BCNF Normalization (Partial)

→Given: R = (*R*; *F*) where R = ABCDEGHK and $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$ ✓Step 1: Find a FD that violates BCNF Note $ABH \rightarrow C$, $(ABH)^+$ includes all attributes (BH is a key) $A \rightarrow DE$ violates BCNF since A is not a superkey ($A^+ = ADE$) ✓Step 2: Split R into: $R_1 = (ADE; F_1 = \{A \rightarrow DE\})$ $R_2 = (ABCGHK; F_1 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$ →Note 1: R_1 is in BCNF →Note 2: Decomposition *is lossless* since A is a key of R_1 . →Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in F_1 or F_2 . But both can be derived from $F_1 \cup F_2$ $(E.g., K \rightarrow A \text{ and } A \rightarrow D \text{ implies } K \rightarrow D)$ Hence, decomposition *is dependency preserving*.

CSC343 - Introduction to Databases

Normal Forms — 1

BCNF Decomposition Algorithm

Input: $\mathbf{R} = (R; F)$

Decomp := **R** while there is $\mathbf{S} = (S; \mathbf{F}') \in Decomp$ and **S** not in BCNF **do** Find $X \rightarrow Y \in \mathbf{F}'$ that violates BCNF // X isn't a superkey in **S** Replace **S** in Decomp with $\mathbf{S}_1 = (XY; \mathbf{F}_1)$, $\mathbf{S}_2 = (S - (Y - X);$ \mathbf{F}_2) // $\mathbf{F}_1 = all FDs \text{ of } \mathbf{F}'$ involving only attributes of XY // $\mathbf{F}_2 = all FDs \text{ of } \mathbf{F}'$ involving only attributes of S - (Y - X)end return Decomp CSC343 - Introduction to Databases