
CSC104 Winter 2008 Python Programming Lab – Week 6

More Python exercises for this week:

1. Example of using Modulus (%)
Given two dates in the format of hours:minutes:seconds, what is the difference between them? For example, what’s the
time difference between 11:28:56 and 18:35:23? (The times are in the 24-hour clock. 00:00:00 is midnight).

Subtracting the individual bits is possible. But another strategy for calculating with times is to convert everything to
seconds. If the values are in variables h1, m1, s1 and (for 11, 28, 56 respectively), h2, m2, s2 (for 18, 35, 23, respectively)
then we can combine them with these two python statements:
t1 = h1*3600 + m1*60 + s1
t2 = h2*3600 + m2*60 + s2

Now, we can test whether t1<t2 to see which time is earlier, etc. It's very
very easy to work with in seconds. The following python code prints the time difference:

print 'The second time is',
sec = t2 - t1
if sec >= 3600:
 print sec/3600, 'hours and',
 sec = sec % 3600
print sec/60, 'minutes and', sec%60, 'seconds',
print 'later than the first.'

2. Write a python function isEven(number) that returns True if the number is even, False if the number is odd.

Function specification Usage example:
isEven(number)
Input: a number (integer)
Output: true or false (String).

isEven(5) returns false
isEven(12) returns true.

3. The following list (days_in_month) contains the number of days in each month for the year of 2008. Write a python
function get_days_in_month(month_num) that takes in a month number (integer), and returns the number of
days in that month.
days_in_month = [31,29,31,30,31,30,31,31,30,31,30,31]

Function specification Usage example:
get_days_in_month (number)
Input: integer
Output: integer

get_days_in_month(1) returns 31
get_days_in_month(11) returns 30

4. Write a python program that returns the average number of days per month in the days_in_month list. (hint:
remember that when dividing two integers we get an integer, so if we want a decimal part, one of our numbers must be a
decimal number.)

5. Let’s say now we have the following two lists student_numbers and student_names. They are parallel lists
because the values in the same list position correspond to each other, i.e. student with name stored in
student_name[2] has a student number stored in student_number[2].

student_numbers =[236435, 754678, 345245,3456677, 356325]
student_names = [‘John’, ‘Joe’, ‘Lisa’, ‘Jennifer’, ‘Mike’]

Write the following two functions:
Function specification Usage example:

getName(number)
Input: a number (integer)
Output: student name (String).

num = 754678
name = getName (num)
print ‘student with id’, num, ‘has name:’, name,
‘.’

GetNumber(name)
Input: a name (string)
Output: student number (string)

Usage example:
name = ‘Jennifer’
num = getNumber(name)
print name, ‘has student number:’, num, ‘.’

6. Write a function that goes through the above two lists, and prints out all student records, in the format of student names:
student number.

Function specification Output

printAllRecords()
Input: none
Output: none (just print, no return)

John: 236435
Joe: 754678
Lisa: 34524
Jennifer: 3456677
Mike: 356325

7. String Manipulation:
☻ Unlike lists, for which we can change individual items, strings are “immutable” – we cannot directly substitute

characters in a string with other ones. We must create new strings composed of the pieces of the string we wish to
keep combined with any substitution characters.

☻ To slice and dice strings we have made use of the ‘:’ (colon) in class. Assume we have a string a =
‘1234567890’. To select the first letter in a we would write a[0]; the second letter, a[1] … and so on. If
we want to select up to the fourth letter, we would use the colon as follows: a[:4] which would give us ‘1234’.
If we want the second and third letter we would write a[1:3] which would give us ‘23’. Finally, if we want the
5th letter onwards we would write a[4:] which would give us '567890'.

☻ We add strings (and parts of strings) together using the ‘+’ (plus sign). We refer to this as string concatenation. So
a[1] + a[5:] would be evaluated as ‘2’ + ‘67890' or ‘267890’. Notice that unlike the print command,
which inserts a space between items that are separated with a comma, when we concatenate two strings, they are
attached to each other with no spaces. We cannot concatenate a string with a number, we must first convert that
number to a string using the str(<number expression>) function.

In the interactive python session window, try creating, cutting, splicing and rejoining a few strings.

Now, write a function that takes a string, the start position, the end position, the replacement character, replaces all
characters from the start position to the end position with the replacement string, and returns the resulting string. Use the
colon operator to do this.

Function specification Sample usage
stringReplace(s, startPos, endPos,
replaceWith)
Input: string s, the string to be manipulated;
startPos, the first character in the sequence to be cut out;
endPos the last character in the sequence to be cut out; and
replaceWith, the string to replace the cutout segment with.
Output: returns the resulting string.

a = ‘I just like to program’
b = ‘love’
stringReplace(a, 8, 11, b)

should return
‘I just love to program’

Hint: remember that the 8th character in string a is a[7]

