
1

SQL — 1CSC343 Introduction to Databases — University of Toronto

Week 4 & 5: SQL

The SQL Query Language
Select Statements

Joins, Aggregate and Nested Queries
Insertions, Deletions and Updates

Assertions, Views, Triggers and Access
Control

SQL — 2CSC343 Introduction to Databases — University of Toronto

SQL as a Query Language

SQL expresses queries in declarative way —
queries specify the properties of the result, not
the way to obtain it.
Queries are translated by the query optimizer
into the procedural language internal to the
DBMS.
The programmer focuses on readability, not on
efficiency.

2

SQL — 3CSC343 Introduction to Databases — University of Toronto

SQL Queries
SQL queries are expressed by the select statement.
Syntax:
select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias] }

from Table [[as] Alias] {, [[as] Alias] }
[where Condition]

The three parts of the query are usually called: target
list, from clause, where clause.
The query first builds the Cartesian product of the
tables in the from clause, then selects only the rows
that satisfy the condition in the where clause and for
each row evaluates the attribute expressions in the
target list.

SQL — 4CSC343 Introduction to Databases — University of Toronto

Example Database

EMPLOYEE FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles White Production 20 36 Toulouse
Gus Green Administration 20 40 Oxford
Jackson Neri Distribution 16 45 Dover
Charles Brown Planning 14 80 London
Laurence Chen Planning 7 73 Worthing
Pauline Bradshaw Administration 75 40 Brighton
Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City
Administration Bond Street London
Production Rue Victor Hugo Toulouse
Distribution Pond Road Brighton
Planning Bond Street London
Research Sunset Street San José

3

SQL — 5CSC343 Introduction to Databases — University of Toronto

Simple SQL Query
"Find the salaries of employees named Brown":
select Salary as Remuneration
from Employee
where Surname = ‘Brown’

Result:

Remuneration
45
80

SQL — 6CSC343 Introduction to Databases — University of Toronto

* in the Target List
"Find all the information relating to employees
named Brown":
select *
from Employee
where Surname = ‘Brown’

Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London

4

SQL — 7CSC343 Introduction to Databases — University of Toronto

Attribute Expressions
Find the monthly salary of the employees named
White:
select Salary / 12 as
MonthlySalary
from Employee
where Surname = ‘White’

Result:
MonthlySalary

3.00

SQL — 8CSC343 Introduction to Databases — University of Toronto

Simple Join Query
"Find the names of employees and their cities of work":
select Employee.FirstName,

Employee.Surname, Department.City
from Employee, Department
where Employee.Dept = Department.DeptName

Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

5

SQL — 9CSC343 Introduction to Databases — University of Toronto

Table Aliases
"Find the names of employees and the cities
where they work" (using an alias):
select FirstName, Surname, D.City
from Employee, Department D
where Dept = DeptName

Result:

FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

SQL — 10CSC343 Introduction to Databases — University of Toronto

Predicate Conjunction
"Find the first names and surnames of
employees who work in office number 20 of the
Administration department":
select FirstName, Surname
from Employee
where Office = ‘20’ and

Dept = ‘Administration’

Result: FirstName Surname
Gus Green

6

SQL — 11CSC343 Introduction to Databases — University of Toronto

Predicate Disjunction

"Find the first names and surnames of
employees who work in either the
Administration or the Production department":
select FirstName, Surname
from Employee
where Dept = ‘Administration’ or

Dept = ‘Production’

Result:
FirstName Surname
Mary Brown
Charles White
Gus Green
Pauline Bradshaw
Alice Jackson

SQL — 12CSC343 Introduction to Databases — University of Toronto

Complex Logical Expressions

"Find the first names of employees named Brown
who work in the Administration department or the
Production department":

select FirstName
from Employee
where Surname = ‘Brown’ and

(Dept = ‘Administration’ or
Dept = ‘Production’)

Result: FirstName
Mary

7

SQL — 13CSC343 Introduction to Databases — University of Toronto

Operator like
"Find employees with surnames that have ‘r’ as
the second letter and end in ‘n’":
select *
from Employee
where Surname like ‘_r%n’

Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Gus Green Administration 20 40 Oxford
Charles Brown Planning 14 80 London

0 or more chars

exactly 1 char

SQL — 14CSC343 Introduction to Databases — University of Toronto

Management of Null Values
Null values may mean that:

a value is not applicable
a value is applicable but unknown
it is unknown if a value is applicable or not

SQL-89 uses a two-valued logic
a comparison with null returns FALSE

SQL-2 uses a three-valued logic
a comparison with null returns UNKNOWN

To test for null values:
Attribute is [not] null

8

SQL — 15CSC343 Introduction to Databases — University of Toronto

Algebraic Interpretation of SQL
Queries

The generic query:
select T1.Attr11, …, Th.Attrhm
from Table1 T1, …, Tablen Tn
where Condition

corresponds to the relational algebra query:
πT1.Attr11,…,Th.Attrhm(σCondition(Table1 ×… ×

Tablen))

SQL — 16CSC343 Introduction to Databases — University of Toronto

Duplicates
In the relational algebra and calculus the results of
queries do not contain duplicates.
In SQL, tables may have identical rows.
Duplicates can be removed using the keyword
distinct:

select City select distinct City
from Department from Department

City
London
Toulouse
Brighton
London
San José

City
London
Toulouse
Brighton
San José

9

SQL — 17CSC343 Introduction to Databases — University of Toronto

Joins in SQL-2
SQL-2 introduced an alternative syntax for the
representation of joins, representing them explicitly in
the from clause:
select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias
from Table [[as] Alias]

{[JoinType] join Table
[[as] Alias] on JoinConditions }

[where OtherCondition]
JoinType can be any of inner, right [outer],
left [outer] or full [outer].
The keyword natural may precede JoinType
(rarely implemented).

SQL — 18CSC343 Introduction to Databases — University of Toronto

Inner Join in SQL-2
"Find the names of the employees and the cities in
which they work":
select FirstName, Surname, D.City
from Employee inner join Department as D

on Dept = DeptName

Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

10

SQL — 19CSC343 Introduction to Databases — University of Toronto

Another Example:
Drivers and Cars

DRIVER FirstName Surname DriverID
Mary Brown VR 2030020Y
Charles White PZ 1012436B
Marco Neri AP 4544442R

AUTOMOBILE CarRegNo Make Model DriverID
ABC 123 BMW 323 VR 2030020Y
DEF 456 BMW Z3 VR 2030020Y
GHI 789 Lancia Delta PZ 1012436B
BBB 421 BMW 316 MI 2020030U

SQL — 20CSC343 Introduction to Databases — University of Toronto

Left Join
"Find all drivers and their cars, if any":
select FirstName,Surname,
Driver.DriverID,CarRegNo,Make,Model

from Driver left join Automobile on
(Driver.DriverID =
Automobile.DriverID)

Result:
FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

11

SQL — 21CSC343 Introduction to Databases — University of Toronto

Full Join
"Find all possible drivers and their cars":
select
FirstName,Surname,Driver.DriverID

CarRegNo, Make, Model
from Driver full join Automobile on
(Driver.DriverID =
Automobile.DriverID)

Result:
FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL
NULL NULL NULL BBB 421 BMW 316

SQL — 22CSC343 Introduction to Databases — University of Toronto

Table Variables
Table aliases may be interpreted as table variables.
These correspond to the renaming operator ρ.
"Find all first names and surnames of employees who
have the same surname and different first names with
someone in the Administration department":
select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1.Surname = E2.Surname and

E1.FirstName <> E2.FirstName and
E2.Dept = ‘Administration’

Result: FirstName Surname
Charles Brown

12

SQL — 23CSC343 Introduction to Databases — University of Toronto

The order by Clause
order by — appearing at the end of a query —
orders the rows of the result; syntax:

order by OrderingAttribute [asc | desc]
{, OrderingAttribute [asc | desc] }

Extract the content of the Automobile table in
descending order with respect to make and
model:
select *
from Automobile
order by Make desc, Model desc

Result: CarRegNo Make Model DriverID
GHI 789 Lancia Delta PZ 1012436B
DEF 456 BMW Z3 VR 2030020Y
ABC 123 BMW 323 VR 2030020Y
BBB 421 BMW 316 MI 2020030U

SQL — 24CSC343 Introduction to Databases — University of Toronto

Aggregate Queries

Aggregate queries cannot be represented in
relational algebra.
The result of an aggregate query depends on
functions that take as an argument a set of
tuples.
SQL-2 offers five aggregate operators:
count
sum
max
min
avg

13

SQL — 25CSC343 Introduction to Databases — University of Toronto

Operator count
count returns the number of elements (or, distinct
elements) of its argument:

count(< * | [distinct | all] AttributeList >)
"Find the number of employees":
select count(*)from Employee

"Find the number of different values on attribute
Salary for all tuples in Employee":

select count(distinct Salary)
from Employee

"Find the number of tuples in Employee having non-
null values on the attribute Salary":
select count(all Salary) from Employee

SQL — 26CSC343 Introduction to Databases — University of Toronto

Sum, Average,
Maximum and Minimum

Syntax:
< sum | max | min | avg > ([distinct | all]

AttributeExpr)
"Find the sum of all salaries for the Administration
department":
select sum(Salary) as SumSalary
from Employee
where Dept = ‘Administration’

Result: SumSalary
125

14

SQL — 27CSC343 Introduction to Databases — University of Toronto

Aggregate Queries with Join
"Find the maximum salary among the employees
who work in a department based in London":
select max(Salary) as MaxLondonSal
from Employee, Department
where Dept = DeptName and

Department.City = ‘London’

Result: MaxLondonSal
80

SQL — 28CSC343 Introduction to Databases — University of Toronto

Aggregate Queries and Target List
Incorrect query:
select FirstName,Surname,max(Salary)
from Employee, Department
where Dept = DeptName and

Department.City = ‘London’
(Whose name? The target list must be homogeneous!)
Find the maximum and minimum salaries among all
employees:
select max(Salary) as MaxSal,

min(Salary) as MinSal
from Employee

Result: MaxSal MinSal
80 36

15

SQL — 29CSC343 Introduction to Databases — University of Toronto

Group by Queries
Queries may apply aggregate operators to
subsets of rows.
"Find the sum of salaries of all the employees of
the same department":
select Dept, sum(Salary) as TotSal
from Employee
group by Dept

Result:
Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

SQL — 30CSC343 Introduction to Databases — University of Toronto

Semantics of group by Queries - I

First, the query is executed without group by
and without aggregate operators:
select Dept, Salary
from Employee

Dept Salary
Administration 45
Production 36
Administration 40
Distribution 45
Planning 80
Planning 73
Administration 40
Production 46

16

SQL — 31CSC343 Introduction to Databases — University of Toronto

Semantics of group by Queries - II
… then the query result is divided in subsets
characterized by the same values for the
attributes appearing as argument of the
group by clause (in this case attribute Dept):
Finally, the aggregate operator is applied
separately to each subset

Dept Salary
Administration 45
Administration 40
Administration 40
Distribution 45
Planning 80
Planning 73
Production 36
Production 46

Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

SQL — 32CSC343 Introduction to Databases — University of Toronto

group by Queries and Target List
Incorrect query:
select Office from Employee
group by Dept

Incorrect query:
select DeptName, count(*), D.City
from Employee E join Department D

on (E.Dept = D.DeptName)
group by DeptName

Correct query:
select DeptName,count(*),D.City
from Employee E join Department D

on (E.Dept = D.DeptName)
group by DeptName, D.City

17

SQL — 33CSC343 Introduction to Databases — University of Toronto

Group Predicates
When conditions are defined on the result of
an aggregate operator, it is necessary to use
the having clause
"Find which departments spend more than 100
on salaries":
select Dept
from Employee
group by Dept
having sum(Salary) > 100

Result: Dept
Administration
Planning

SQL — 34CSC343 Introduction to Databases — University of Toronto

where or having?

Only predicates containing aggregate operators
should appear in the argument of the having
clause
"Find the departments where the average salary
of employees working in office number 20 is
higher than 25":
select Dept
from Employee
where Office = ‘20’
group by Dept
having avg(Salary) > 25

18

SQL — 35CSC343 Introduction to Databases — University of Toronto

Syntax of an SQL Query
…so far!

Considering all clauses discussed so far, the
syntax of an SQL query is:

select TargetList
from TableList
[where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]

SQL — 36CSC343 Introduction to Databases — University of Toronto

Set Queries
A single select statement cannot represent any set
operation.
Syntax:
SelectSQL { <union | intersect | except >

[all] SelectSQL }
"Find all first names and surnames of employees":
select FirstName as Name from Employee
union
select Surname as Name from Employee

Duplicates are removed (unless the all option is used)

19

SQL — 37CSC343 Introduction to Databases — University of Toronto

Intersection

"Find surnames of employees that are also first
names":
select FirstName as Name
from Employee
intersect
select Surname as Name
from Employee

(equivalent to:
select E1.FirstName as Name
from Employee E1, Employee E2
where E1.FirstName = E2.Surname)

SQL — 38CSC343 Introduction to Databases — University of Toronto

Difference
"Find the surnames of employees that are not
first names":
select Surname as Name
from Employee
except
select FirstName as Name
from Employee

Can also be represented with a nested query
(see later.)

20

SQL — 39CSC343 Introduction to Databases — University of Toronto

Nested Queries
A where clause may include predicates that:

Compare an attribute (or attribute expression) with
the result of an SQL query;
syntax: ScalarValue Op <any | all> SelectSQL
any — the predicate is true if at least one row
returned by SelectSQL satisfies the comparison
all — predicate is true if all rows satisfy
comparison;
Use the existential quantifier on an SQL query;
syntax: exists SelectSQL

the predicate is true if SelectSQL is non-empty.
The query appearing in the where clause is called a
nested query.

SQL — 40CSC343 Introduction to Databases — University of Toronto

Simple Nested Query
"Find the employees who work in departments in
London":
select FirstName, Surname
from Employee
where Dept = any (select DeptName

from Department
where City = ‘London’)

(Equivalent to:
select FirstName, Surname
from Employee, Department D
where Dept = DeptName and

D.City = ‘London’)

21

SQL — 41CSC343 Introduction to Databases — University of Toronto

…Another…
"Find employees of the Planning department, having
the same first name as a member of the Production
department":

(with a nested query)
select FirstName,Surname from Employee
where Dept = ‘Plan’ and FirstName = any

(select FirstName from Employee
where Dept = ‘Prod’)

(without nested query)
select E1.FirstName,E1.Surname
from Employee E1, Employee E2
where E1.FirstName=E2.FirstName and

E2.Dept=‘Prod’ and E1.Dept=‘Plan’

SQL — 42CSC343 Introduction to Databases — University of Toronto

Negation with Nested Queries
"Find departments where there is no one named
Brown":
select DeptName
from Department
where DeptName <>

all (select Dept from Employee
where Surname = ‘Brown’)

(Alternatively:)
select DeptName from Department

except
select Dept from Employee
where Surname = ‘Brown’

22

SQL — 43CSC343 Introduction to Databases — University of Toronto

Operators in and not in
Operator in is a shorthand for = any
select FirstName, Surname
from Employee
where Dept in (select DeptName

from Department
where City = ‘London’)

Operator not in is a shorthand for <> all
select DeptName
from Department
where DeptName not in

(select Dept from Employee
where Surname = ‘Brown’)

SQL — 44CSC343 Introduction to Databases — University of Toronto

max and min within a Nested Query

Queries using the aggregate operators max and min
can be expressed with nested queries
"Find the department of the employee earning the
highest salary":

with max:
select Dept from Employee
where Salary in (select max(Salary)

from Employee)

with a nested query:
select Dept from Employee
where Salary >= all (select Salary

from Employee

23

SQL — 45CSC343 Introduction to Databases — University of Toronto

A Complex Nested Query
A nested query may use variables of the outer query
(‘transfer of bindings’).
Semantics: the nested query is evaluated for each
row of the outer query.
"Find all persons who have the same first name and
surname with someone else ("synonyms"), but
different tax codes":
select * from Person P
where exists (select * from Person P1

where P1.FirstName = P.FirstName
and P1.Surname = P.Surname
and P1.TaxCode <> P.TaxCode)

SQL — 46CSC343 Introduction to Databases — University of Toronto

…Another…
"Find all persons who have no synonyms":
select * from Person P
where not exists
(select * from Person P1
where P1.FirstName =

P.FirstName
and P1.Surname = P.Surname
and P1.TaxCode <> P.TaxCode)

24

SQL — 47CSC343 Introduction to Databases — University of Toronto

Tuple Constructors
The comparison within a nested query may involve
several attributes bundled into a tuple.
A tuple constructor is represented in terms of a
pair of angle brackets.
The previous query can also be expressed as:
select * from Person P
where <FirstName,Surname> not in

(select FirstName,Surname
from Person P1
where P1.TaxCode <> P.TaxCode)

SQL — 48CSC343 Introduction to Databases — University of Toronto

Comments on Nested Queries

The use of nested queries may produce less
declarative queries, but often results in
improved readability.
Complex queries can become very difficult to
understand.
The use of variables must respect scoping
conventions: a variable can be used only within
the query where it is defined, or within a query
that is recursively nested in the query where it
is defined.

25

SQL — 49CSC343 Introduction to Databases — University of Toronto

Scope of Variables
Incorrect query:
select * from Employee
where Dept in

(select DeptName from Department
D1

where DeptName = ‘Production’)
or

Dept in (select DeptName
from Department D2

where D2.City = D1.City)

What's wrong?

SQL — 50CSC343 Introduction to Databases — University of Toronto

Data Modification in SQL
Modification statements include:

Insertions (insert);
Deletions (delete);
Updates of attribute values (update).

All modification statements operate on a set of
tuples (no duplicates.)
In the condition part of an update statement it
is possible to access other relations.

26

SQL — 51CSC343 Introduction to Databases — University of Toronto

Insertions
Syntax:
insert into TableName [(AttributeList)]

< values (ListOfValues) | SelectSQL >
Using values:
insert into Department(DeptName,City)

values(‘Production’,’Toulouse’)

Using a subquery:
insert into LondonProducts

(select Code, Description
from Product
where ProdArea = ‘London’)

SQL — 52CSC343 Introduction to Databases — University of Toronto

Notes on Insertions
The ordering of attributes (if present) and of
values is meaningful -- first value for the first
attribute, etc.
If AttributeList is omitted, all the relation
attributes are considered, in the order they
appear in the table definition.
If AttributeList does not contain all the relation
attributes, left-out attributes are assigned default
values (if defined) or the null value.

27

SQL — 53CSC343 Introduction to Databases — University of Toronto

Deletions
Syntax:
delete from TableName [where Condition]

"Remove the Production department":
delete from Department

where DeptName = ‘Production’
"Remove departments with no employees":
delete from Department

where DeptName not in
(select Dept from Employee)

SQL — 54CSC343 Introduction to Databases — University of Toronto

Notes on Deletions
The delete statement removes from a table all
tuples that satisfy a condition.
The removal may produce deletions from other
tables — if a referential integrity constraint with
cascade policy has been defined.
If the where clause is omitted, delete removes
all tuples. For example, to remove all tuples from
Department (keeping the table schema):
delete from Department

To remove table Department completely (content
and schema):
drop table Department cascade

28

SQL — 55CSC343 Introduction to Databases — University of Toronto

Updates
Syntax:
update TableName
set Attribute = < Expression | SelectSQL | null |
default >
{, Attribute = < Expression | SelectSQL | null |
default >}
[where Condition]

Examples:
update Employee set Salary = Salary + 5
where RegNo = ‘M2047’

update Employee set Salary = Salary * 1.1
where Dept = ‘Administration’

SQL — 56CSC343 Introduction to Databases — University of Toronto

Notes on Updates
As with any side effect statement, the order of
updates is important:
update Employee
set Salary = Salary * 1.1
where Salary <= 30

update Employee
set Salary = Salary * 1.15
where Salary > 30

In this example, some employees may get a
double raise! How can we fix this?

29

SQL — 57CSC343 Introduction to Databases — University of Toronto

Generic Integrity Constraints
The check clause can be used to express arbitrary
constraints during schema definition.
Syntax:

check (Condition)
Condition is what can appear in a where clause —
including nested queries.
For example, the definition of an attribute Superior
in the schema of table Employee:
Superior character(6)
check (RegNo like “1%” or

Dept = (select Dept from Employee E
where E.RegNo = Superior)

SQL — 58CSC343 Introduction to Databases — University of Toronto

Assertions
Assertions permit the definition of constraints
independently of table definitions.
Assertions are useful in many situations -- e.g., to
express generic inter-relational constraints.
An assertion associates a name to a check clause;
syntax:
create assertion AssertName check (Condition)
"There must always be at least one tuple in table
Employee":
create assertion AlwaysOneEmployee
check (1 <= (select count(*)

from Employee))

30

SQL — 59CSC343 Introduction to Databases — University of Toronto

Views
Views are "virtual tables" whose rows are computed
from other tables (base relations).
Syntax:
create view ViewName [(AttributeList)] as SelectSQL
[with [local|cascaded] check option]
Examples:
create view AdminEmployee

(RegNo,FirstName,Surname,Salary) as
select RegNo,FirstName,Surname,Salary
from Employee
where Dept = ‘Admin’ and Salary > 10
create view JuniorAdminEmployee as
select * from AdminEmployee
where Salary < 50 with check option

SQL — 60CSC343 Introduction to Databases — University of Toronto

Notes on Views
SQL views cannot be mutually dependent (no
recursion).
check option executes when a view is updated.
Views can be used to formulate complex queries --
views decompose a problem and produce more
readable solutions.
Views are sometimes necessary to express certain
queries:

Queries that combine and nest several aggregate
operators;
Queries that make fancy use of the union
operator.

31

SQL — 61CSC343 Introduction to Databases — University of Toronto

Views and Queries

"Find the department with highest salary
expenditures" (without using a view):
select Dept from Employee
group by Dept
having sum(Salary) >= all
(select sum(Salary) from

Employee
group by Dept)

This solution may not work with all SQL
systems.

SQL — 62CSC343 Introduction to Databases — University of Toronto

Views and Queries

"Find the department with highest salary
expenditures" (using a view):
create view SalBudget
(Dept,SalTotal) as
select Dept,sum(Salary)
from Employee group by Dept

select Dept from SalBudget
where SalTotal =
(select max(SalTotal) from

SalBudget)

32

SQL — 63CSC343 Introduction to Databases — University of Toronto

Views and Queries
"Find the average number of offices per department":
Incorrect solution (SQL does not allow a cascade of

aggregate operators):
select avg(count(distinct Office))
from Employee group by Dept

Correct solution (using a view):
create view
DeptOff(Dept,NoOfOffices) as
select Dept,count(distinct Office)
from Employee group by Dept

select avg(NoOfOffices)
from DeptOffice

SQL — 64CSC343 Introduction to Databases — University of Toronto

Access Control
Every element of a schema can be protected (tables,
attributes, views, domains, etc.)
The owner of a resource (the creator) assigns
privileges to the other users.
A predefined user _system represents the database
administrator and has access to all resources.
A privilege is characterized by:

a resource;
the user who grants the privilege;
the user who receives the privilege;
the action that is allowed on the resource;
whether or not the privilege can be passed on to
other users.

33

SQL — 65CSC343 Introduction to Databases — University of Toronto

Types of Privileges
SQL offers six types of privilege:
insert: to insert a new object into the
resource;
update: to modify the resource content;
delete: to remove an object from the
resource;
select: to access the resource content;
references: to build a referential integrity
constraint with the resource;
usage: to use the resource in a schema
definition (e.g., a domain)

SQL — 66CSC343 Introduction to Databases — University of Toronto

grant and revoke
To grant a privilege to a user:

grant < Privileges | all privileges > on
Resource
to Users [with grant option]

grant option specifies whether the privilege can
be propagated to other users.
For example,

grant select on Department to
Stefano

To take away privileges:
revoke Privileges on Resource from Users

[restrict | cascade]

34

SQL — 67CSC343 Introduction to Databases — University of Toronto

Database Triggers
Triggers (also known as ECA rules) are element of the
database schema.
General form:

on <event> when <condition> then <action>
Event- request to execute database operation
Condition - predicate evaluated on databaase state
Action – execution of procedure that might involve
database updates

Example:
on "updating maximum enrollment limit" if
"# registered > new max enrollment limit "
then "deregister students using LIFO policy"

SQL — 68CSC343 Introduction to Databases — University of Toronto

Trigger Details
Activation — occurrence of the event that
activates the trigger.
Consideration — the point, after activation,
when condition is evaluated; this can be
immediate or deferred.

Deferred means that condition is evaluated
when the database operation (transaction)
currently executing requests to commit.

Condition might refer to both the state before
and the state after event occurs.

35

SQL — 69CSC343 Introduction to Databases — University of Toronto

Trigger Execution
This is the point when the action part of the trigger
is carried out.
With deferred consideration, execution is also
deferred.
With immediate consideration, execution can occur
immediately after consideration or it can be
deferred

If execution is immediate, execution can occur
before, after, or instead of triggering event.
Before triggers adapt naturally to maintaining
integrity constraints: violation results in
rejection of event.

SQL — 70CSC343 Introduction to Databases — University of Toronto

Event Granularity

Event granularity can be:
Row-level: the event involves change of a
single row,

This means that a single update statement
might result in multiple events;

Statement-level: here events result from the
execution of a whole statement; for example, a
single update statement that changes multiple
rows constitutes a single event.

36

SQL — 71CSC343 Introduction to Databases — University of Toronto

Multiple Trigger Executions
Should we allow multiple triggers to be
activated by a single event?
If so, how do we handle trigger execution?

Evaluate one condition at a time and if true
immediately execute action; or
Evaluate all conditions, then execute all
associated actions.

The execution of an action can affect the truth
of a subsequently evaluated condition so the
choice is significant.

SQL — 72CSC343 Introduction to Databases — University of Toronto

Triggers in SQL-3
Events: insert, delete, or update
statements or changes to individual rows
caused by these statements.
Condition: Anything allowed in a where clause.
Action: An individual SQL statement or a
program written in the language of Procedural
Stored Modules (PSM) -- which can contain
embedded SQL statements.

37

SQL — 73CSC343 Introduction to Databases — University of Toronto

Triggers in SQL-3

Consideration = immediate – condition can
refer to both the state of the affected row or
table before and after the event occurs.
Execution = immediate – can be before or
after the execution of the triggering event
Note that the action of a before-trigger cannot
modify the database.
Granularity: Both row-level and statement-
level.

SQL — 74CSC343 Introduction to Databases — University of Toronto

Before-Trigger with Row Granularity

CREATE TRIGGER Max_EnrollCheck
BEFORE INSERT ON TranscriptTranscript

REFERENCING NEW AS N --row to be added
FOR EACH ROW
WHEN
((SELECT COUNT (T.StudId) FROM TranscriptTranscript T

WHERE T.CrsCode = N.CrsCode
AND T.Semester = N.Semester)

>=>=
(SELECT C.MaxEnroll FROM CourseCourse C

WHERE C.CrsCode = N.CrsCode))
THEN ABORT TRANSACTION

Check that
enrollment
≤ limit

Action

38

SQL — 75CSC343 Introduction to Databases — University of Toronto

After-Trigger with Row Granularity

CREATE TRIGGER LimitSalaryRaiseLimitSalaryRaise
AFTER UPDATE OF Salary ON EmployeeEmployee
REFERENCING OLD AS O

NEW AS N
FOR EACH ROW
WHEN (N.Salary - O.Salary > 0.05 * O.Salary)
THEN UPDATE EmployeeEmployee -- action

SET Salary = 1.05 * O.Salary
WHERE Id = O.Id

[Note: The action itself is a triggering event; however,
in this case a chain reaction is not possible.]

No salary
raises greater

than 5%

SQL — 76CSC343 Introduction to Databases — University of Toronto

After-Trigger with Statement
Granularity

CREATE TRIGGER RecordNewAverageRecordNewAverage
AFTER UPDATE OF Salary ON EmployeeEmployee
FOR EACH STATEMENT
THEN INSERT INTO LogLog

VALUES (CURRENT_DATE,
SELECT AVG (Salary)
FROM EmployeeEmployee)

Keep track of
salary averages

in the log

