes of the tree.
Expressions that start with / are absolute path absolute path
expressionsexpressions

Expression / – returns root node of XPath tree;
//StudentsStudents//StudentStudent – returns all StudentStudent-

elements that are children of StudentsStudents elements,
which in turn must be children of the root;
//StudentStudent – returns empty set (no such children

at root).
The basic idea here is similar to that of directory The basic idea here is similar to that of directory
paths.paths.

XML -- 48

CSC343 -- Introduction to Databases

More XPath Basics
CurrentCurrent (or contextcontext node) – exists during the
evaluation of XPath expressions (and in other
XML query languages)
. – denotes the current node; .. – denotes the

parent
foofoo/bar/bar – returns all barbar-elements that are
children of foofoo nodes, which in turn are
children of the current node;
../foo/bar/foo/bar – same;
..../abc/cde/abc/cde – all cdecde e-children of abcabc e-

children of the parent of the current node.
Expressions that don’t start with / are relativerelative
(to the current node).

25

XML -- 49

CSC343 -- Introduction to Databases

Attributes, Text, etc.

/Students/Student//Students/Student/@@StudentIdStudentId – returns all
StudentIdStudentId a-children of StudentStudent, which are e-
children of StudentsStudents, which are children of the
root.
/Students/Student/Name/Last//Students/Student/Name/Last/text(text()) – returns all
t-children of Last e-children of …
XPath provides means to select other document
components as well.

Denotes an
attribute

XML -- 50

CSC343 -- Introduction to Databases

Basic Idea and Semantics
An XPath expression is: locationStep1/locationStep2/locationStep1/locationStep2/……
Location stepLocation step: Axis::nodeSelector[predicate]Axis::nodeSelector[predicate]
Navigation axisaxis:

child, parent – have seen;
ancestor, descendant, ancestor-or-self, descendant-
or-self – will see later;
some other -- will see later.

Node selectorNode selector: node name or wildcard; e.g.,
./child::Student (we used ./Student, which is an
abbreviation)
./child::* – any e-child (abbreviation: ./*)

PredicatePredicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode =

“CSC343”]

This is called fullfull (rather
than abbreviated) syntax.

26

XML -- 51

CSC343 -- Introduction to Databases

Complete Set of Axes
Child — the children of the context node
Descendants — all descendants (children+);
Parent — the parent (empty if at the root)
Ancestor — all ancestors from the parent to the root
Following-sibling — siblings to the right
Preceding-sibling — siblings to the left
Following — all following nodes in the document,
excluding descendants
Preceding — all preceding nodes in the document,
excluding ancestors
Attribute — the attributes of the context node
Namespace — namespace declarations in context
node
Self — the context node itself
descendant-or-self — the union of descendant and
self
ancestor-or-self — the union of ancestor and self

XML -- 52

CSC343 -- Introduction to Databases

Axis
Directions

27

XML -- 53

CSC343 -- Introduction to Databases

Node Tests
Testing by node type:

text() — chardata node;
comment() — comment node;
processing-instruction() — processing
instruction node;
node() — any node (not including attributes
and namespace declarations);

Testing by node name:
Name — nodes with that name
* — any node

XML -- 54

CSC343 -- Introduction to Databases

Essential Predicates
[attribute::name="flour"]: test equality of an attribute
[attribute::name!="flour"]: test inequality of an
attribute
[attribute::amount='0.5' and attribute::unit='cup']: test
two things at once (also or)
[position()=2]: test position among siblings
[attribute::amount<'0.5']: a syntax error
[attribute::amount<'0.5']: a useless test of
lexicographical order
[number(attribute::amount)<number('0.5')]: what
you meant to write instead!

An entire location path may be used as a predicate
[attribute::amount]: the node has an amount attribute
[descendant::ingredient]: the node has a nested
ingredient

28

XML -- 55

CSC343 -- Introduction to Databases

XPath Semantics
The meaning of the expression locStep1/locStep2/locStep1/locStep2/…… is

the set of all document nodes obtained as follows:
Find all nodes reachable by locStep1 locStep1 from the
current node;
For each node N in the result, find all nodes
reachable from N by locStep2; locStep2; take the union of
all these nodes;
For each node in the result, find all nodes
reachable by locStep3locStep3, etc.;
The value of the path expression on a document
is the set of all document nodes found after
processing the last location step in the
expression.

XML -- 56

CSC343 -- Introduction to Databases

…More Generally…
locationStep1/locationStep2/locationStep1/locationStep2/…… means:

Find all nodes specified by locationStep1locationStep1
For each such node N:

Find all nodes specified by locationStep2locationStep2
using N as the current node
Take union

For each node returned by locationStep2locationStep2 do the
same using locationStep3, locationStep3, ……

locationSteplocationStep = axis::node[predicate]axis::node[predicate]
Find all nodes specified by axis::nodeaxis::node
Select only those that satisfy predicatepredicate

29

XML -- 57

CSC343 -- Introduction to Databases

More Navigational Primitives

Second CrsTakenCrsTaken child of first StudentStudent child of
StudentsStudents:
/StudentsStudents/StudentStudent[1]/CrsTakenCrsTaken[2]

All last CourseTakenCourseTaken elements within each
Student element:
/Students/Student/CrsTaken[/Students/Student/CrsTaken[last(last())]]

All href attributes in cite elements in the first 5
sections of an article document:
child::section[position()<6] / descendant::cite /
attribute::href

XML -- 58

CSC343 -- Introduction to Databases

Wildcards
Wildcards are useful for unknown document structures.
The // wildcard descends down any number of levels
(including 0):

//CrsTakenCrsTaken – all CrsTakenCrsTaken nodes under the root;
StudentsStudents////@Name@Name – all NameName attribute nodes under

the elements Students, who are children under the
current node.

Note: ./LastLast and Last Last are same; but .//LastLast and //LastLast
are different.
The * wildcard:

* – any element: Student/*/text()Student/*/text()
@* – any attribute: Students//@*Students//@*

30

XML -- 59

CSC343 -- Introduction to Databases

Selection Predicates
Recall: Location step = Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]]
Predicate:

XPath expression = const | built-in function |
XPath expression (equality predicate);
XPath expression (returns false if result is empty);
built-in predicate;
a Boolean combination thereof;

Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]] ⊆ Axis::nodeSelector Axis::nodeSelector
but contains only the nodes that satisfy predicate.predicate.
Built-in predicates include ones for string matching,
set manipulation, etc. Built-in function include large
assortment of functions for string manipulation,
aggregation, etc.

XML -- 60

CSC343 -- Introduction to Databases

XPath Queries – Examples
Students who have taken CSC343:

//Student[CrsTaken/@CrsCode=“CSC343”]
Complex example:

//Student[Status=“U3” and starts-with(.//Last,
“A”)

and contains(concat(.//@CrsCode),
“ESE”)

and not(.//Last = .//First)]
Aggregation: sum(), count()

//Student[sum(.//@Grade) div count(.//@Grade)
> 3.5]

31

XML -- 61

CSC343 -- Introduction to Databases

XPath Queries cont’d
Testing whether a subnode exists:

//Student[CrsTaken/@Grade] – students who
have a grade (for some course)
//Student[Name/First or CrsTaken/@Semester

or Status/text() = “U4”] – students
who have either a first name or have taken a
course in some semester or have status U4

Union operator, | :
//CrsTaken[@Semester=“F2001”] ||
//Class[Semester=“F1990”]

union lets us define heterogeneous collections of
nodes.

XML -- 62

CSC343 -- Introduction to Databases

XQuery – XML Query Language

Integrates XPath with earlier proposed query
languages: XQL, XML-QL
SQL-style, not functional-style
2004: XQuery 1.0

32

XML -- 63

CSC343 -- Introduction to Databases

An Example

XML -- 64

CSC343 -- Introduction to Databases

Some
Queries

33

XML -- 65

CSC343 -- Introduction to Databases

transcript.xml
<Transcripts>
<Transcript>

<Student StudId=“111111111” Name=“John Doe” />
<CrsTaken CrsCode=“CS308” Sem=“F97” Gr=“B” />
<CrsTaken CrsCode=“MAT123” Sem=“F97” Gr=“B” />
<CrsTaken CrsCode=“EE101” Sem=“F1997” Gr=“A” />
<CrsTaken CrsCode=“CS305” Sem=“F1995” Gr=“A” />

</Transcript>
<Transcript>

<Student StudId=“987654321” Name=“Bart Simpson” />
<CrsTaken CrsCode=“CS305” Sem=“F1995” Gr=“C” />
<CrsTaken CrsCode=“CS308” Sem=“F1994” Gr=“B” />

</Transcript>
… … cont’d … …

XML -- 66

CSC343 -- Introduction to Databases

transcript.xml (cont’d)
<Transcript>

<Student StudId=“123454321” Name=“Joe Blow” />
<CrsTaken CrsCode=“CS315” Sem=“S97” Gr=“A” />
<CrsTaken CrsCode=“CS305” Sem=“S96” Gr=“A” />
<CrsTaken CrsCode=“MAT123” Sem=“S96” Gr=“C” />

</Transcript>
<Transcript>
<Student StudId=“023456789” Name=“Homer Simpson”

/>
<CrsTaken CrsCode=“EE101” Sem=“F1995” Gr=“B” />
<CrsTaken CrsCode=“CS305” Sem=“S1996” Gr=“A” />

</Transcript>
</Transcripts>

34

XML -- 67

CSC343 -- Introduction to Databases

XQuery Basics
General structure:

FOR variable declarations
WHERE condition
RETURN document

Example:
(: students who took MAT123 :)
FOR $t IN

doc(“http://uoft.edu/transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

Result:
<Student StudId=“111111111” Name=“John Doe” />
<Student StudId=“123454321” Name=“Joe Blow” />

XQuery XQuery
expressionexpression

See next slide

commentcomment

XML -- 68

CSC343 -- Introduction to Databases

XQuery Basics (cont’d)

Previous query doesn’t produce a well-formed XML
document; the following does:
<StudentList>
{

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

}
</StudentList>

FOR binds $t to TranscriptTranscript elements one by one, filters
using WHERE, then places StudentStudent-children as e-
children of StudentListStudentList using RETURN.

Query inside
XML

35

XML -- 69

CSC343 -- Introduction to Databases

Doc Restructuring with XQuery
Reconstruct lists of students taking each class using
the TranscriptTranscript records:

FOR $c IN distinct(doc(“transcript.xml”)//CrsTaken)
RETURN
<ClassRoster CrsCode={$c/@CrsCode}

Sem={$c/@Sem}>
{ FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/[@CrsCode = $c/@CrsCode
and @Semester = $c/@Sem]

RETURN $t/Student ORDER BY
$t/Student/@StudId}
</ClassRoster>

ORDER BY $c/@CrsCode

XML -- 70

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)
Output elements have the form:

<ClassRoster CrsCode=“CS305” Sem=“F1995” > <Student
StudId=“111111111” Name=“John Doe” /> <Student
StudId=“987654321” Name=“Bart Simpson” />
</ClassRoster>
Problem: the above element will be output twice –
once when $c is bound to

<CrsTaken CrsCode=“CS305” Sem=“F1995” Grade=“A” />
and once when it is bound to

<CrsTaken CrsCode=“CS305” Sem=“F1995” Grade=“C” />
Note: grades are different – distinct() won’t eliminate
transcript records that refer to same class!

John Doe’s

Bart Simpson’s

36

XML -- 71

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)
Solution: instead of
FOR $c IN
distinct(doc(“transcript.xml”)//CrsTaken)
use
FOR $c IN doc(“classes.xmlclasses.xml”)//Class
where classes.xmlclasses.xml lists course offerings (course

code/semester) explicitly (no need to extract
them from transcript records).

Then $c is bound to each class exactly once, so
each class roster will be output exactly once.

Document on
next slide

XML -- 72

CSC343 -- Introduction to Databases

http://uoft.edu/classes.xml
<Classes>

<Class CrsCode=“CS308” Semester=“F1997” >
<CrsName>SE</CrsName> <Instructor>Adrian

Jones</Instructor>
</Class>
<Class CrsCode=“CS305” Semester=“F1995” >

<CrsName>Databases</CrsName> <Instructor>Mary
Doe</Instructor>
</Class>
<Class CrsCode=“CS315” Semester=“S1997” >

<CrsName>TP</CrsName> <Instructor>John
Smyth</Instructor>
</Class>
<Class CrsCode=“MAR123” Semester=“F1997” >

<CrsName>Algebra</CrsName> <Instructor>Ann
White</Instructor>
</Class>

</Classes>

37

XML -- 73

CSC343 -- Introduction to Databases

Document Restructuring (cont’d)
More problems: the previous query will list classes with no
students. Reformulation that avoids this:
FOR $c IN doc(“classes.xml”)//Class
WHERE doc(“transcripts.xml”)

//CrsTaken[@CrsCode = $c/@CrsCode
and @Sem = $c/@Sem]

RETURN
<ClassRoster CrsCode = {$c/@CrsCode} Sem= {$c/@Sem}>

{ FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and

@Sem = $c/@Sem]
RETURN $t/Student ORDER BY $t/Student/@StudId

} </ClassRoster>
ORDER BY $c/@CrsCode

Test that classes
aren’t empty

XML -- 74

CSC343 -- Introduction to Databases

XQuery Semantics
So far the discussion was informal.
XQuery semantics defines what the
expected result of a query is.
Defined analogously to the semantics of SQL.

38

XML -- 75

CSC343 -- Introduction to Databases

Evaluate XQuery Queries — Step 1

Produce a list of bindings for variables
The FOR clause binds each variable to a list
of nodes specified by an XQuery expression.
The expression can be:

An XPath expression;
An XQuery query;
A function that returns a list of nodes.

End result of a FOR clause:
Ordered list of tuples of document nodes;
Each tuple is a binding for the variables in
the FOR clause.

XML -- 76

CSC343 -- Introduction to Databases

Step 1 — Example
Example (bindings):

Let FOR declare $A and $B
Bind $A to document nodes {v,w}; $B to
{x,y,z}
Then FOR clause produces the following list
of bindings for $A and $B:

$A/v, $B/x
$A/v, $B/y
$A/v, $B/z
$A/w, $B/x
$A/w, $B/y
$A/w, $B/z

39

XML -- 77

CSC343 -- Introduction to Databases

Filter bindings via the WHERE clause -- Use each
tuple binding to substitute its components for
variables; retain those that satisfy WHERE clause.
Example:

WHERE $A/CrsTaken/@CrsCode = B/Class/@CrsCode
Binding:

$A/w, where w = <CrsTaken CrsCode=“CS308” …/>
$B/x, where x = <Class CrsCode=“CS308”… />

Then w/CrsTaken/@CrsCode = x/Class/@CrsCode, so
WHERE condition is satisfied & binding retained

Evaluate Queries — Step 2

XML -- 78

CSC343 -- Introduction to Databases

Construct result
For each retained tuple of bindings,
instantiate the RETURN clause;
This creates a fragment of the output
document;
Do this for each retained tuple of bindings in
sequence.

Evaluate Queries — Step 3

40

XML -- 79

CSC343 -- Introduction to Databases

User-Defined Functions

Can define functions, even recursive ones.
Functions can be called from within an
XQuery expression.
Body of function is an XQuery expression.
Result of expression is returned; result can
be a primitive data type (integer, string), an
element, a list of elements, a list of arbitrary
document nodes, …

XML -- 80

CSC343 -- Introduction to Databases

XQuery Functions: Example
Count the number of e-decendants recursively:

DECLARE FUNCTION countNodes($e AS
element()) AS integer {

RETURN
IF empty($e/*) THEN 0
ELSE

sum(FOR $n IN $e/* RETURN
countNodes($n))

+ count($e/*)
}

XQuery
expression

Built-in
functions sum,
count, empty

Function
signature

41

XML -- 81

CSC343 -- Introduction to Databases

Grouping and Aggregation

Does not use separate grouping operator.
[OQL does not need one either];
Subqueries inside RETURN clause obviate
this need.

Uses built-in aggregate functions count, avg,
sum, etc. (some borrowed from XPath).

XML -- 82

CSC343 -- Introduction to Databases

Aggregation Example
Produce a list of students along with the number of
courses each student took:
FOR $t IN fn:doc(“transcripts.xml”)//Transcript,

$s IN $t/Student
LET $c := $t/CrsTaken
RETURN
<StudSummary StudId={$s/@StudId}
Name={$s/@Name}

TotalCourses = {fn:count(fn:distinct($c))} />
ORDER BY StudSummary/@TotalCourses
The grouping effect is achieved because $c is
bound to a new set of nodes for each binding of $t.

42

XML -- 83

CSC343 -- Introduction to Databases

Quantification in XQuery
XQuery supports explicit quantification: SOME (∃)
and EVERY (∀).
Example:
FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE SOME $ctct ININ $t/CrsTakent/CrsTaken

SATISFIES $ct/@CrsCode = “MAT123”
RETURN $t/Student

This is almost equivalent to:
FOR $t IN fn:doc(“transcript.xml”)//Transcript,

$ct IN $t/CrsTaken$ct IN $t/CrsTaken
WHERE $ct/@CrsCode = “MAT123”
RETURN $t/Student

Not quite equivalent, if students can take same course
twice!

XML -- 84

CSC343 -- Introduction to Databases

Implicit Quantification
In SQL, variables that occur in FROM but not SELECT,
are implicitly quantified with ∃. Likewise in XQuery, for
variables that occur in FOR, but not RETURN.
However, XQuery variables are bound to doc nodes:

Two nodes may look textually identical but are still
different nodes and thus different variable bindings;
Instantiations of the RETURN expression produced
by binding variables to different nodes are output
even if these instantiations are textually identical.

In SQL a variable can be bound to the same value only
once; identical tuples are not output twice (in theory);
This is why the two queries in the previous slide are
not equivalent

43

XML -- 85

CSC343 -- Introduction to Databases

More on Quantification
Retrieve all classes (from classes.xml) where each student
took MAT123
Hard to do in SQL (before SQL-99) because of the lack of
explicit quantification.
FOR $c IN fn:doc(classes.xml)//Class
LET $g:={(: TranscriptTranscript records that correspond to class

$c :)
FOR tt IN fn:doc(“transcript.xml”)//Transcript
WHERE $tt/CrsTaken/CrsTaken/@Semester = $c/@Semester

AND $t/CrsTaken/@CrsCode = $c/@CrsCode
RETURN tt }
WHERE EVERY $tr IN $g SATISFIES

NOT fn:empty($tr[CrsTaken/@CrsCode=“MAT123”])
RETURN $c ORDER BY $c/@CrsCode

