Week 3 – Relational Algebra

Querying and Updating a Database
The Relational Algebra
Union, Intersection, Difference
Renaming, Selection and Projection
Join, Cartesian Product

CSC343 Introduction to Databases — University of Toronto

Relational Algebra - 1

Query Languages for Relational Databases

- →Operations on databases:
 - ✓ Queries read data from the database:
 - ✓ Updates change the content of the database.
- →In this lecture unit we discuss the relational algebra, a procedural language that defines database operations in terms of algebraic expressions.
- →[The Relational Calculus is a declarative language for database operations based on Predicate Logic; we will not discuss it here.]

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 2

Relational Algebra

- →A collection of algebraic operators that
 - ✓ Are defined on relations;
 - ✓ Produce relations as results, and therefore can be combined to form complex algebraic expressions.

Operators:

- ✓Union, intersection, difference;
- ✓ Renaming;
- ✓ Selection and Projection;
- ✓ Join (natural join, Cartesian product, theta join).

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 3

Union, Intersection, Difference

- → Relations are sets, so we can apply set-theoretic operators
- → However, we want the results to be relations (that is, homogeneous sets of tuples)
- →It is therefore meaningful to only apply union, intersection, difference to pairs of relations defined over the same attributes.

CSC343 Introduction to Databases — University of Toronto

Union

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

managoro		
Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates \cup **Managers**

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38
9297	O'Malley	56

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 5

Intersection

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Surname	Age
O'Malley	56
O'Malley	39
Darkes	38
	O'Malley O'Malley

Graduates ∩ **Managers**

Oradautos i imanagero		
Number	Surname	Age
7432	O'Malley	39
9824	Darkes	38

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 6

Difference

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Managers		
Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates - Managers

Number	Surname	Age
7274	Robinson	37

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 7

A Meaningful but Impossible Union

Paternity

aterinty	
Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

Paternity ∪ **Maternity** ???

- → The problem: **Father** and **Mother** are different names, but both represent a parent.
- →The solution: rename attributes!

CSC343 Introduction to Databases $\ -$ University of Toronto

Renaming

- → This is a unary operator which changes attribute names for a relation without changing any values.
- → Renaming removes the limitations associated with set operators.
- → Notation: ρ_{OldName→NewName}(r)
- \rightarrow For example, $\rho_{\text{Father} \rightarrow \text{Parent}}$ (Paternity)
- →If there are two or more attributes involved in a renaming operation, then ordering is meaningful:

e.g., $\rho_{Branch,Salary \rightarrow Location,Pay}$ (Employees)

CSC343 Introduction to Databases — University of Toronto

Relational Algebra - 9

Example of Renaming

Paternity

Father	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

ρ_{Father-> Parent}(Paternity)

r rather / rarent	
Parent	Child
Adam	Cain
Adam	Abel
Abraham	Isaac
Abraham	Ishmael

- The textbook allows positions rather than attribute names, e.g., 1 → Parent
- Textbook also allows renaming of the relation itself,e.g.,Paternity,1→ Parenthood,Parent

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 10

Renaming and Union

Paternity

Father	Child	
Adam	Cain	
Adam	Abel	
Abraham	Isaac	
Abraham	Ishmael	

Maternity

Mother	Child
Eve	Cain
Eve	Seth
Sarah	Isaac
Hagar	Ishmael

$\rho_{Father-Parent}(Paternity) \cup \rho_{Mother-Parent}(Maternity)$

l	(1 atomicy) o pwotner-sparent			
	Parent	Child		
	Adam	Cain		
	Adam	Abel		
	Abraham	Isaac		
	Abraham	Ishmael		
	Eve	Cain		
	Eve	Seth		
	Sarah	Isaac		
	Hagar	Ishmael		

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 11

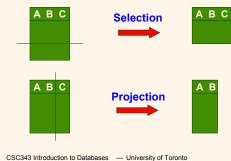
Renaming and Union, with Several Attributes

Employees

Surname	Branch	Salary
Patterson	Rome	45
Trumble	London	53

Staff

Surname	Factory	Wages
Patterson	Rome	45
Trumble	London	53


 $\rho_{Branch,Salary
ightarrow Location,Pav}$ (Employees) $\cup \rho_{Factory, Wages
ightarrow Location,Pav}$ (Staff)

Surname	Location	Pay	
Patterson	Rome	45	
Trumble	London	53	
Cooke	Chicago	33	
Bush	Monza	32	

CSC343 Introduction to Databases — University of Toronto

Selection and Projection

- →These are unary operators, in a sense orthogonal:
 - ✓ selection for "horizontal" decompositions;
 - ✓ projection for "vertical" decompositions.

Relational Algebra — 13

Selection

- →This is a unary operation which returns a relation
 - ✓ with the same schema as the operand;
 - ✓ but, with a **subset of the tuples** of the operand, i.e., only those that satisfy a condition.
- \rightarrow Notation: $\sigma_{F}(\mathbf{r})$
- \rightarrow Semantics: $\sigma_F(r) = \{t \mid t \in r \text{ s.t. } t \text{ satisfies } F, \text{ l.e., } F(t)\}$

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 14

Selection Example

Employees

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Black	Lucy	40	3000
Verdi	Nico	36	4500
Smith	Mark	40	3900

σ Age<30 v Salary>4000 (Employees)

Surname	FirstName	Age	Salary
Smith	Mary	25	2000
Verdi	Nico	36	4500

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 15

Selection, Another Example

Citizens

Surname	FirstName	PlaceOfBirth	Residence
Smith	Mary	Rome	Milan
Black	Lucy	Rome	Rome
Verdi	Nico	Florence	Florence
Smith	Mark	Naples	Florence

σ_{PlaceOfBirth=Residence} (Citizens)

I	Surname	FirstName	PlaceOfBirth	Residence
	Black	Lucy	Rome	Rome
	Verdi	Nico	Florence	Florence

CSC343 Introduction to Databases — University of Toronto

Projection

- → Projection returns a relation which includes a **subset of the attributes** of the operand.
- → Notation: Given a relation r(X) and a subset Y of X: $\pi_Y(r)$
- →Semantics: $\pi_Y(r) = \{ t[Y] \mid t \in r \}$

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 17

Example of Projection

Employees

Surname	FirstName	Department	Head
Smith	Mary	Sales	De Rossi
Black	Lucy	Sales	De Rossi
Verdi	Mary	Personnel	Fox
Smith	Mark	Personnel	Fox

 $\pi_{Surname, FirstName}$ (Employees)

Surname	FirstName
Smith	Mary
Black	Lucy
Verdi	Mary
Smith	Mark

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 18

Another Example

Employees

Surname First		FirstName	Department	Head
Smith Mary		Mary	Sales	De Rossi
	Black	Lucy	Sales	De Rossi
Verdi Mary		Personnel	Fox	
	Smith	Mark	Personnel	Fox

$\pi_{\text{Dep}\underline{\text{artment}}, \text{ Head}}$ (Employees)

Department	Head
Sales	De Rossi
Personnel	Fox

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 19

Cardinality of Projection Operations

- →Note that the result of a projection contains at most as many tuples as the operand relation.
- → However, it may contain fewer, if several tuples collapse, i.e., they are identical in all their values.
- → Theorem: $\pi_Y(r)$ contains as many tuples as r if and only if Y is a superkey for r.
- → This property holds even if Y is "by chance" a superkey, i.e., it is not defined as a superkey in the schema, but it is a superkey for the current database, see the example.

CSC343 Introduction to Databases — University of Toronto

Tuples that Collapse

Students

RegNum Surname		FirstName	BirthDate	DegreeProg
284328 Smith		Luigi	29/04/59	Computing
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Fine Art

π_{Surname, DegreeProg} (Students)

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 21

Tuples that do not Collapse, "by Chance"

Students

RegNum	RegNum Surname		BirthDate	DegreeProg
296328	Smith	John	29/04/59	Computing
587614	Smith	Lucy	01/05/61	Engineering
934856	Black	Lucy	01/05/61	Fine Art
965536	Black	Lucy	05/03/58	Engineering

$\pi_{\text{Surname, DegreeProg}} \left(\text{Students} \right)$

Surname	DegreeProg
Smith	Computing
Smith	Engineering
Black	Fine Art
Black	Engineering

CSC343 Introduction to Databases - University of Toronto

Relational Algebra — 22

Join

- →The most used operator in the relational algebra.
- → Allows us to establish connections among data in different relations, taking advantage of the "value-based" nature of the relational model.
- →Two main versions of the join:
 - ✓"natural" join: takes attribute names into account;
 ✓"theta" join.
- →Both join operations are denoted by the symbol ⋈.

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 23

A Natural Join

11

Employee	Department
Smith	sales
Black	production
White	production

r

<u>Department</u>	Head
production	Mori
sales	Brown

$r_1 \bowtie r_2$

Employee	Department	Head	
Smith	sales	Brown	
Black	production	Mori	
White	production	Mori	

CSC343 Introduction to Databases $\,$

Definition of Natural Join

$$\rightarrow$$
 r₁ (X₁), r₂ (X₂)

 \rightarrow r₁ \bowtie r₂ (natural join of r₁ and r₂) is a relation on X₁X₂ (the union of the two sets):

$$\{ t \text{ on } X_1 X_2 \mid t [X_1] \in r_1 \text{ and } t [X_2] \in r_2 \}$$

or, equivalently

{ t on X_1X_2 | exist $t_1 \in r_1$ and $t_2 \in r_2$ with t $[X_1] = t_1$ and t $[X_2] = t_2$ }

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 25

Natural Join: Comments

- →The tuples in the resulting relation are obtained by combining tuples in the operands with equal values on the common attributes
- → The common attributes often form a key of one of the operands (remember: references are realized by means of foreign keys, and we join in order to follow references)
- * Not always! Consider Person(Name,Addr,PostalC) and let us define Neighbour(Name,Addr,Name1,Addr1,PostalC) by joining Person with ρ_{Name,Addr→Name1,Addr1}(Person); What is criterion for neighbourhood here?

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 26

Another Example

Offences

,	Code	Date	Officer	Dept	Registartion
	143256	25/10/1992	567	75	5694 FR
	987554	26/10/1992	456	75	5694 FR
	987557	26/10/1992	456	75	6544 XY
	630876	15/10/1992	456	47	6544 XY
	539856	12/10/1992	567	47	6544 XY

Cars

Registration		Dept	Owner	
	6544 XY	75	Cordon Edouard	
	7122 HT	75	Cordon Edouard	
	5694 FR	75	Latour Hortense	
	6544 XY	47	Mimault Bernard	

Offences M Cars

Code	Date	Officer	Dept	Registration	Owner	
143256	25/10/1992	567	75	5694 FR	Latour Hortense	
987554	26/10/1992	456	75	5694 FR	Latour Hortense	
987557	26/10/1992	456	75	6544 XY	Cordon Edouard	
630876	15/10/1992	456	47	6544 XY	Cordon Edouard	
539856	12/10/1992	567	47	6544 XY	Mimault Bernard	

Relational Algebra — 27

Yet Another Join

→In this example, join gives very different results from union (see earlier example)

Paternity

	<u>i aterini</u>	· y	
	Father	Child	
	Adam	Cain	
	Adam	Abel	
	Abraham	Isaac	
	Abraham	Ishmael	

Maternity

Mother	Child	
Eve	Cain	
Eve	Seth	
Sarah	Isaac	
Hagar	Ishmael	

Paternity ⋈ Maternity

	, , ,	
Father	Child	Mother
Adam	Cain	Eve
Abraham	Isaac	Sarah
Abraham	Ishmael	Hagar

CSC343 Introduction to Databases — University of Toronto

Joins can be Incomplete

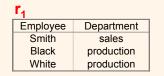
→ If a tuple does not have a "counterpart" in the other relation, then it does not contribute to the join ("dangling" tuple)

r₁

Employee Department
Smith sales
Black production
White production

	'2	
	Department	Head
	production	Mori
	purchasing	Brown

 $\mathbf{r_1} \bowtie \mathbf{r_2}$


Employee	Department	Head
Black	production	Mori
White	production	Mori

CSC343 Introduction to Databases — University of Toronto

Relational Algebra - 29

Joins can be Empty

→ As an extreme, we might have that no tuple has a counterpart, and all tuples are dangling

12				
Department	Head			
marketing	Mori			
purchasing	Brown			

$\mathbf{r_1} \bowtie \mathbf{r_2}$		
Employee	Department	Head

CSC343 Introduction to Databases — University of Toronto

Relational Algebra - 30

Another Extreme

→If each tuple of each operand can be combined with all the tuples of the other, then the join has a cardinality that is the product of the cardinalities of the operands

r ₁				
Employee	Project			
Smith	Α			
Black	Α			
White	Α			

r ₂				
Project	Head			
Α	Mori			
Α	Brown			

$\mathbf{r_1} \bowtie \mathbf{r_2}$
Employe
Smith

Employee	Project	Head
Smith	Α	Mori
Black	Α	Brown
White	Α	Mori
Smith	Α	Brown
Black	Α	Mori
White	Α	Brown

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 31

How Many Tuples in a Join?

→Given $r_1(X_1)$, $r_2(X_2)$ the join has cardinality $0 \le |r_1 \bowtie r_2| \le |r_1| \times |r_2|$

where | r | is the cardinality of relation r.

→Moreover:

✓ if the join is complete, then its cardinality is at least the maximum of $|r_1|$ and $|r_2|$.

 \checkmark if $X_1 \cap X_2$ contains a key for r_2 ,

then
$$| r_1 \bowtie r_2 | \le | r_1 |$$

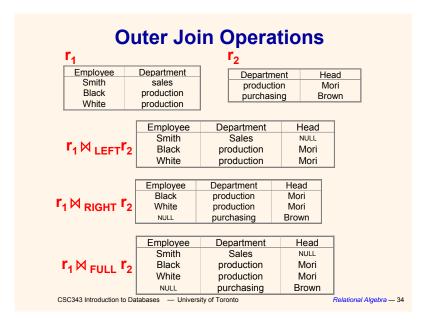
✓ if $X_1 \cap X_2$ is the primary key for r_2 , and there is a referential constraint between $X_1 \cap X_2$ in r_1 and such a key, then $|r_1 \bowtie r_2| = |r_4|$.

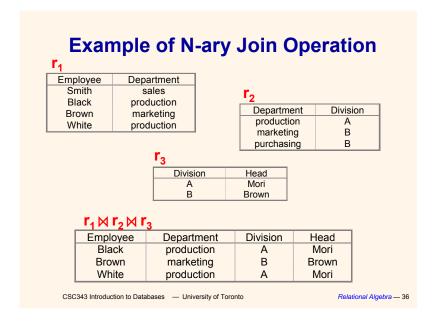
CSC343 Introduction to Databases — University of Toronto

Outer Join

- → A variant of the join, to keep all pieces of information from the operands.
- →An outer join operation "pads with nulls" the tuples in one operant relation that have no counterpart in the other relation.
- →Three variants:
 - ✓ LEFT only tuples of left operand are padded;
 - √RIGHT only tuples of right operand are padded;
 - √FULL tuples of both operands are padded.

CSC343 Introduction to Databases — University of Toronto


Relational Algebra — 33


N-ary Join Operations

- →The natural join is
 - ✓ commutative: $r_1 \bowtie r_2 = r_2 \bowtie r_1$
 - ✓ associative: $(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$
- →Therefore, we can write n-ary joins without ambiguity:

$$r_1 \bowtie r_2 \bowtie ... \bowtie r_n$$

CSC343 Introduction to Databases — University of Toronto

Join and Intersection

- →We have made no assumptions about the sets of attributes X₁ and X₂ on which the operands of a join operation are defined; the two sets could even be equal or disjoint.
- →If $X_1 = X_2$ then $r_1 \bowtie r_2 = r_1 \cap r_2$ since, by definition, the result is a relation which includes tuples t such that $t[X_1] \in r_1$ and $t[X_2] \in r_2$, and $X_1 = X_2$.

CSC343 Introduction to Databases — University of Toronto

Relational Algebra - 37

Natural Join as Cartesian Product

- →The natural join is defined also when the operands have no attributes in common.
- →In this case no condition is imposed on tuples, and therefore the result contains tuples obtained by combining the tuples of the operands in all possible ways.

CSC343 Introduction to Databases - University of Toronto

Relational Algebra — 38

Cartesian Product: Example

Employees

Α
Α
В

Projects

Code	Name
Α	Venus
В	Mars

Employes ⋈ **Projects**

	, ·		
Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	Α	Venus
Smith	Α	В	Mars
Black	Α	В	Mars
Black	В	В	Mars

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 39

Theta-Join

→In most cases, a Cartesian product is meaningful only if followed by a selection:

√theta-join: a derived operator

$$r_1 \bowtie_F r_2 = \sigma_F(r_1 \bowtie r_2)$$

✓ if F is a conjunction of equalities, then we have an equi-join

CSC343 Introduction to Databases — University of Toronto

Equi-join: example

Employees

Employee	Project
Smith	Α
Black	Α
Black	В

Projects

Code	Name
Α	Venus
В	Mars
В	Mars

Employes ⋈ Projects Projects

Employee	Project	Code	Name
Smith	Α	Α	Venus
Black	Α	Α	Venus
Black	В	В	Mars

CSC343 Introduction to Databases — University of Toronto

Division

 \rightarrow Consider two relations A(x,y), B(y) and suppose we want to specify the query

"Find all A's that are associated with all B's"

→This can be expressed as

$$A/B = \pi_x(A) - \pi_x((\pi_x(A) \bowtie B) - A)$$

→This means that division does not extend the expressiveness of Relational Algebra, but it is a convenient operation to use in many situations.

CSC343 Introduction to Databases - University of Toronto

Relational Algebra — 42

Example of Division

- →Assume
 - √ Take(x,y) "student x has taken course y",
 - √CS(y) "y is a CS course"
- →We want "All students who have taken all CS courses"
 - $\checkmark \pi_x(Take) \bowtie CS -- ? Table of all students, CS$
 - \checkmark (π_x (Take) ⋈ CS) Take -- ?? Table of all
 - $\checkmark \pi_x((\pi_x(Take) \bowtie CS) Take) -- ???$ CSC343 Introduction to Databases -- University of Toronto

Relational Algebra — 43

Queries

- →A query is a function from database instances to relations.
- →Queries are formulated in relational algebra by means of expressions over relations.

CSC343 Introduction to Databases — University of Toronto

A Sample Database

Employees

Lilipioyees			
Number	Name	Age	Salary
101	Mary Smith	34	40
103	Mary Bianchi	23	35
104	Luigi Neri	38	61
105	Nico Bini	44	38
210	Marco Celli	49	60
231	Siro Bisi	50	60
252	Nico Bini	44	70
301	Steve Smith	34	70
375	Mary Smith	50	65

Supervision

Head	Employee
210	101
210	103
210	104
231	105
301	210
301	231
375	252

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 45

Example 1

"Find the numbers, names and ages of employees earning more than 40k."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it!

CSC343 Introduction to Databases - University of Toronto

Relational Algebra — 46

Example 2

→ "Find the registration numbers of the supervisors of the employees earning more than 40M."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it!

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 47

Example 3

→ "Find the names and salaries of the supervisors of the employees earning more than 40M."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it! (this is a bit tougher)

CSC343 Introduction to Databases — University of Toronto

Example 4

→ "Find the employees earning more than their respective supervisors, return registration numbers, names and salaries of the employees and their supervisors."

Employees(<u>Number</u>,Name,Age,Salary) Supervision(Head,<u>Emp</u>)

Try it! Definitely challenging ©

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 49

Example 5

→ "Find registration numbers and names of supervisors, *all* of whose employees earn more than 40M."

Employees(<u>Number</u>, Name, Age, Salary) Supervision(Head, Emp)

Try it!

CSC343 Introduction to Databases - University of Toronto

Relational Algebra — 50

Another Series of Examples:

 $Films(\underline{Film\#}, Title, Director, Year, ProdCost)$

Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film#,Actor#,Character)

→ Find "The titles of films starring Henry Fonda

Try it!

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 51

Example 2

Films(Film#, Title, Director, Year, ProdCost)

Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ Find "The titles of all films in which the director is also an actor"

Try it!

CSC343 Introduction to Databases — University of Toronto

Example 3

Films(Film#, Title, Director, Year, ProdCost)

Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ Find "The actors who have played two characters in the same film; show the title of each such film, first name and surname of the actor and the two characters"

Try it!

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 53

Example 4

Films(Film#, Title, Director, Year, ProdCost)

Artists(<u>Actor#</u>,Surname,FirsName,Sex,Birthday, Nationality)

Roles(Film#, Actor#, Character)

→ "The titles of the films in which the actors are all of the same sex"

Try it!

CSC343 Introduction to Databases - University of Toronto

Relational Algebra - 54

Relational Algebra and Null Values

People

Name	Age	Salary
Aldo	35	15
Andrea	27	21
Maria	NULL	42

- \rightarrow Consider $\sigma_{Age>30}$ (People)
- →Which tuples belong to the result?
- →The first yes, the second no, but the third??

CSC343 Introduction to Databases — University of Toronto

Relational Algebra — 55

Lecture Example (for blackboard)

CSC343 Introduction to Databases — University of Toronto

CSC343 Introduction to Databases — University of Toronto