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Abstract

Concurrency has been rapidly gaining importance in general-purpose computing, caused
by the recent turn towards multicore processing architectures. As a result, an increasing
number of developers have to learn to write concurrent programs, a task that is known to be
hard even for the expert. Language designers are therefore working on languages that promise
to make concurrent programming “easier” than using traditional thread libraries. However,
the claim that a new language is more usable than another cannot be supported by purely
theoretical considerations, but calls for empirical studies. In this paper, we present the design
of a study to compare concurrent programming languages with respect to comprehending
and debugging existing programs and writing correct new programs. A critical challenge for
such a study is avoiding the bias that might be introduced during the training phase and
when interpreting participants’ solutions. We address these issues by the use of self-study
material and an evaluation scheme that exposes any subjective decisions of the corrector,
or eliminates them altogether. We apply our design to a comparison of two object-oriented
languages for concurrency, multithreaded Java and SCOOP (Simple Concurrent Object-
Oriented Programming), in an academic setting. We obtain results in favor of SCOOP even
though the study participants had previous training in Java Threads.
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1 Introduction

Concurrent programming has been practiced for over 40 years, but was until recently perceived
as a task for specialists in high-performance computing, operating systems or networking. The
transition to parallel architectures, in particular to multicore processors, has radically changed
this situation, making concurrency a concern for mainstream software development.

The new situation entails that many programmers without extensive concurrency train-
ing have to write concurrent programs, a task widely acknowledged as error-prone due to
concurrency-specific errors, e.g. data races or deadlocks. Such errors typically arise from in-
correct use of synchronization primitives such as locks and semaphores, which traditionally are
provided by concurrency libraries.

To avoid the pitfalls of the library approach, the programming languages community works
towards integrating concurrency mechanisms into new languages. The goal is to raise the level
of abstraction for expressing concurrency and synchronization, and hence to make programmers
produce better code. Resulting programming models can exclude certain classes of errors by
construction, usually accepting a penalty in performance or programming flexibility for the sake
of program correctness.

The question remains whether these new languages can deliver and indeed make concurrent
programming “easier” for the developer: both understanding and modification of existing code
and the production of new correct code should be improved. It is difficult to argue for such
properties in an abstract manner as they are connected to human subjects: empirical analyses
of the usability of concurrent languages are needed to distinguish promising from less promising
approaches, driving language research in the right direction.

Empirical studies for this purpose have to deal with two main challenges. First, to compare
the usability of two languages side-by-side, additional programmer training is typically needed:
only few programmers will be skilled in two or more novel programming paradigms. However,
bias introduced during the training process has to be avoided at any cost. Second, a test to judge
the proficiency of participants using the languages has to be developed, along with objective
means to interpret participants’ answers.

In this paper we propose the design of an empirical study that addresses the mentioned chal-
lenges and provides a template for comparing concurrent programming languages. In particular,
we make the following contributions:

• a design for comparative studies of concurrent programming languages, based on self-study
followed by individual tests;

• a template for a self-study document to learn the basics of concurrency and a new con-
current language;

• a set of test questions that allows for a direct comparison of approaches;

• an evaluation scheme for interpreting answers to the test questions, objective and repro-
ducible;

• application of the study design to a comparison of two concrete languages, multithreaded
Java and SCOOP, in an academic setting with 67 B.Sc. students.

The remainder of this paper is structured as follows. In Section 2 we review multithreaded
Java and SCOOP and give an overview of related approaches to concurrent programming. Sec-
tion 3 explores potential hypotheses of comparative studies of concurrent languages and outlines
our choices. In Section 4 we present the an overview of the design of the study. We present the
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design of the training phase including the structure for a self-study document on concurrency
in Section 5. The design of the test and the results of the multithreaded Java vs. SCOOP study
are presented in Section 6. We discuss threats to validity in Section 7 and give an overview of
related work in Section 8. We conclude and present avenues for future work in Section 9.

In this extended report, the complete self-study material and the tests, as used in the concrete
multithreaded Java vs. SCOOP study, is found in Appendix A–D.

2 Concurrent programming languages

As background for the main part of the paper, this section briefly reviews SCOOP (Simple
Concurrent Object-Oriented Programming) [14, 16] and multithreaded Java [20], two object-
oriented concurrent programming models. The section concludes with an overview of related
approaches.

2.1 SCOOP

The central idea of SCOOP is that every object is associated for its lifetime with a processor,
an abstract notion denoting a site for computation: just as threads may be assigned to cores
on a multicore system, processors may be assigned to cores, or even to remote processing units.
References can point to local objects (on the same processor) or to objects on other processors;
the latter ones are called separate references. Calls within a single processor remain synchronous,
while calls to objects on other processors are dispatched asynchronously to those processors for
execution, thus giving rise to concurrent execution.

The SCOOP version of the producer/consumer problem serves as a simple illustration of
these main ideas. In a root class, the main entities producer and consumer are defined. The
keyword separate denotes that these entities may be associated with a processor different from
the current one.

producer: separate PRODUCER
consumer: separate CONSUMER

Creation of an separate object such as producer results in the creation of a new processor and of
a new object of type PRODUCER that is associated with this processor. Hence in this example,
calls to producer and consumer will be executed concurrently, as they will be associated with
two different new processors.

Both producer and consumer access an unbounded buffer

buffer: separate BUFFER [INTEGER]

and thus their access attempts need to be synchronized to avoid data races (by mutual exclusion)
and to avoid that an empty buffer is accessed (by condition synchronization). To ensure mutual
exclusion, processors that are needed for the execution of a routine are automatically locked by
the runtime system before entering the body of the routine. The model prescribes that separate
objects needed by are routine are controlled, i.e. passed as arguments to the routine.

For example, in a call consume(buffer), the separate object buffer is controlled and thus the
processor associated with buffer gets locked. This prevents data races on this object for the
duration of the routine. For condition synchronization, the condition to be waited upon can be
explicitly stated as a precondition, indicated by the keyword require. The evaluation of the
condition uses wait semantics: the runtime system automatically delays the routine execution
until the condition is true. For example, the implementation of the routine consume, defined in
the consumer, ensures that an item from a buffer is only removed if a buffer is not empty:

5



consume (a buffer: separate BUFFER[INTEGER])
require

not (a buffer.count = 0)
local

value: INTEGER
do

value := a buffer.get
end

Note that the runtime system further ensures that the result of the call a buffer.get is properly
assigned to value using a mechanism called wait by necessity : while the client usually does not
have to wait for an asynchronous call to finish, it will do so if it needs the result of this call.

The corresponding producer routine does not need a condition to be waited upon (unbound-
edness of the buffer):

produce (a buffer: separate BUFFER[INTEGER])
local

value: INTEGER
do

value := new value
a buffer.put (value)

end

In summary, the core of SCOOP offers the programmer: a way to spawn off routines asyn-
chronously (all routines invoked on separate objects have this semantics); protection against
object-level data races, which by construction cannot occur; a way to explicitly express condi-
tions for condition synchronization by preconditions with wait semantics. These are the main
reasons for SCOOP’s claim to make concurrent programming “easier”, as some concurrency
mechanisms are invoked implicitly without the need for programmer statements. This comes at
the cost of a runtime system taking care of implicit locking, waiting, etc.

2.2 Java Threads

In multithreaded Java1 (in the following, Java Threads for short), no further abstraction level
is introduced above threads. Hence in the producer/consumer problem, both the producer and
the consumer are threads on their own (inheriting from class Thread) and share a buffer as in
the following code example:

Buffer buffer = new Buffer();
Producer producer = new Producer(buffer);
Consumer consumer = new Consumer(buffer);

Once the threads are started

producer.start();
consumer.start();

the behavior defined in the run() methods of producer and consumer will be executed concur-
rently.

Mutual exclusion can be ensured by wrapping accesses to the buffer within synchronized
blocks that mention the object that is used as a lock (in this case buffer):

1We consider “traditional” multithreaded Java, without the higher-level features implemented in later versions
of its concurrency library.
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public void consume() throws InterruptedException {
int value;
synchronized (buffer) {

while (buffer.size() == 0) {
buffer.wait();

}
value = buffer.get();

}
}

Condition synchronization can be provided by injecting suitable calls to wait() and notify()
methods, which can be invoked on any synchronized object. For example in the consume()
method, wait() is called on buffer under the condition that the buffer is empty and puts the
calling process to sleep. For proper synchronization, the notify() method has in turn to be called
whenever it is safe to access the buffer, to wake up any threads waiting on the condition:

public void produce() {
int value = newValue();
synchronized (buffer) {

buffer.put(value);
buffer.notify();

}
}

In summary, the core of Java Threads offers: a way to define concurrent executions within an
object-oriented model; no automatic protection against object-level data races, but a monitor-
like mechanism based on synchronized blocks; monitor-style wait() and notify() calls to im-
plement condition synchronization. In comparison with SCOOP, the runtime system is less
costly as the programmer is given more responsibility to correctly apply the offered concurrency
mechanisms.

2.3 Related approaches

Besides the two mentioned models, there are a multitude of concurrent languages, which would
also merit comparative studies; we can only mention a few closely related approaches.

High-level concurrency has been proposed for JML [17, 1]; the annotation mechanism works
at a different level of abstraction than SCOOP, focusing on method-level locking. An extension
of Spec# to multi-threaded programs has been developed [10]; the annotation mechanisms in
this extension are very strong, in the sense that they provide exclusive access to objects (making
it local to a thread), which may reduce concurrency.

The JCSP approach [22] supports a different model of concurrency for Java, based on the
process algebra CSP. JCSP also defines a Java API and set of library classes for CSP primitives,
and does not make use of annotations. Polyphonic C# [3] is an annotated version of C# that
supports synchronous and asynchronous methods. The language is based on a sound theory (the
Join calculus), and is now integrated in the Cω toolset from Microsoft Research. Morales [15]
presents the design of a prototype of SCOOP’s separate annotation for Java; however, pre-
conditions and general design-by-contract and support for type safety were not considered.
JSCOOP [21] is an attempt to transfer concepts and semantics of SCOOP from its original
instantiation in Eiffel to Java.

More generally, a modern abstract programming framework for concurrent or parallel pro-
gramming is Cilk [4]; Cilk works by requiring the programmer to specify the parts of the program
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that can be executed safely and concurrently; the scheduler then decides how to allocate work
to (physical) processors. Cilk is not yet object-oriented, nor does it provide design-by-contract
mechanisms, though recent work has examined extending Cilk to C++.

3 Hypotheses

Stating the research questions to be answered is an essential part of the design of any empirical
analysis. In the case of our comparative study, a suitable abstract hypothesis is given by the
frequently used claim of language designers that programming is simplified by the use of a new
language:

It is easier to program using SCOOP than using Java Threads.

Note that, to support intuition, we explain our study template here and in the following with
the concrete languages SCOOP and Java Threads, rather than referring to “Language A”,
“Language B” etc.; the template is still suitable for general concurrent languages.

A broad formulation such as the above leaves open many possibilities for refinement towards
concrete hypotheses:

(1) Program comprehension: Programmers comprehend the meaning of program code better.

(2) Program debugging: Programmers find more errors in program code.

(3) Program correctness: Programmers make fewer errors when writing program code.

(4) Program efficiency: Programmers produce more efficient programs.

(5) Program size: Programmers obtain smaller programs.

(6) Programming speed: Programmers complete a program faster.

Here, suggested hypotheses (1) and (2) recognize the fact that understanding programs is typi-
cally just as critical in everyday development as being able to produce code. All other suggested
hypotheses deal instead with writing program code: (3)-(5) are concerned with crucial prop-
erties of the programs obtained (program correctness, efficiency, and size), while (6) expresses
properties about the process of writing the program (programming speed).

In our study template, we focus on the first three suggested hypotheses. The reason for
this is that we feel it is important to ensure correctness before dealing with other properties:
measuring efficiency, size, or programming speed is meaningless without ensuring that a correct
program is obtained in the first place.

The suggested hypotheses need more refinement, as their formulation fails to capture the con-
nection between the languages under comparison. We work with the following refined concrete
hypotheses:

Hypothesis I Programmers can comprehend an existing program written in SCOOP more
accurately compared to an existing program having the same functionality written in Java
Threads (program comprehension).

Hypothesis II Programmers can find more errors in an existing program written in SCOOP
than in an existing program of the same size written in Java Threads (program debugging).

Hypothesis III Programmers make fewer programming errors when writing programs in SCOOP
than when writing programs having the same functionality in Java Threads (program cor-
rectness).

8



Note that for the comprehension and correctness tasks we focus on programs having the same
functionality, while for the debugging task we require them to have only the same size (close
correspondence in number of classes, attributes, functions, and overall lines of code). This is
because we want to separate the debugging task from the program’s semantics in as far as
possible, focusing on “syntactic” errors. This is necessary, as it is impossible to ask for the
detection of semantic errors without specifying what the program is supposed to do; providing
such a specification would however introduce yet another possibility for misunderstanding.

Note that the list of suggested hypotheses focuses on properties that may be objectively
measured: except for program comprehension where it is not obvious on how to obtain a measure
(our approach is presented below in Section 6.2), measures are the number of errors, execution
speed, lines of code, development time. Other, more subjective, properties are also conceivable
(e.g. programmer satisfaction), but not considered in this study.

4 Overview of the experimental design

In this section we give an overview of the design of our study; subsequent sections will detail
the training phase and the test phase that are part of this design. We start by explaining the
basic study setup, using the example of SCOOP vs. Java Threads, then discuss participants’
backgrounds in our concrete study.

4.1 Setup of the study

As we want to analyze how programming abstractions for concurrency affect comprehension,
debugging, and correctness of programs, the study requires human subjects. We have run the
study in an academic setting, with 67 students of the Software Architecture course [18] at
ETH Zurich in Spring semester 2010. All participants were B.Sc. students, 86.2% in their 4th
semester, the others in higher semesters.

This population was split randomly into two groups: the SCOOP group (30 students) worked
during the study with SCOOP and the Java group (37 students) worked with Java Threads.
To confirm that the split created groups with similar backgrounds we used both self-assessment
and a small number of general proficiency test questions, as detailed below in Section 4.2.

The study had two phases, which we run in close succession of each other: a training phase,
run during a two-hour lecture session, and a test phase, run during an exercise session later on
the same day. Two challenges for a study design present themselves:

• Avoiding bias during the training phase. We kept the influence by teachers to a minimum
through the use of self-study material, discussed further in Section 5.

• Avoiding bias during the evaluation of the test. For this we developed a number of objective
evaluation schemes, discussed further in Section 6.

In the following we give a brief account of the practical procedure of running the study.

4.1.1 Training phase

During the training phase, the participants were given self-study material, depending on their
membership in the SCOOP or Java group. The participants were encouraged to work through
the self-study material in groups of 2-3 people, but were also allowed to do this individually.
The time for working on the study material was limited to 90 minutes. Tutors were available to
discuss any questions that the participants felt were not adequately answered in the self-study
material.
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4.1.2 Test phase

During the test phase, participants filled in a pen & paper test, depending on their membership
in the SCOOP or Java group. They worked individually, with the time for working on the
test limited to 120 min (calculated generously). The tutors of the Software Architecture course
invigilated the test and collected the participants’ answers at the end of the session.

4.2 Student backgrounds

To learn about the students’ backgrounds and to confirm that the random split created groups
with similar backgrounds we used both self-assessment and a small number of general proficiency
test questions; this information was collected during the test phase.

4.2.1 Self-assessed programming proficiency

We collected information regarding the current study level of the students and any previous
training in concurrency. This confirmed that all students were studying for a B.Sc. degree, and
had furthermore taken the 2nd semester Parallel Programming course at ETH, thus starting
with similar basic knowledge of concurrency. All students were familiar with Java Threads, as
this was the language taught in the Parallel Programming course (we discuss this further in
Section 7).

Concerning programming experience we asked the participants to rate themselves on a scale
of 5 points where 1 represents “novice” and 5 “expert” regarding their experience in: program-
ming in general; concurrent programming; Java; Eiffel; Java Threads; SCOOP. Figure 1 shows
the results with means and standard deviations. Both groups rate their general programming
knowledge, as well as their experience with concurrency, Java, and Eiffel at around 3 points,
with insignificant differences between the groups. This confirms a successful split of the students
into the groups from this self-assessed perspective.

Furthermore, the Java group achieved a higher self-assessed mean for knowledge of Java
Threads, and analogous for the SCOOP group. The knowledge of SCOOP, which none of the
students was familiar with in the first place, ranked significantly lower than the knowledge of
Java Threads.

1 

2 

3 

4 

5 

0 1 2 3 4 5 6 7 

SCOOP 
group 

Java 
group 

General Concurrency Java Eiffel Java 
Threads 

SCOOP 

Figure 1: Self-assessed programming proficiency
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4.2.2 General proficiency test

To confirm that the participants have enough knowledge in the base language – Java in the case
of Java Threads, and Eiffel in the case of SCOOP – the test included an understanding task:
participants were asked for the output of a given program (4 classes, plus an additional wrapper
class in Java; approximately 80 lines of code). To assess participants’ concurrency knowledge,
we also asked multiple choice and text questions on multiprocessing, process states, data races,
mutual exclusion, and deadlock.

On both accounts, the students of the two groups achieved very similar results, confirming
again the successful split into groups.

5 Training phase

When running a comparative study involving novel programming paradigms, study subjects who
are proficient in all of these will typically be the exception, making a training phase mandatory.
The training process can however also introduce bias, for example if the teaching style of two
teachers differs. Requiring the presence of teachers for the study makes it also harder to re-run
it, e.g. at other institutions, as a teacher trained in the subject has to be found.

To avoid these problems, we focused on the use of self-study material. Bias could also be
introduced when writing this material, but the quality of the material can be judged externally,
adding to the transparency of the study, and re-running the study becomes simple.

5.1 Self-study material

Java Threads
§1 Concurrent execution

– Multiprocessing and multitasking
– Operating system processes

§2 Threads
– The notion of a thread
– Creating threads

– Joining threads
§3 Mutual exclusion

– Race conditions
– Synchronized methods

§4 Condition synchronization
– The producer/consumer problem
– The methods wait() and notify()

§5 Deadlock
Answers to the exercises

SCOOP
§1 Concurrent execution

– Multiprocessing and multitasking
– Operating system processes

§2 Processors
– The notion of a processor
– Synch. & asynch. feature calls
– Separate entities
– Wait by necessity

§3 Mutual exclusion
– Race conditions
– The separate argument rule

§4 Condition synchronization
– The producer/consumer problem
– Wait conditions

§5 Deadlock
Answers to the exercises

Figure 2: Structure of the self-study material

A course on concurrency can easily take a whole semester. The self-study material we were
using and are proposing as a template can be worked through in 90 minutes and thus appears
unduly short. However, the material has to be judged in conjunction with the questions of the
test and our results in Section 6 show that participants can actually acquire solid basic skills
in the limited time frame. A pre-study with six participants, which allowed us to gain various
helpful feedback on the study material, confirmed also that the study material can be worked
through in 90 minutes.
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For teaching the basics of a concurrent language, we suggest the basic structure shown in
Figure 2, side-by-side for Java Threads and SCOOP. The only prerequisite for working with
these documents is a solid knowledge of the (sequential) base language of the chosen approach,
i.e. Java and Eiffel. It is apparent that the documents closely mirror each other, although they
describe two different approaches:

§1 This section is identical in both documents, introducing basic notions of concurrent exe-
cution in the context of operating systems.

§2 This section concerns the creation of concurrent programs. Here the central notion for Java
Threads is that of a thread, for SCOOP it is that of a processor (compare Sections 2.1
and 2.2). At the end of the second section, participants should be able to introduce
concurrency into a program, but not yet synchronization.

§3 This section introduces the concept of mutual exclusion. Race conditions and their avoid-
ance using synchronized blocks in Java and separate arguments in routines in SCOOP
are presented.

§4 This section introduces the concept of condition synchronization. The need is explained
with the producers/consumers example, and the solutions in Java, i.e. wait() and notify(),
and SCOOP, i.e. execution of preconditions with wait semantics, is explained.

§5 This section introduces the concept of a deadlock.

Furthermore, in every section of the self-study material, there is an equal number of exercises
to check understanding of the material; solutions are given at the end of the document.

The SCOOP document had 20 pages including exercises and their solutions, the Java Threads
document 18 pages. The self-study material is found in Appendix A (SCOOP) and C (Java
Threads).

5.2 Students’ feedback

To learn about the quality of the training material, we also asked for feedback on the self-study
material participants had worked through; this information was collected during the test phase.

Figure 3 gives an overview of the answers to our questions on this topic, rated on a Likert
scale of 5 points (where 1 corresponds to “strongly disagree” and 5 to “strongly agree”). Most
of the students felt that the material was easy to follow and provided both enough examples
and exercises, with insignificant differences between the groups. Both groups also felt that 90
minutes were enough time to work through the material, where the Java group felt significantly
better about this point; this might be explained by the fact that the Java group knew some
of the material from before. Overall most students agreed, but not strongly, that self-study
sessions are a good alternative to traditional lectures.

The overall very positive feedback to the self-study material was confirmed by a number of
text comments, and by the tutors invigilating the sessions, who reported that students explicitly
expressed that they liked the format of the session.

6 Test phase and study results

In this section we present the design of the test and our test evaluation scheme, and report
on the results of the concrete study concerning Java Threads vs. SCOOP. We first give further
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Figure 3: Feedback on the self-study material

information about student participation, then describe Tasks I to III with their individual evalu-
ation schemes and results, and conclude with a brief interpretation of results. The test material
is available in Appendix B (SCOOP) and D (Java Threads).

6.1 Student participation and best effort

The participation of the students in the test was high at 84.8% out of 79 students registered
in the course. No special incentives such as a prize were given, and the students were told
beforehand that their performance in the test cannot affect their grades. Instead, the students
were told a week in advance that the lecture and the exercise session on the day of the study
would be devoted to the study of two concurrent programming techniques.

In general students filled in all parts of the test diligently, only a minority of 2-5 students
per task did not show their best effort by missing very rudimentary answers to Tasks I to III
which we filtered out. Concretely, for a solution to be considered as valid

• more than 3 characters (out of 10) per sequence had to be written for Task I;

• at least 1 error (out of 6) had to be found for Task II;

• more than 10 lines of code (out of around 80 for a complete solution) had to be written
for Task III.

6.2 Task I: Program comprehension

Task I was developed to measure to what degree participants understand the semantics of a
program written in a specific paradigm, and thus to test Hypothesis I. Rather than having
the semantics described in words, which would make answers ambiguous and their evaluation
subjective, we let participants predict samples of a program’s output. This task is interesting
for concurrent programs, as the scheduling provides nondeterministic variance in the output.

The concrete programs in Java Threads and SCOOP (5 classes, plus an additional wrapper
class in Java; ca. 80 lines of code) were printing strings of characters of length 10, with 7 different
characters available. In total, the programs’ possible outputs contained 28 such sequences, but
the participants were neither aware of this number nor the length of the strings. The test asked
the participants to write down three of the strings that might be printed by the program.
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6.2.1 Evaluation

To evaluate the results of Task I, we aimed to find an objective and automatic measure for
the correctness of an answer sequence. The obvious measure – stating whether a sequence
is correct or not – appeared too coarse-grained. For example, some students forgot to insert
a trailing character which was printed after the concurrent computation had finished. Such
solutions, although they might show an understanding of concurrent execution as expressed by
the language, could have only be marked “incorrect”.

We therefore considered the Levenshtein distance [12] as a finer-grained measure, a common
metric for measuring the difference between two sequences. In our case, we had to compare
not two specific sequences, but a single sequence s with a set C of correct sequences. The
algorithm computed the Levenshtein distance dist between s and every element c ∈ C, and took
the minimum of the distances:

Lmin(s) = min {dist(s, c) : c ∈ C}

This corresponds to selecting for s the Levenshtein distance to one of the closest correct se-
quences. As the participants were asked for three such sequences, we took the mean of all three
minimal Levenshtein distances to assign a measure to a participant’s performance on Task I:

1

3
·

∑
i=1,2,3

Lmin(si)

Example 6.1 To illustrate our evaluation algorithm, consider the following example:

Given sequence A closest correct sequence dist

ATSFTSFPML ATSFTSFPML 0

ATSFMTSFPL ATSFPTSFML 2

APTSFTSFM APTSFTSFML 1

In this case we obtain 1
3 · (0 + 2 + 1) = 1. 2

6.2.2 Results

The results for Task I are displayed in Figure 4 with means and standard deviations.
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Figure 4: Results Task I

A two-tailed independent samples t-test gives that the means can be assumed to be different
at a confidence level of 95% (exact significance level 3.3%). This implies that the SCOOP group
with the lower mean performed better at Task I than the Java group.
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6.3 Task II: Program debugging

To analyze program debugging proficiency, we provided programs (3 classes, ca. 70 lines of code)
that were seeded with 6 bugs. All bugs were of a syntactic nature, meaning that it was not
necessary to know the specification of the program to solve the exercise. For Java Threads the
bugs included the following types

• Calling notify() on a non-synchronized object

• Creating a synchronized block without a synchronization object

• Failing to catch an InterruptedException for wait()

and for SCOOP they included:

• Assigning a separate object to a non-separate variable

• Passing a separate object as non-separate argument

• Failing to control a separate object

Participants were asked for the line of an error, and a short explanation why it is an error.

6.3.1 Evaluation

The evaluation assigned every participant points, according to the following scheme:

• 1 point was assigned for pointing out correctly the line where an error was hidden;

• 1 additional point was assigned for describing correctly the reason why it is an error.

The rationale for splitting up the points in this way was that participants may recognize that
there is something wrong in a particular line (in this case they would get 1 point), but might or
might not know the exact reason that would allow them to fix the error; depending on whether
they could actually debug the error, they would get another point.

6.3.2 Results

The results for Task II are displayed in Figure 5. A two-tailed independent samples t-test showed
a significant difference between the results of the Java and the SCOOP group at a confidence
level of 95% (exact significance level 4.2%). This implies that the SCOOP group with the higher
mean performed better at Task II than the Java group.

6.4 Task III: Program correctness

To analyze program correctness, the third task asked participants to implement a program where
an object with two integer fields x and y is shared between two threads. One thread continuously
tries to set both fields to 0 if they are both 1, the other thread tries the converse. As a pen &
paper exercise, the usual compile-time checks that are able to find many of these errors were
not available.
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6.4.1 Evaluation

Even in everyday teaching routine, the grading of a programming exercise can be challenging,
and is often not free of subjective influences by the corrector. To avoid such influences in the
evaluation of Task III, we used a deductive scheme in which every answer to be graded starts
out with 10 points, and points are deducted according to the number and gravity of the errors
it contains.

To make this type of grading possible, the grading process was split into several phases:

1. In a first pass of all answers to Task III, attention was paid to the error types participants
made.

2. The error types were assigned a gravity, which would lead to the deduction of 1 to 3 points.

3. In a second pass of all answers, points were assigned to each answer, depending on the
types of errors present in the answer and their gravity.

The gravity of the error was decided as follows:

Ordinary error An error that can also occur in a sequential context (1 point deduction).

Concurrency error An error that can only arise in a concurrent setting, but which is lightweight
as it still allows for concurrent execution (2 points deduction).

Grave concurrency error An error that can only arise in a concurrent setting, but is grave
as it prevents the program from being concurrent (3 points deduction).

Typos and abbreviations of keywords or other very minor mistakes did not lead to a deduction
of points.

6.4.2 Error types

The limited size of the programming task led to few error types overall: 7 for Java Threads and
6 for SCOOP. Figures 6 and 7 show the error types with their frequency for Java Threads and
SCOOP. Error types with dark/medium/light shaded frequency bars were marked grave con-
currency/concurrency/ordinary errors, respectively.

In Java Threads, we considered it a grave error if a proper setup of threads or the starting
of threads was missing, hence obtaining a functionless or non-concurrent program. In SCOOP,
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Figure 6: Error types for Java Threads

a direct counterpart to this error was the omission to declare the worker objects separate, also
leading to a non-concurrent program. 8.3% of Java participants made this error, and 10.7% of
SCOOP participants.
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Figure 7: Error types for SCOOP

Another grave error was marked for Java Threads if the program did not contain any wait()
or notify() calls, hence providing no condition synchronization. The corresponding error in
SCOOP was the absence of wait conditions. Only 3.5% of the SCOOP group made this error,
while 11.1% of Java participants did so, an indication that a tighter integration of synchronizing
conditions into the programming language might have advantages.

For non-grave concurrency errors and ordinary errors the comparison is no longer that
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straightforward. A majority of SCOOP participants did not control worker objects and did
not declare the data object as separate. These are typical novice errors, and would be caught
by compile-time checks. Also a large number of SCOOP participants did not use setter routines
as needed in Eiffel, a typical ordinary error.

For Java Threads, we see an extreme peak only for not throwing an InterruptedException on
calling wait(), which was classified as an ordinary error and would be caught by compile-time
checks. Other concurrency errors involved the use of wait() or notify(), for example forgetting a
corresponding notify() or applying it to a wrong object. Note that these errors cannot be caught
during compile-time.

6.4.3 Results

The results for Task III are displayed in Figure 8. A two-tailed independent samples t-test does
not show a significant difference between the two means (exact significance level 32.6%).
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Figure 8: Results Task III

6.5 Interpretation of the results

The data confirms Hypotheses I and II in favor of SCOOP, leading to the conclusion that SCOOP
indeed helps to comprehend and debug concurrent programs. Hypothesis III concerning program
correctness could neither be confirmed nor refuted: the SCOOP group did approximately as well
as the Java group. Given the small amount of training in the new paradigm, these results are
surprising, and promising for the SCOOP model.

The question remains why SCOOP fails to help in program construction. A direct way of in-
terpretation would be to conclude that SCOOP’s strengths only affect the tasks of understanding
a given program and debugging it. It does not improve constructing correct programs.

However, the first two tasks are at the Comprehension Level of Bloom’s taxonomy of learning
objectives [2] – level two out of a total of six levels, where a lower level means less cognitively
challenging. Comprehension tasks mostly check whether students have grasped how the taught
concepts work, an important prerequisite for applying them to new situations. Program con-
struction is at a higher level; depending on the difficulty of presented tasks and previously
studied examples, it could be on one of the level three to five of Bloom’s taxonomy. It is possi-
ble that the training time allotted for this study was too short to enable students transfer the
abstractions to the new problem presented in the test. To find out whether this was the case
and SCOOP, in comparison to Java Threads, also benefits program construction, a re-run of the
study with a more extensive training phase would be necessary.
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7 Threats to validity

The fact that all students of our study had previous knowledge of Java Threads, but none of
SCOOP, can be expected to skew the results to benefit Java Threads. We were aware of this
situation already in the planning phase of the study, and decided to run it with this group of
participants nonetheless. A similar situation also frequently arises in practice: developers versed
in a certain programming paradigm consider learning a new one. The study results show that
even under these circumstances, the new paradigm might prove superior to the well-known one
(Tasks I and II).

Another threat to internal validity is the experimenter bias, where the experimenter inad-
vertently affects the outcome of the experiment. A double-blind study was not an option in
our case, as at least some of the results had to be analyzed by humans, at this time revealing
the membership to a group in the experiment. Using automatic techniques for Task I, clearly
defined errors with line numbers in Task II, and developing the deductive scheme for Task III
should however limit this bias to a minimum.

A further threat to internal validity is that results might have been influenced by the usability
of the base programming languages themselves, Java and Eiffel. In self-assessment participants
attributed themselves however sufficient proficiency in both languages and this was confirmed
by a short test (see Section 4.2); these influences might thus be negligible.

As a threat to external validity, we used only students as study subjects and it is unclear
how the study results generalize to other participant groups and situations. In particular, the
use of development environments might greatly affect the learning experience and the potential
of producing correct programs. We suggest to run further studies in the future (see Section 9.2)
to explore these situations, but deem our study a “cleanroom approach” to analyzing the effects
of language abstractions.

As a threat to construct validity, it is difficult to justify objectively that tasks were “fair”
in the sense that they did not favor one approach over the other. However, Java Threads and
SCOOP are languages that are suitable for ordinary concurrency tasks, and such tasks featured
in the test. This situation would be more difficult for languages that aim for a specific application
domain.

8 Related work

According to Wilson et al. [23], the evaluation of parallel programming systems should encompass
three main categories of assessment factors: a system’s run-time performance, its applicability
to various problems, and its usability (ease of learning and probability of programming errors).

The assessment of the factors described in the first two categories are directly related to
metrics that can be collected through, for example, running benchmark test suites. But, as
shown for the domain of modeling languages by Kamandi et al. [11], metrics cannot predict the
outcomes of controlled experiments with human subjects for the assessment factors of the third
category ”usability”.

The need for controlled empirical experiments for concurrent programming has already been
recognized 15 years ago [19]. Nevertheless, only few such experiments have been carried out
so far. Those that have been carried out focus on time that it takes the study participants to
complete a given programming assignment.

Szafron and Schaefer [19] conducted an experiment with 15 students of a concurrent pro-
gramming graduate course. They taught two parallel programming systems (one high-level
system and a message-passing library system) each for 50 minutes to the entire class; students
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then had two weeks to solve a programming assignment in a randomly assigned system. The
evaluation compared the time students worked on the assignment, number of lines, and run-time
speed amongst other measures. Their results suggest that the high-level system is more usable
the message passing library, although students spent more time on the task with the high-level
system.

The group around Hochstein, Basili, and Carver conducted multi-institutional experiments [9,
8, 7] in the area of high performance computing using parallel programming assignments and
students as subjects. In all these experiments, time to completion is the main measure taken.
The results of these studies indicate that the message passing approach to parallel programming
takes more total effort than the shared memory approach.

Luff [13] compares the programmer effort using traditional lock-based approaches to the
Actor model, and transactional memory systems. He uses time taken to complete a task and
lines of code as objective measures and a questionnaire capturing subjective preferences. The
data exhibits no significant differences based on the objective measures, but the subjective
measures show a significant preference of the transactional memory approach over the standard
threading approach.

All of the above experiments target programmer productivity as their main focus. To mea-
sure this, the studies need to provide substantial programs and a long time range for completing
them as a basis of work. By doing so, some of the control over the experimental setup is lost.
Our study has a more modest goal: it tries to compare two approaches with respect to their
ease of learning them and understanding and writing small programs correctly after a very short
time of instruction. By narrowing the focus in such a way, we place the ability of controlling
the experiment over being able to generalize the results to arbitrary situations and levels of
proficiency. Given that this experiment is only a first step in a series, it seems justified to do so.

Other studies [5, 6] consider more generally the comparison of programming paradigms,
without a focus on concurrency. The study of Carey and Shepherd [5] focused on learning
new paradigms and how students are affected by their past experience. Harrison et al. [6]
compared functional programming to object oriented programming. The problem with their
experimental approach is their use of only a single developer to implement program with the
same functionalities in both C++ and SML. They did not detect significant differences in the
number of errors found, but they showed that SML programs had more use of library routines
and took longer to test.

9 Conclusion

9.1 Discussion

The use of programming abstractions since the 1960s has enabled the tremendous growth of
computing applications witnessed today. New challenges such as multicore programming await
the developers and the languages community, but the multitude of proposals makes it hard for a
new language to leave a mark. Empirical studies are urgently needed to be able to judge which
approaches are promising. Since abstractions are invented for the sake of the human developer,
and to finally improve the quality of written code, such studies have to involve human subjects.

Despite the need for such studies, they have been run only infrequently in recent years. One
reason for this might be that there is too much focus on established languages. Hence newly
proposed languages are not put to the test as they should, ultimately hampering the progress of
language research. For this reason we have proposed a template for a study, which can expressly
be used with novel paradigms. While established study templates are a matter of course in other
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sciences, they are not common (yet) in empirical software engineering. We also feel that the
research community should focus their attention on developing templates, as they will improve
research results in the long term and provide a higher degree of comparability among studies.

The key to making our study template successful was the reliance on self-study material
in conjunction with a test, and an evaluation scheme that exposes subjective decisions of the
corrector. While 90 minutes for studying a new language is brief, we were actually impressed
how much the participants learned, some of which handed in flawless pen & paper programs.

9.2 Future work

Clearly, our template should be applied to more languages in the future; there is an abundance
of them, as discussed in Section 2. Also, the set of study subjects can be varied in future studies.
In an academic setting, we would ideally like to re-run the Java/SCOOP study with students
who have no prior concurrency experience. Also, the study template should be used at other
institutions, and in the end grow out of the academic setting and involve developers.

The template could also be developed further. For example, it would be possible to concen-
trate more strongly on one aspect, e.g. program correctness, and to pose more tasks to test a
single hypothesis. The evaluation in Section 6.4 shows that participants might have improved
their results greatly if they have had access to a compiler; running the test not as a pen & paper
exercise but with computer support would thus be yet another option.
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A SCOOP: Self-study material

Almost all computer systems on the market today have more than one CPU, typically in the
form of a multi-core processor. The benefits of such systems are evident: the CPUs can share the
workload amongst themselves by working on different instructions in parallel, making the overall
system faster. This work sharing is unproblematic if the concurrently executing instructions are
completely independent of each other. However, sometimes they need to access the same region
of memory or other computing resources, which can lead to so-called race conditions where the
result of a computation depends on the order of nondeterministic system events. Therefore
concurrent processes have to be properly synchronized, i.e. programmed to wait for each other
whenever necessary, and this calls for specialized programming techniques.

Today you will learn about the background and techniques of concurrent programming. In
particular, you will get to know an object-oriented programming model for concurrency called
SCOOP (Simple Concurrent Object-Oriented Programming). At the end of this lesson, you will
be able to

• explain the basics of concurrent execution of processes in modern operating systems, in
particular multiprocessing and multitasking,

• understand some of the most important problems related to concurrent programming, in
particular race conditions and deadlocks,

• distinguish between different types of process synchronization, in particular mutual exclu-
sion and condition synchronization,

• understand how these types of synchronization are realized in the SCOOP programming
model,

• program simple concurrent programs using SCOOP.

The lesson consists entirely of self-study material, which you should work through in the
usual two lecture hours. You should have a study partner with whom you can discuss what you
have learned. At the end of each study section there will be exercises that help you test your
knowledge; solutions to the exercises can be found on the last pages of the document.

A.1 Concurrent execution

This section introduces the notion of concurrency in the context of operating systems. This is
also where the idea of concurrent computation has become relevant first, and as we all have to
deal with operating systems on a daily basis, it also provides a good intuition for the problem.
You may know some of this content already from an operating systems class, in which case
you should see this as a review and check that you are familiar again with all the relevant
terminology.

A.1.1 Multiprocessing and multitasking

Up until a few years ago, building computers with multiple CPUs (Central Processing Units)
was almost exclusively done for high-end systems or supercomputers. Nowadays, most end-user
computers have more than one CPU in the form of a multi-core processor (for simplicity, we use
the term CPU also to denote a processor core). In Figure 16 you see a system with two CPUs,
each of which handles one process.

23



Process 1 CPU 1 

Process 2 CPU 2 
Instructions 

Figure 9: Multiprocessing: instructions are executed in parallel

The situation where more than one CPU is used in a single system is known as multipro-
cessing. The processes are said to execute in parallel as they are running at the same time.

However, also if you have a computer with a single CPU, you may still have the impression
that programs run “in parallel”. This is because the operating system implements multitasking,
i.e. makes a single CPU appear to work at different tasks at once by switching quickly between
them. In this case we say that the execution of processes is interleaved as only one process is
running at a time. This situation is depicted in Figure 17. Of course, multitasking is also done
on multiprocessing systems, where it makes sense as soon as the number of processes is larger
than the number of available CPUs.

Process 1 

CPU 

Process 2 

Instructions 

Figure 10: Multitasking: instructions are interleaved

Both multiprocessing and multitasking are examples of concurrent execution. In general,
we say that the execution of processes is concurrent if they execute either truly in parallel or
interleaved. To be able to reason about concurrent executions, one often takes the assumption
that any parallel execution on real systems can be represented as an interleaved execution at
a fine enough level of granularity, e.g. at the machine level. It will thus be helpful for you to
picture any concurrent execution as the set of all its potential interleavings. In doing so, you
will be able to detect any inconsistencies between different executions. We will come back to
this point in Section C.3.1.

In the following section we will see how operating systems handle multitasking, and thus
make things a bit more concrete.

A.1.2 Operating system processes

Let’s have a closer look at processes, a term which we have used informally before. You will
probably be aware of the following terminology: a (sequential) program is merely a set of
instructions; a process is an instance of a program that is being executed. The exact structure
of a process may change from one operating system to the other; for our discussion it suffices to
assume the following components:
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Figure 11: Context switch: process P1 is removed from the CPU and P2 is assigned to it

• Process identifier : the unique ID of a process.

• Process state: the current activity of a process.

• Process context : the program counter and the values of the CPU registers.

• Memory : program text, global data, stack, and heap.

As discussed in Section C.1.1, multiple processes can execute at the same time in modern
operating systems. If the number of processes is greater than the number of available CPUs,
processes need to be scheduled for execution on the CPUs. The operating system uses a special
program called the scheduler that controls which processes are running on a CPU and which
are ready, i.e. waiting until a CPU can be assigned to them. In general, a process can be in one
of the following three states while it is in memory:

• running : the process’s instructions are executed on a processor.

• ready : the process is ready to be executed, but is not currently assigned to a processor.

• blocked : the process is currently waiting for an event.

The swapping of process executions on a CPU by the scheduler is called a context switch.
Assume a process P1 is in the state running and should be swapped with a process P2 which is
currently ready, and consider Figure 18. The scheduler sets the state of P1 to ready and saves
its context in memory. By doing so, the scheduler will be able to wake up the process at a later
time, such that it can continue executing at the exact same point it had stopped. The scheduler
can then use the context of P2 to set the CPU registers to the correct values for P2 to resume its
execution. Finally, the scheduler sets P2’s process state to running, thus completing the context
switch.

From the state running a process can also get into the state blocked; this means that it is
currently not ready to execute but waiting for some system event, e.g. for the completion of
some prerequisite task by another process. When a process is blocked it cannot be selected by
the scheduler for execution on a CPU. This can only happen after the required event triggers
the state of the blocked process to be set to ready again.

Exercise A.1 Explain the difference between parallel execution, interleaved execution, and
concurrent execution.

Exercise A.2 What is a context switch? Why is it needed?

Exercise A.3 Explain the different states a process can be in at any particular time.
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A.2 Processors

Concurrency seems to be a great idea for running different sequential programs at the same time:
using multitasking, all programs appear to run in parallel even on a system with a single CPU,
making it more convenient for the user to switch between programs and have long-running tasks
complete “in the background”; in the case of a multiprocessing system, the computing power of
the additional CPUs speeds up the system overall.

Given these conveniences, it also seems to be a good idea to use concurrency not only for
executing different sequential programs, but also within a single program. For example, if a
program implements a certain time-intensive algorithm, we would hope that the program runs
faster on a multiprocessing system if we can somehow parallelize it internally. A program which
gives rise to multiple concurrent executions at runtime is called a concurrent program.

A.2.1 The notion of a processor

Imagine the following routine compute which implements a computation composed of two tasks:

compute
do

t1.do task1
t2.do task2

end

Assume further that it takes m time units to complete the call do task1 on the object attached
to entity t1 and n time units to complete do task2 on the object attached to entity t2. If compute
is executed sequentially, we thus have to wait m time units after the call t1.do task1 before we
can start on t2.do task2, and the overall computation will take m + n time units, as shown in
Figure 19.

CPU 1 CPU 2 

task 1 
task 2 

m 

n 

m + n 

Figure 12: Sequential execution: the overall computation takes m + n time units

If we have two CPUs, this seems rather a waste of time. What we would like to do instead
is to execute do task1 on the object attached to entity t1 by one of the CPUs and do task2 on
the object attached to entity t2 by the other CPU, such that the overall computation takes only
max(m,n) time units, as shown in Figure 20.

In order to be able to associate computation with different execution units, we introduce
the abstract notion of a processor. An (abstract) processor can best be understood as a kind of
virtual CPU: an entity supporting sequential execution of instructions on one or several objects.
Each processor has a request queue which holds the instructions that it has to execute, and
works them off one by one.
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Figure 13: Parallel execution: the overall computation takes max(m,n) time units

In contrast to physical CPUs, the number of processors is not bounded. We imagine that
processors can be assigned to physical CPUs via multitasking, just as operating systems processes
are. In the following we will use the term processor only in this abstract sense, and use the term
CPU to denote a physical CPU.

The fundamental idea of abstract processors in SCOOP is their relationship to objects: each
object is assigned to exactly one processor, called the handler of the object. On the other hand,
a processor can handle multiple objects.

If a new object is created, the runtime system decides which handler it is assigned to or
whether a new processor is created for it, and this assignment remains fixed over the course
of the computation. The assignment is guided by an extension of the type system, as we will
see later. Assume for now that t1 is handled by a processor p, and t2 and t3 are handled by a
processor q. We can depict this with the diagram shown in Figure 14.

t1 

t3 

t2 

p q 

Figure 14: Processor regions: t1 is handled by processor p, and t2 and t3 are handled by a
processor q

We frequently use such diagrams as they give us an idea of the associations of processors and
objects. Each region tagged by a processor name contains the objects this processor is handling;
processor regions are separated by a dashed line.

A.2.2 Synchronous and asynchronous feature calls

What does the handling of an object imply? It means that all operations on the given object
are executed by its handling processor; there is no sharing of objects between processors. For
example, assume that the following feature calls

t1.do task1
t2.do task2
t3.f
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are encountered by the current processor q, and that the processor association are as in Figure 14.
Then q doesn’t execute the call t1.do task1 by itself, but asks p to do it by appending the call to
p’s request queue. The benefit is that processor q doesn’t have to wait for the call t1.do task1 to
complete: in contrast to the sequential case, q can just continue with other calls, e.g. t2.do task2,
which it is handling by itself. Hence the two tasks can be executed concurrently. Lastly, the call
t3.f is handled once again by processor q, therefore it is only started after the task t2.do task2
has been completed.

A feature call on an object which is handled by a different processor than the current one is
called an asynchronous feature call or a separate call (e.g., do task1). In this case the current
processor can proceed after issuing the call to the other processor, and doesn’t have to wait for
the call to return. In contrast, a feature call on an object handled by the current processor is
called a synchronous feature call or a non-separate call (e.g. do task2). This is the situation
well-known from ordinary sequential programming, and the current processor has to wait for
the call to return before continuing.

A.2.3 Separate entities

We have left open the question of how the runtime system determines whether a particular
object is handled by one processor or another. The answer is that the type system is extended
to guide the runtime system in this decision, thus giving the programmer control over whether
a call is executed synchronously or asynchronously.

To this end, a new keyword is introduced in the language SCOOP: separate. Along with
the usual

x : X

to denote an entity x that can be attached to objects of type X, we can now also write

x : separate X

to express that at runtime, x may be attached to objects handled by a different processor. We
then say that x is of type separate X, or that it is a separate entity.

The value of a separate entity is called a separate reference, and an object attached to it is
called a separate object. To emphasize that a certain reference or object is not separate, we use
the term non-separate. We also extend our diagrams to include references to objects by drawing
arrows to the referenced object. If an arrow crosses the border of a processor’s domain, it is a
separate reference. The diagram in Figure 15 shows two objects x and y which are handled by
different processors, where x contains a separate reference to y.

A.2.4 Wait-by-necessity

We generalize the example of Section A.2.1 by defining the following class WORKER:

class WORKER
feature

output: INTEGER
do task (input: INTEGER) do ... end

end

The idea is that a worker can run do task (input) and will store the result in the feature output.
Let’s assume that two workers are defined in the class MANAGER as follows:
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Figure 15: Separate reference: y references an object on a different processor

class MANAGER
feature

worker1 : separate WORKER
worker2 : WORKER

−− in some routine:
do

. . .
worker1.do task (input1)
worker2.do task (input2)
result := worker1.output + worker2.output

end
end

We have learned before that separate calls are spawned off asynchronously, so the current pro-
cessor doesn’t have to wait for them to return. The call worker1.do task (input1) is there-
fore executed on a different processor; the second call worker2.do task (input2) is synchronous
and is executed on the same processor the manager object is running on. Note that the call
worker1.do task (input1) is a command and thus just transforms the target object worker1,
without returning a result. But what about the call worker1.output? This is a query and thus
returns a result. As we are interested in the result, we clearly have to wait for the call to return;
furthermore, we would also like to wait until previous computations on the object are finished
before retrieving the information.

This waiting happens automatically in SCOOP, and the corresponding synchronization prin-
ciple is called wait-by-necessity :

“If a client has started one or more calls on a certain separate object, and it executes
on that object a call to a query, that call will only proceed after all the earlier ones
have been completed, and any further client operations will wait for the query to
terminate.”

This rule ensures that after completion of the call worker2.do task (input2), the processor will
also wait for the asynchronous completion of call worker1.do task (input1) before combining the
results. This mechanism is completely automatic, so you as a programmer don’t have to worry
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about this. However, when trying to optimize programs, it is important to know that queries
on an object will act as a barrier, i.e. a program point where execution waits for all previously
spawned calls on that object before proceeding.

Exercise A.4 How does the execution of an asynchronous feature call differ from a synchronous
one? How are asynchronous feature calls expressed in SCOOP?

Exercise A.5 Consider that the following SCOOP program fragment is executed on a proces-
sor p:

worker1.do task1
worker2.do task2
manager.evaluate
worker3.do task3
result := worker2.value + worker3.value
manager.finish

The object-processor associations are given as follows: worker1 and worker2 are handled by
processor q, manager by processor p, and worker3 by processor r. The call worker1.do task1 takes
20 time units until it returns, worker2.do task2 30 time units, manager.evaluate 40 time units,
worker3.do task3 20 time units, manager.finish 20 time units; the queries return immediately.
What is the minimum time for execution of this program? Draw a sequence diagram to justify
your answer.

Exercise A.6 Consider classes A and B

class A
feature

b: separate B
c: C

set b (b1: separate B) do b := b1 end
set c (c1: C) do c := c1 end

end

class B
feature

a: separate A

set a (a1: separate A) do a := a1 end

end

and assume that the following program fragment is executed

a.set b (b)
a.set c (c)
b.set a (a)

where a and c are handled by processor p, and b is handled by processor q. Draw a diagram
showing the association of objects with processor regions and any separate or non-separate
references.

Exercise A.7 Under what conditions does wait-by-necessity become applicable?

A.3 Mutual exclusion

Up until now, concurrency seems easy enough to handle. If we want a feature to be evaluated
concurrently, we have to declare its corresponding target separate. At runtime, this gives rise
to an asynchronous feature call, and we are done. However, what happens if different calls

30



interfere with each other, for example access and modify the same objects? We will see that this
might change the results of computations in unexpected ways, and we thus have to avoid these
situations by using a special type of synchronization called mutual exclusion. Luckily, SCOOP
has a simple mechanism for ensuring mutual exclusion.

A.3.1 Race conditions

Consider the following class COUNTER which only has a single attribute value, and features to
set and increment value.

class COUNTER
feature

value : INTEGER

set value (a value: INTEGER)
do

value := a value
end

increment
do

value := value + 1
end

end

Now assume that an entity x of type separate COUNTER is created and consider the following
code:

x.set value (0)
x.increment
i := x.value

What is the value of i at the end of this execution? Clearly, if this code was part of a sequential
program, the value would be 1. In a concurrent setting where we have two or more processors,
the value of x can be read/modified by all processors though that handle objects owning a
separate reference to x. For example consider the following call executed concurrently by another
processor (different from the processor executing the above code):

x.set value (2)

What is the value of i now?
The answer is that, if these are the only feature calls running concurrently and x is attached

to the same object in both cases, i could have any of the values 1, 2, or 3. The reason for this
is easily explained. Assume that processor p is handling the object associated with x. This
processor will receive feature calls for evaluation from concurrently executed code parts, and
will interleave them. The following interleavings could be taken:

x.set value (2)
x.set value (0)
x.increment
i := x.value

x.set value (0)
x.set value (2)

x.increment
i := x.value

x.set value (0)
x.increment

x.set value (2)
i := x.value

x.set value (0)
x.increment
i := x.value

x.set value (2)

i = 1 and x.value = 1 i = 3 and x.value = 3 i = 2 and x.value = 2 i = 1 and x.value = 2
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This is not really what we intended. The result of our computation has become arbitrary, and
depends on the scheduling that determines a particular interleaving. Remember that we have
no control over the scheduling.

The situation that the result of a concurrent execution is dependent on the nondeterministic
scheduling is called a race condition or a data race. Data races are one of the most prominent
problems in the domain of concurrent programming, and you can imagine that it gives rise to
errors which can be quite hard to detect. For example, when you are running a program such
as the above, say, 100 times, it might be that, because of a specific timing of events, you always
obtain the values i = 1 and x.value = 1. But when you run the program for the 101st time, one
of the other results arises. This means that such errors can stay hidden for a long time, and
might never be detected during testing.

The question is now how to avoid data races. SCOOP has a specific mechanism for this that
eliminates these types of errors at compile-time (before you even run the program!), which will
be explained in the next section.

A.3.2 The separate argument rule

To avoid data races we have to synchronize different computations such that they don’t interfere
with each other. Let’s think about the main reason for the problem to occur. In the above
example, two computations shared a resource, namely the object attached to x. A part of a
program that accesses a shared resource is called a critical section. The problem would not have
occurred if, at any time, at most one computation would be in its critical section. The form of
synchronization ensuring this property is called mutual exclusion.

SCOOP has a simple way to ensure mutual exclusion: its runtime system automatically locks
the processors which handle separate objects passed as arguments of a routine. If a processor is
locked, no other computation can use it to evaluate a feature call; the processor becomes private
to whoever locked it. Let’s make an example to see how that helps us.

Recall the above example, but let’s extend it to see the routine the code has been taken
from:

compute (x: separate COUNTER)
do

x.set value (0)
x.increment
i := x.value

end

Consider now the call compute (x) and assume that x is handled by processor p. As explained
above, since x is a separate argument to the routine, the processor p must be locked. The current
processor, which is about to execute the compute feature, waits until the underlying runtime
system locks processor p. As soon as p is locked, the body of the routine can be executed without
interference (multiple locks on a processor are not possible), and hence upon completion of the
routine we always obtain the result i = 1 and x.value = 1.

This is so important that SCOOP forces us to make separate entities which we want to
access an argument of the enclosing routine. This is formulated as the separate argument rule:

“The target of a separate call must be a formal argument of the routine that contains
the separate call.”

In other words, all calls on separate objects must be wrapped in a procedure that makes it
possible to pass the target as argument. Hence only one of the following two examples is
correct:
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x : separate X
compute

do
x.f

end

x : separate X
compute (x1: separate X)

do
x1.f

end

Incorrect : Target x is declared separate,
but not an argument of the enclosing rou-
tine compute.

Correct : Target x1 is separate and there-
fore has to be an argument of the enclosing
routine. In order to execute x.f, we use the
call compute (x).

Note that if an argument of a separate type is passed, the corresponding formal argument
must also be of separate type. Thus, in the example above on the right hand side, x1 must be
declared of type separate X, since x, which we want to pass as an argument is also of type
separate X. This type system restriction avoids that entities declared as non-separate can
become attached to separate objects, which would compromise the correctness of the SCOOP
model.

An analogous requirement holds also for assignments. For example, if x1 := x and x is of
type separate X (or might just be attached to an object on a separate processor), then x1 must
be of type separate X too. This can be remembered by “nonsep := sep” being disallowed, and
is also summarized in the following typing rule:

“If the source of an attachment (assignment or argument passing) is separate, its
target must be separate too.”

Note that an assignment the other way around ( “sep := nonsep”, i.e. non-separate source,
separate target) is however admissible.

Exercise A.8 Explain the terms data race and mutual exclusion. How does SCOOP ensure
mutual exclusion?

Exercise A.9 Consider the following class MOTORBIKE that models a motorbike with engine,
wheels, and status display. The class doesn’t compile properly. Find all errors and fix them,
assuming that the type declarations of all attributes are correct and that the omitted classes
ENGINE, DISPLAY, WHEEL have the features mentioned.

class MOTORBIKE
create

make
feature

engine: separate ENGINE
display: DISPLAY
front wheel: separate WHEEL
back wheel: separate WHEEL

make
do

create engine; create display
create front wheel; create back wheel

end
initialize
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do
engine.initialize
initialize wheels
display.show (”Ready”)

end

initialize wheels
do

display.show (”Initializing wheels ...”)
front wheel.initialize
back wheel.initialize

end

switch wheels
local

wheel: WHEEL
do

wheel := front wheel
front wheel := back wheel
back wheel := wheel

end
end

A.4 Condition synchronization

Protecting access to shared variables is not the only reason why a process has to synchronize
with other processes. For example, assume that a process continuously takes data items out of
a buffer to process them. Hence, the process should only access the buffer if it holds at least one
element; if it finds the buffer empty, it therefore needs to wait until another process puts a data
item in. Delaying a process until a certain condition holds (as in this case, until the “buffer is
not empty”) is called condition synchronization. As you will see, SCOOP has an elegant way
of expressing condition synchronization by reinterpreting the preconditions of a routine as wait
conditions.

As an example of a problem that requires processes to use condition synchronization, we
describe the so-called producer-consumer problem, which corresponds to issues found in many
variations on concrete systems. Devices and programs such as keyboards, word processors and
the like can be seen as producers: they produce data items such as characters or files to print.
On the other hand the operating system and printers are the consumers of these data items. It
has to be ensured that these different entities can communicate with each other appropriately
so that for example no data items get lost.

On a more abstract level, we can describe the problem as follows. We consider two types of
processes, both of which execute in an infinite loop:

• Producer : At each loop iteration, produces a data item for consumption by a consumer.

• Consumer : At each loop iteration, consumes a data item produced by a producer.

Producers and consumers communicate via a shared buffer implementing a queue; we assume
that the buffer is unbounded, thus we only have to take care not to take out an item from an
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empty buffer, but are always able to insert new items. Instead of giving the full implementation
we just assume to have a generic class BUFFER[T] to implement an unbounded queue:

buffer: separate BUFFER[INTEGER]

Producers append data items to the back of the queue using a routine put(item: INTEGER),
and consumers remove data items from the front using get: INTEGER; the number of items
in a queue is determined by the feature count: INTEGER.

As part of the consumer behavior, we might for example want to implement the following
routine for consuming data items from the buffer:

consume (a buffer: separate BUFFER[INTEGER])
require

not (a buffer.count == 0)
local

value: INTEGER
do

value := a buffer.get
end

Note that we have used a precondition to ensure that if we attempt to get a value from the
buffer, it is not currently empty. However, what should happen if the buffer is indeed found
empty? In a sequential setting, we would just throw an exception. However, this is not justified
in the presence of concurrency: eventually a producer will put a value into the buffer again,
allowing the consumer to proceed; the consumer will just have to wait a while. To implement
this behavior, the runtime system first ensures that the lock on a buffer’s processor is released
(which was locked to allow the precondition to be evaluated); this allows values to be put in the
buffer. The call is then reevaluated at a later point.

This means that the semantics of preconditions is reinterpreted: they are now treated as
wait conditions, meaning that the execution of the body of the routine is delayed until they are
satisfied. We can summarize this behavior in the wait rule:

“A routine call with separate arguments will execute when all corresponding proces-
sors are available and the precondition is satisfied. The processors are held exclu-
sively for the duration of the routine.”

We complete the producer-consumer example by showing the code of the producer’s main rou-
tine:

produce (a buffer: separate BUFFER[INTEGER])
local

value: INTEGER
do

value := random.produceValue
a buffer.put (value)

end

Since the buffer is unbounded, a wait condition is not necessary. It is however easily added
and then makes the solution completely symmetric.

Exercise A.10 What is the difference between the require clause in SCOOP and in Eiffel?

Exercise A.11 Imagine a SCOOP routine has a precondition such as n > 0, that doesn’t in-
volve any separate targets. What do you think should happen in this case?
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Exercise A.12 You are to implement a controller for a device which can be accessed with the
following interface:

class DEVICE
feature

startup do ... end
shutdown do ... end

end

There are also two sensors, one for heat and one for pressure, which can be used to monitor the
device.

class SENSOR
feature

value: INTEGER
device: DEVICE

end

Write a class CONTROLLER in SCOOP that can poll the sensors concurrently to running the
device. You should implement two routines: run starts the device and then monitors it with
help of a routine emergency shutdown, which shuts the device down if the heat sensor exceeds
the value 70 or the pressure sensor the value 100.

Exercise A.13 Name and explain three forms of synchronization used in SCOOP.

Exercise A.14 Write down three possible outputs for the SCOOP program shown below:

class APPLICATION
create make
feature
x: separate X
y: separate Y
z: Z

make
do
create x; create y; create z
print (”C”)
run1 (x)
z.h
run2 (y)

end

class X
feature
n: INTEGER

f
do
n := 1
print (”K”)

end
end

class Y
feature
g (x: separate X)
require
x.n = 1

do
print (”Q”)

end
end

run1 (xx: separate X)
do
print (”A”)
xx.f

end

run2 (yy: separate Y)
do

yy.g (x)
print (”L”)
yy.g (x)

end
end

class Z
feature
h
do
print (”P”)

end
end
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A.5 Deadlock

While we have seen that locking is necessary for the proper synchronization of processes, it also
introduces a new class of errors in concurrent programs: deadlocks. A deadlock is the situation
where a group of processors blocks forever because each of the processors is waiting for resources
which are held by another processor in the group. In SCOOP, the resources are the locks of the
processors. As prescribed by the wait rule, a lock on processor p is requested when executing a
call to a routine with a separate argument handled by p; the lock is held for the duration of the
routine.

As a minimal example, consider the following class:

class C
creation

make

feature
a : separate A
b : separate A

make (x : separate A, y : separate A)
do

a := x
b := y

end

f do g (a) end
g (x : separate A) do h (b) end
h (y : separate A) do ... end

end

Now imagine that the following code is executed, where c1 and c2 are of type separate C, a
and b are of type separate A, and a is handled by processor p, and b by processor q:

create c1.make (a, b)
create c2.make (b, a)
c1.f
c2.f

Since the arguments are switched in the initialization of c1 and c2, a sequence of calls is possible
that lets their handlers first acquire the locks to p and q respectively, such that they end up in
a situation where each of them requires a lock held by the other handler.

Deadlocks are currently not automatically detected by SCOOP, and it is the programmers
responsibility to make sure that programs are deadlock-free. An implementation of a scheme for
preventing deadlocks is however underway, and is based on locking orders that prevent cyclical
locking.

Exercise A.15 Explain in detail how a deadlock can happen in the above example by describing
a problematic sequence of calls and locks taken.
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Answers to the exercises

Answer A.1 If all processes in a group are running at the same time, their execution is said to
be parallel. If all processes of a group have started to execute but only one process is running
at a time, their execution is said to be interleaved. We say that the execution of a group of
processes is concurrent if it is either parallel or interleaved. 2

Answer A.2 A context switch is the exchange of one process’s context (its program counter and
CPU registers) with another process’s context on a CPU. A context switch enables the sharing
of a CPU by multiple processes. 2

Answer A.3 A process can be in one of three states: running, ready, and blocked. If a process is
running, its instructions are currently executed on a processor; if a process is ready, it is waiting
for the scheduler to be assigned to a CPU; if a process is blocked, it is currently waiting for an
external event which will set its state to ready. 2

Answer A.4 An asynchronous feature call is executed on a different processor than the current
one. This means it runs concurrently with other computations that are subsequently executed
on the current processor. Ordinary sequential feature calls which are executed on the current
processor are called synchronous. In SCOOP, a feature call t.f where t is separate (of some type
separate X) will be executed asynchronously; if t’s type is non-separate, it will be executed
synchronously. 2

Answer A.5 The computation takes at least 80 time units, as can be seen from the following
sequence diagram.

p q 

evaluate 
finish 

40 

20 80 

r 

do_
task1 

do_
task2 

do_
task3 

20 

20 

30 

2

Answer A.6 The following diagram depicts the object-processor associations and the references
after execution of the program fragment.
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2

Answer A.7 A statement will be executed with wait-by-necessity semantics if it contains a
query on a separate target. 2

Answer A.8 A data race is the situation where the result of a concurrent computation depends
on scheduling. Mutual exclusion is a form of synchronization to avoid the simultaneous use of
a shared resource (such as a shared object) by multiple processes.

In SCOOP, an object can only be accessed by its handler, and this handler must be locked
before it can be used to execute calls on the object. Mutual exclusion follows from the fact that
only one processor can have a lock on another processor at any time. A lock on the handler of
some object is taken by passing this object as an argument to the routine it is used in. SCOOP
enforces this argument passing by the separate argument rule. 2

Answer A.9 The class contains numerous violations of the separate argument rule. These
violations are reported and fixed in the following code:

class MOTORBIKE
feature

engine: separate ENGINE
front wheel: separate WHEEL
back wheel: separate WHEEL
display: DISPLAY

initialize (e: separate ENGINE) −− Added separate argument
do

e.initialize −− Fixed: engine.initialize was incorrect as ’engine’ is a
separate target, but not argument of the routine ’initialize’

initialize wheels(front wheel, back wheel)
display.show (”Ready”) −− This is correct: display is non−separate

end

initialize wheels (f, b: separate WHEEL) −− Added separate arguments
do

display.show (”Initializing wheels ...”)
f.initialize −− Fixed
b.initialize −− Fixed

end
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switch wheels
local

wheel: separate WHEEL −− Fixed: changed type from WHEEL to
separate WHEEL...

do
wheel := front wheel −− ...otherwise this would violate the typing rule: a

separate source is assigned to a non−separate target
front wheel := back wheel
back wheel := wheel

end
end

Answer A.10 In ordinary Eiffel, a precondition that evaluates to false gives rise to an exception.
In SCOOP no exception is thrown and instead the call is scheduled for reevaluation at a later
point. 2

Answer A.11 A precondition that doesn’t involve any separate targets will always evaluate to
the same value, as the objects involved cannot be changed concurrently. If such a precondition
evaluates to false, an exception is therefore thrown, just as in the sequential case. 2

Answer A.12 The controller can be implemented in the following manner:

class CONTROLLER
create

make

feature
device: DEVICE
heat: separate SENSOR
pressure: separate SENSOR

make (d: DEVICE; h, p: separate SENSOR)
do

device := d
heat := h
pressure := p

end

run (d: DEVICE)
do

d.startup
emergency shutdown (d, heat, pressure)

end

emergency shutdown (d: DEVICE; h, p: separate SENSOR)
require

h.value > 70 or p.value > 100
do

40



d.shutdown
end

end

Note that the wait conditions on emergency shutdown ensure that the shutdown is initiated only
if the sensors exceed their threshold values. Observe that the separate argument rule is correctly
abided by. 2

Answer A.13 There are three major forms of synchronization provided in SCOOP: mutual
exclusion, condition synchronization, and wait-by-necessity. Mutual exclusion for object access
is ensured by the separate argument rule. Condition synchronization (waiting until a certain
condition is true) is provided via the reinterpretation of preconditions as wait conditions. Wait-
by-necessity is provided for queries on separate targets and ensures that an object is only queried
after all previous calls have been finished and causes the caller to wait for this. 2

Answer A.14 Three possible output sequences are:

• CAKPLQQ

• CAPKQLQ

• CAKPQLQ

In routine make “C” is always printed at the beginning. Then there are three non-separate calls,
which will be worked off one after the other. In run1, “A” is always printed first, but then the
call xx.f is separate, i.e. will execute asynchronously. Hence, “K” might be printed after “A”,
but also after “P” has been printed as a result of the call z.h. The call yy.g (x) proceeds only if
x.n = 1 is true, i.e. after “K” has been printed. Since both calls to yy.g (x) are asynchronous,
but print(”L”) is synchronous “L” may be printed before or after the first “Q”, but must be
printe before the second “Q”. 2

Answer A.15 The following sequence of calls can happen. First c1.f is executed, leading to
the call g (a). Since a is a separate argument of routine g, its handler p gets locked. Then c2.f
is executed, leading to the call g (b), since the roles of a and b are switched in c1 and c2; this
means that q is locked. On processor p, the call h (b) is issued, thus requesting a lock on q; on
processor q, the call h (a) is issued, thus requesting a lock on p: a deadlock has occurred as none
of the processors can proceed any further. 2
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B SCOOP: Test

B.1 Background information

In this part of the test, we would like to collect some information concerning your prior experi-
ence with concurrent programming.

What level of studies are you currently completing?
� Bachelor in Computer Science
� Master in Computer Science
� PhD in Computer Science
� Other:

Which semester are you currently completing?

B.1.1 Prior experience with concurrency

Have you ever taken or are you currently taking a course other than Software Architecture that
covers concurrent programming?
� Yes
� No
� No, but I studied it on my own (e.g. through online tutorials, books, ...)

If yes, what course was/is it and when did you take it? (Please provide details below.)

� Parallel programming @ ETH Zurich by T. Gross in Spring
� Concepts of concurrent computation @ ETH Zurich by B. Meyer in Spring
� Other courses:

How much of the self-study material on concurrency that you worked with today did you already
know before?

� � � � � � � � � � �
none 10% 20% 30% 40% 50% 60% 70% 80% 90% all
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B.1.2 Programming experience (sequential and concurrent)

(1: a novice . . .
5: an expert)

Concerning your general programming experience, do you
consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with concurrent programming, do
you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with the programming language Eif-
fel, do you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with the programming language Java,
do you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with Java Threads, do you consider
yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with SCOOP, do you consider your-
self. . .

1 2 3 4 5
� � � � �

B.1.3 Self-study material

Where did you work through the self-study material?
� In the morning lecture � In the exercise class � At home

(1: strongly disagree . . .
5: strongly agree)

The self-study material was easy to follow. 1 2 3 4 5
� � � � �

The self-study material provided enough examples to help me
understand the subject.

1 2 3 4 5
� � � � �

The self-study material provided enough exercises to help me
understand the subject.

1 2 3 4 5
� � � � �

I was able to complete the tutorial within 90 minutes. 1 2 3 4 5
� � � � �

The self-study material is a good alternative to the traditional
lectures.

1 2 3 4 5
� � � � �

I feel confident that I will be able to solve the tasks in this test. 1 2 3 4 5
� � � � �

Any comments on the self-study material:
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B.2 Sequential comprehension

Write down the output of the sequential Eiffel program shown below.

Solution: AFSTML

class APPLICATION
create

make

feature
a: A
b: B
c: C

make
do

create a; create b;
create c;
print (”A”)
run (a, b)
print (”L”)

end

class A

feature

done a: BOOLEAN

m (cc: C)
do

cc.f
done a := true

end

end

class B

feature

done b: BOOLEAN

n(cc: C)
do

cc.g
done b := true
print (”T”)

end

end

run (aa: A; bb: B)
do

aa.m(c)
bb.n(c)

if (aa.done a and bb.
done b)

then
print (”M”)

end
end

end

class C

feature

done c: BOOLEAN

f
do

print(”F”)
done c := false

end

g
do

print(”S”)
done c := true

end

end
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B.3 General concurrency concepts

What is multiprocessing?

� Execution of multiple processes, within a single computer sharing a single processing unit.
� Execution of a single process on a single computer.
� Execution of a single process within multiple computers.
� Execution of multiple processes within a single computer sharing two or more processing units.

Solution: d

Which of the following state transitions is not possible in the status of a process?

� running → ready
� ready → blocked
� blocked → ready
� running → blocked

Solution: b

In the space below explain the terms data race and mutual exclusion.

Solution: See self-study material.

What is a deadlock?

Solution: See self-study material.
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B.4 Program comprehension

Write down three possible (non-deadlock) outputs for the SCOOP program shown below:

Solution: Some possible output sequences include: APTSFFTSML, ATSFPFTSML, ATSPFTSFML,
APTTSSFFML, ATPTSFSFML, APTTSFFSML.

class APPLICATION
create

make

feature
a: separate A
b: separate B
c: separate C
d: D

make
do

create a; create b;
create c; create d;
print (”A”)
run (a, b)
print (”L”)

end

class A
feature

done a: BOOLEAN

m (cc: separate C)
require

cc.done c
do

cc.f
done a := true

end
end

class B
feature

done b: BOOLEAN

n(cc: separate C)
require

not cc.done c
do

print (”T”)
cc.g
done b := true

end
end

run (aa: separate A;
bb: separate B)

do
aa.m (c)
bb.n (c)
aa.m (c)
bb.n (c)
d.foo

if (aa.done a and
bb.done b)

then
print (”M”)

end
end

end

class C
feature

done c: BOOLEAN

f
do

print(”F”)
done c := false

end

g
do

print(”S”)
done c := true

end
end

class D
feature

foo
do

print(”P”)
end

end
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B.5 Program debugging

Identify errors (possibly compile-time) in the following SCOOP code segment. Justify your
answers by providing on the next page the line number and a short explanation for every
detected error. (The number of provided spaces does not necessarily correspond to the actual
number of errors.)

1 class A create make
2 feature
3 b: separate B
4 c: C
5
6 make
7 local
8 b1: B;
9 do

10 create b; create c;
11 b1 := g
12 end
13
14 f(b1: separate B): B
15 local
16 b2: B
17 c1: separate C
18 do
19 b2 := b
20 c1 := c
21 b.f
22 c.g
23 Result := b1.h
24 end
25
26 g: separate B
27 local
28 b1: B
29 do
30 h (b)
31 create b1
32 Result := b1
33 end
34
35 h(b1: B)
36 local
37 b2: separate B
38 c1: C
39 i: INTEGER
40 do
41 create b2
42 i := c.r
43 c1 := b2.h.r
44 end
45 end

46 class B
47
48 feature
49
50 r: C
51
52 h: B
53
54 f
55 do
56 create h
57 create r
58 end
59 end

60 class C
61
62 feature
63
64 r: INTEGER
65
66 g
67 do
68 r := 10
69 end
70 end
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Solution: Some of the errors that could be mentioned include:

• Line 11: assignment of b1 := g is not correct as g returns a separate object.

• Line 19: assignment of b2 := b is not correct as b is separate.

• Line 21: b.f : routine needs to be wrapped. Violates the Separate Call rule: The target of
a separate call must be a formal argument of the routine in which the call appears.

• Line 23 or Line 14: since b1 is separate, also b1.h is separate with respect to the current
object. However the result type is non-separate, which violates the typing rules.

• Line 30 or Line 35: h(b) passes a separate entity as the actual parameter.

• Line 43: the right hand side of the assignment returns a separate entity, but c1 is non-
separate.
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B.6 Program correctness

Consider a class Data with two integer fields x and y, both of which are initialized to 0. Two
classes C0 and C1 share an object data of type Data. Class C0 implements the following behavior,
which is repeated continuously: if both values data.x and data.y are set to 1, it sets both values
to 0; otherwise it waits until both values are 1. Conversely, class C1 implements the following
behavior, which is also repeated continuously: if both values data.x and data.y are set to 0, it
sets both values to 1; otherwise it waits until both values are 0. The following condition must
always hold when data is accessed:

(data.x = 0 ∧ data.y = 0) ∨ (data.x = 1 ∧ data.y = 1)

Write a concurrent program using SCOOP that implements the described functionality. Be-
sides the mentioned classes Data, C0, and C1, your program needs to have a root class which
ensures that the behaviors of C0 and C1 are executed on different processors.

Solution:

1 class
APPLICATION

create
5 make

feature
data: DATA
c0: separate C0

10 c1: separate C1

make
do

create data
15 create c0.make (data)

create c1.make (data)

run (c0, c1)
end

20

run (cc0: separate C0; cc1: separate C1)
do

cc0.run
cc1.run

25 end

end

class DATA
30

feature
x, y: INTEGER
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set x (v: INTEGER)
35 do

x := v
end

set y (v: INTEGER)
40 do

y := v
end

end
45

class C0

create
make

50

feature
data: separate DATA

make (d: separate DATA)
55 do

data := d
end

run
60 do

from until False
loop

set 0 (data)
end

65 end

set 0 (d: separate DATA)
require

d.x = 1 and d.y = 1
70 do

d.set x (0)
d.set y (0)

end
end

75

class C1

create
make

80
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feature
data: separate DATA

make (d: separate DATA)
85 do

data := d
end

run
90 do

from until False
loop

set 1 (data)
end

95 end

set 1 (d: separate DATA)
require

d.x = 0 and d.y = 0
100 do

d.set x (1)
d.set y (1)

end
end
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B.7 Feedback on the test

How much time did you spend on this test?

20’ 30’ 40’ 50’ 60’ 70’ 80’ 90’ 100’ 110’ 120’
� � � � � � � � � � �

The difficulty level of the test was. . .
(1: too easy, 2: easy, 3: just right, 4: difficult, 5: too difficult)

1 2 3 4 5
� � � � �

I feel confident that I solved the tasks of this test correctly.
(1: strongly disagree . . . 5: strongly agree)

1 2 3 4 5
� � � � �

Did you leave any questions of the test empty and if so, why?

Any comments on the test:
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C Java Threads: Self-study material

Almost all computer systems on the market today have more than one CPU, typically in the
form of a multi-core processor. The benefits of such systems are evident: the CPUs can share the
workload amongst themselves by working on different instructions in parallel, making the overall
system faster. This work sharing is unproblematic if the concurrently executing instructions are
completely independent of each other. However, sometimes they need to access the same region
of memory or other computing resources, which can lead to so-called race conditions where the
result of a computation depends on the order of nondeterministic system events. Therefore
concurrent processes have to be properly synchronized, i.e. programmed to wait for each other
whenever necessary, and this calls for specialized programming techniques.

Today, you will learn about the background and techniques of concurrent programming.
In particular, you will get to know the thread library approach to concurrent programming
using the example of the Java Threads API. You might be familiar with Java Threads through
other courses or previous self-study, in which case you should use this material to review your
knowledge. At the end of this lesson, you will be able to

• explain the basics of concurrent execution of processes in modern operating systems, in
particular multiprocessing and multitasking,

• understand some of the most important problems related to concurrent programming, in
particular race conditions and deadlocks,

• distinguish between different types of process synchronization, in particular mutual exclu-
sion and condition synchronization,

• understand how these types of synchronization are realized in Java Threads,

• program simple concurrent programs using Java Threads.

The lesson consists entirely of self-study material, which you should work through in the
usual two lecture hours. You should have a study partner with whom you can discuss what you
have learned. A the end of each study section there will be exercises that help you test your
knowledge; solutions to the exercises can be found on the last pages of the document.

C.1 Concurrent execution

This section introduces the notion of concurrency in the context of operating systems. This is
also where the idea of concurrent computation has become relevant first, and as we all have to
deal with operating systems on a daily basis, it also provides a good intuition for the problem.
You may know some of this content already from an operating systems class, in which case
you should see this as a review and check that you are familiar again with all the relevant
terminology.

C.1.1 Multiprocessing and multitasking

Up until a few years ago, building computers with multiple CPUs (Central Processing Units)
was almost exclusively done for high-end systems or supercomputers. Nowadays, most end-user
computers have more than one CPU in the form of a multi-core processor (for simplicity, we use
the term CPU also to denote a processor core). In Figure 16 you see a system with two CPUs,
each of which handles one process.
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Process 1 CPU 1 

Process 2 CPU 2 
Instructions 

Figure 16: Multiprocessing: instructions are executed in parallel

The situation where more than one CPU is used in a single system is known as multipro-
cessing. The processes are said to execute in parallel as they are running at the same time.

However, also if you have a computer with a single CPU, you may still have the impression
that programs run “in parallel”. This is because the operating system implements multitasking,
i.e. makes a single CPU appear to work at different tasks at once by switching quickly between
them. In this case we say that the execution of processes is interleaved as only one process is
running at a time. This situation is depicted in Figure 17. Of course, multitasking is also done
on multiprocessing systems, where it makes sense as soon as the number of processes is larger
than the number of available CPUs.

Process 1 

CPU 

Process 2 

Instructions 

Figure 17: Multitasking: instructions are interleaved

Both multiprocessing and multitasking are examples of concurrent execution. In general,
we say that the execution of processes is concurrent if they execute either truly in parallel or
interleaved. To be able to reason about concurrent executions, one often takes the assumption
that any parallel execution on real systems can be represented as an interleaved execution at
a fine enough level of granularity, e.g. at the machine level. It will thus be helpful for you to
picture any concurrent execution as the set of all its potential interleavings. In doing so, you
will be able to detect any inconsistencies between different executions. We will come back to
this point in Section C.3.1.

In the following section we will see how operating systems handle multitasking, and thus
make things a bit more concrete.

C.1.2 Operating system processes

Let’s have a closer look at processes, a term which we have used informally before. You will
probably be aware of the following terminology: a (sequential) program is merely a set of
instructions; a process is an instance of a program that is being executed. The exact structure
of a process may change from one operating system to the other; for our discussion it suffices to
assume the following components:
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CPU Registers 

P1 
Context 

P2 
Context 

Figure 18: Context switch: process P1 is removed from the CPU and P2 is assigned to it

• Process identifier : the unique ID of a process.

• Process state: the current activity of a process.

• Process context : the program counter and the values of the CPU registers.

• Memory : program text, global data, stack, and heap.

As discussed in Section C.1.1, multiple processes can execute at the same time in modern
operating systems. If the number of processes is greater than the number of available CPUs,
processes need to be scheduled for execution on the CPUs. The operating system uses a special
program called the scheduler that controls which processes are running on a CPU and which
are ready, i.e. waiting until a CPU can be assigned to them. In general, a process can be in one
of the following three states while it is in memory:

• running : the process’s instructions are executed on a processor.

• ready : the process is ready to be executed, but is not currently assigned to a processor.

• blocked : the process is currently waiting for an event.

The swapping of process executions on a CPU by the scheduler is called a context switch.
Assume a process P1 is in the state running and should be swapped with a process P2 which is
currently ready, and consider Figure 18. The scheduler sets the state of P1 to ready and saves
its context in memory. By doing so, the scheduler will be able to wake up the process at a later
time, such that it can continue executing at the exact same point it had stopped. The scheduler
can then use the context of P2 to set the CPU registers to the correct values for P2 to resume its
execution. Finally, the scheduler sets P2’s process state to running, thus completing the context
switch.

From the state running a process can also get into the state blocked; this means that it is
currently not ready to execute but waiting for some system event, e.g. for the completion of
some prerequisite task by another process. When a process is blocked it cannot be selected by
the scheduler for execution on a CPU. This can only happen after the required event triggers
the state of the blocked process to be set to ready again.

Exercise C.1 Explain the difference between parallel execution, interleaved execution, and
concurrent execution.

Exercise C.2 What is a context switch? Why is it needed?

Exercise C.3 Explain the different states a process can be in at any particular time.
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C.2 Threads

Concurrency seems to be a great idea for running different sequential programs at the same time:
using multitasking, all programs appear to run in parallel even on a system with a single CPU,
making it more convenient for the user to switch between programs and have long-running tasks
complete “in the background”; in the case of a multiprocessing system, the computing power of
the additional CPUs speeds up the system overall.

Given these conveniences, it also seems to be a good idea to use concurrency not only for
executing different sequential programs, but also within a single program. For example, if a
program implements a certain time-intensive algorithm, we would hope that the program runs
faster on a multiprocessing system if we can somehow parallelize it internally. A program which
gives rise to multiple concurrent executions at runtime is called a concurrent program.

C.2.1 The notion of a thread

Imagine the following method compute which implements a computation composed of two tasks:

void compute() {
t1.doTask1();
t2.doTask2();

}

Assume further that it takes m time units to complete the call t1.doTask1() and n time units to
complete t2.doTask2(). If compute() is executed sequentially, we thus have to wait m time units
after the call t1.doTask1() before we can start on t2.doTask2(), and the overall computation will
take m + n time units, as shown in Figure 19.

CPU 1 CPU 2 

task 1 
task 2 

m 

n 

m + n 

Figure 19: Sequential execution: the overall computation takes m + n time units

If we have two CPUs, this seems rather a waste of time. What we would like to do instead
is to execute t1.doTask1() on one of the CPUs and t2.doTask2() on the other CPU, such that
the overall computation takes only max(m,n) time units, as shown in Figure 20.

CPU 1 CPU 2 

task 1 

task 2 m 
n 

max(m, n) 

Figure 20: Parallel execution: the overall computation takes max(m,n) time units
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In order to be able to associate computation with different execution units, we introduce
the notion of a thread. A thread can best be understood as a “lightweight process”. This
means that each thread has its own thread ID, program counter, CPU registers, and stack,
and can thus support independent execution of instructions. However, threads are contained
within processes, meaning that code and data memory sections and other resources belong to
the containing process and are shared by all its threads. A process that has more than one such
thread of control is called a multithreaded process. Threads can be assigned to physical CPUs
via multitasking, just as operating systems processes are.

C.2.2 Creating threads

A concurrent program gives rise to a multithreaded process at execution time, so the question
is how we can create multiple threads in a programming language. In most programming
languages, this is done via thread libraries, which provide the programmer with the API for
managing threads. In this lecture we will use the the Java Threads API, however the concepts
of libraries of other languages are quite similar.

Every Java program consists of at least one thread, which executes the main() method. In
addition there is the possibility to define user threads; one way to do so is to inherit from the
class Thread and to override its run() method. For example, the run() methods of the following
two classes provide the implementations of doTask1() and doTask2() from above.

class Worker1 extends Thread {
public void run() {

// implement doTask1() here
}

}
class Worker2 extends Thread {

public void run() {
// implement doTask2() here

}
}

To create threads from these classes, one first creates a Thread object and then invokes the
start() method on this object. This causes the run() method of the object to be executed in a
new thread. Continuing the example, the following implementation of the method compute()
creates two threads so that the two tasks from the example can be executed concurrently, and
might finish in max(m, n) time units.

void compute() {
Worker1 worker1 = new Thread1();
Worker2 worker2 = new Thread2();
worker1.start();
worker2.start();

}

C.2.3 Joining threads

Let’s assume that the classes Worker1 and Worker2 from above are extended with the following
method and attribute:

private int result;
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public void getResult() {
return result;

}
This allows the threads to save the final results of the computation in a variable, which can
later be read out. For example, we might imagine that the results of the two tasks need to be
combined in the compute() method:

return worker1.getResult() + worker2.getResult();

Clearly, we have to wait for both threads to be finished, before we can combine the results.
This is done using the join() method which, when invoked on a supplier thread, causes the caller
thread to wait until the supplier thread is terminated. For our example, this looks as follows:

int compute() {
worker1.start();
worker2.start();

worker1.join();
worker2.join();

return worker1.getResult() + worker2.getResult();
}

Hence the main thread will first wait for worker1 to finish, and then for worker2. Since we have
to wait for both threads to finish, the order of the join() calls is arbitrary.

Exercise C.4 Consider that the run() methods of threads t1-t4 contain the following code

t1: worker1.doTask1(); worker2.doTask2();
t2: manager.evaluate();
t3: worker3.doTask3();
t4: manager.finish();

and that the following program fragment is executed in the main() thread:

t1.start();
t2.start();
t2.join();
t3.start();
t1.join();
t3.join();
result := worker2.getValue() + worker3.getValue();
t4.start();

Assume that the call worker1.doTask1() takes 20 time units until it returns, worker2.doTask2()
30 time units, manager.evaluate() 40 time units, worker3.doTask3() 20 time units, manager.finish()
20 time units; the queries worker2.getValue() and worker3.getValue() return immediately. What
is the minimum time for execution of this program? Draw a sequence diagram to justify your
answer.

C.3 Mutual exclusion

Up until now, concurrency seems easy enough to handle. If we want to execute instructions
concurrently with the rest of the program, we put these instructions in the run() method of a
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new class inheriting from Thread, create a corresponding object and call the start() method on it.
At runtime, this gives rise to a new thread executing our instructions, and we are done. However,
what happens if different threads interfere with each other, for example access and modify the
same objects? We will see that this might change the results of computations in unexpected
ways, and we thus have to avoid these situations by using a special type of synchronization
called mutual exclusion. Luckily, Java has a simple mechanism for ensuring mutual exclusion.

C.3.1 Race conditions

Consider the following class Counter which only has a single attribute value, and features to set
and increment value.

class Counter {
private int value = 0;

public int getValue() {
return value;

}

public void setValue(int someValue) {
value = someValue;

}

public void increment() {
value++;

}
}

Now assume that an entity x of type Counter is created and consider the following code:

x.setValue(0);
x.increment();
int i = x.getValue();

What is the value of i at the end of this execution? Clearly, if this code was part of a sequential
program, the value would be 1. In a concurrent setting where we have two or more threads, the
value of x can be read/modified by all of them. For example consider the following call executed
concurrently by another thread:

x.setValue(2);

What is the value of i now?
The answer is that, if these are the only threads running concurrently and x references the

same object in both cases, i could have any of the values 1, 2, or 3. The reason for this is easily
explained by looking at the thread interleavings that could be taken:

x.setValue(2)
x.setValue(0)
x.increment()
int i = x.getValue()

x.setValue(0)
x.setValue(2)

x.increment()
int i = x.getValue()

x.setValue(0)
x.increment()

x.setValue(2)
int i = x.getValue()

x.setValue(0)
x.increment()
int i = x.getValue()

x.setValue(2)

i == 1, x.value == 1 i == 3, x.value == 3 i == 2, x.value == 2 i == 1, x.value == 2
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This is not really what we intended. The result of our computation has become arbitrary, and
depends on the scheduling that determines a particular interleaving. Remember that we have
no control over the scheduling.

The situation that the result of a concurrent execution is dependent on the nondeterministic
scheduling is called a race condition or a data race. Data races are one of the most prominent
problems in the domain of concurrent programming, and you can imagine that it gives rise to
errors which can be quite hard to detect. For example, when you are running a program such
as the above, say, 100 times, it might be that, because of a specific timing of events, you always
obtain the values i == 1 and x.value == 1. But when you run the program for the 101st time,
one of the other results arises. This means that such errors can stay hidden for a long time, and
might never be detected during testing.

The question is now how to avoid data races. Java has a specific mechanism for this, which
will be explained in the next section.

C.3.2 Synchronized methods

To avoid data races we have to synchronize different computations such that they don’t interfere
with each other. Let’s think about the main reason for the problem to occur. In the above
example, two computations shared a resource, namely the object referenced by x. A part of a
program that accesses a shared resource is called a critical section. The problem would not have
occurred if, at any time, at most one computation would be in its critical section. The form of
synchronization ensuring this property is called mutual exclusion.

Java provides the programmer with a simple way to ensure mutual exclusion. Each object
in Java has a mutex lock, i.e. a lock that can be held by only one thread at a time. Thus to
create a new lock, any object will do:

Object lock = new Object();

A thread can acquire and release a lock using synchronized blocks:

synchronized (lock) {
// critical section

}

When a thread reaches the start of the block, it tries to acquire the lock of the object referenced
by lock. If the lock is held by another thread, the thread blocks until the lock is finally available.
It will then acquire the lock and hold it until the control reaches the end of the block, where
the lock is automatically released. As an example, imagine that the instructions from above are
put into synchronized blocks, so in one thread we have

synchronized (lock) {
x.setValue(0);
x.increment();
int i = x.getValue();

}

and in the other thread we have

synchronized (lock) {
x.setValue(2);

}

where we make sure that the object referenced by lock is the same in both cases.
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As explained above, since the same object referenced by lock acts as the lock in both syn-
chronized blocks, the critical sections can be executed in mutual exclusion. This means that the
state of the object referenced by x can only be modified by one of the threads at a time, and
hence upon completion of the first block we always obtain the result i == 1.

Besides having an explicit synchronized block, a method can also be decorated with the key-
word synchronized. This has the same effect as enclosing the method body in a synchronized
block where the current object this provides the lock, as shown in Figure 21.

synchronized type method(args) {

// body

}

type method(args) {
synchronized (this) {

// body
}

}

Figure 21: Correspondence between synchronized blocks and synchronized methods

Exercise C.5 Explain the terms data race and mutual exclusion. How can we ensure mutual
exclusion in Java Threads?

Exercise C.6 Recall the Counter class from above, and imagine a class SynchronizedCounter
which has all its methods declared as synchronized, but is otherwise identical to Counter. Find
a simple example involving two threads where the result of the computation is nondeterministic
when the methods from Counter are used, but not when the ones from SynchronizedCounter are
used. Explain how these results come about.

C.4 Condition synchronization

Protecting access to shared variables is not the only reason why a thread has to synchronize
with other threads. For example, assume that a thread continuously takes data items out of a
buffer to process them. Hence, the thread should only access the buffer if it holds at least one
element; if it finds the buffer empty, it therefore needs to wait until another thread puts a data
item in. Delaying a thread until a certain condition holds (as in this case, until the “buffer is not
empty”) is called condition synchronization. As you will see, in Java condition synchronization
is enabled by the methods wait() and notify() which can be called on any synchronized object
and allow a thread to release a previously acquired object lock and to notify other threads that
a condition may have changed.

As an example of a problem that requires threads to use condition synchronization, we
describe the so-called producer-consumer problem, which corresponds to issues found in many
variations on concrete systems. Devices and programs such as keyboards, word processors and
the like can be seen as producers: they produce data items such as characters or files to print.
On the other hand the operating system and printers are the consumers of these data items. It
has to be ensured that these different entities can communicate with each other appropriately
so that for example no data items get lost.

On a more abstract level, we can describe the problem as follows. We consider two types of
threads, both of which execute in an infinite loop:
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• Producer : At each loop iteration, produces a data item for consumption by a consumer.

• Consumer : At each loop iteration, consumes a data item produced by a producer.

Producers and consumers communicate via a shared buffer implementing a queue; we assume
that the buffer is unbounded, thus we only have to take care not to take out an item from an
empty buffer, but are always able to insert new items. Instead of giving the full implementation
we just assume to have a class Buffer to implement an unbounded queue:

Buffer buffer = new Buffer();

Producers append data items to the back of the queue using a method void put(int item), and
consumers remove data items from the front using int get(); the number of items in a queue is
queried by the method int size().

As part of the consumer behavior, we might for example want to implement the following
method for consuming data items from the buffer:

public void consume() {
int value;
synchronized (buffer) {

value = buffer.get(); // incorrect: buffer could be empty
}

}

In this method we acquire a lock on the buffer using the synchronized block, and try to get
an item from the buffer. The problem is that the buffer might be empty, i.e. buffer.size()== 0,
which would result in a runtime error in this case. What we would like instead is that the thread
waits before accessing the buffer, until the condition “buffer is not empty” is true, and then get
the value from the buffer.

Waiting can be achieved in Java using the method wait(), which can be invoked on any
object which is already locked, i.e. inside a synchronized block which has the object as lock;
wait() then blocks the current thread (i.e. setting the thread state to blocked) and releases the
lock. Continuing the example, we adapt the code as follows:

public void consume() throws InterruptedException {
int value;
synchronized (buffer) {

while (buffer.size() == 0) {
buffer.wait();

}
value = buffer.get();

}
}

Note that the wait() call can throw an InterruptedException which we have to note in the method
header (or otherwise in a try-catch block). Let’s assume that the buffer is indeed found empty
by the current thread. Thus the wait() call gets executed, the current process gets blocked and
releases the lock on the object referenced by buffer.

Now the lock can be acquired by another thread, which might change the condition. To
notify a waiting thread that the condition has changed, the thread can then execute the method
notify() which unblocks one waiting thread (i.e. setting the thread state to ready), but doesn’t yet
release the lock. However, eventually the thread will release the lock by leaving the synchronized
block, such that the unblocked thread can acquire it eventually and continue. Note that also
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the method notify() can only be called within a synchronized block which locks the object that
it is called on.

This signaling step is part of the implementation of the method produce():

public void produce() {
int value = random.produceValue();
synchronized (buffer) {

buffer.put(value);
buffer.notify();

}
}

In this method the producer thread first creates a random integer value, locks the buffer
and puts the value into the buffer. Then the thread uses notify() to signal a waiting consumer
thread (if there is any) that the condition buffer.size()== 0 is no longer true. Note however
that the signaled consumer cannot take the truth of the condition for granted, as yet another
interleaved consumer thread could have taken out the item before the signaled consumer was
able to acquire the lock. This is why the checking of the condition buffer.size()== 0 takes place
within a while-loop, and not within an if-then-else: the unblocked consumer thread might need
to block itself again.

It is important to note that a thread cannot know that a notification corresponds to the
change of the condition it was interested in. For example, if we had a bounded buffer, we might
also want to notify processes that the “buffer is not full”. As notify() only unblocks a single
process, we cannot be sure whether a process has been unblocked that waits for the condition
“buffer is not full” or for “buffer is not empty”. For this reason there is the method notifyAll()
which unblocks all currently waiting processes. While we usually want to avoid using notifyAll()
for efficiency reasons, and therefore we should use different lock objects corresponding to different
conditions whenever possible.

Exercise C.7 You are to implement a controller for a device which can be accessed with the
following interface:

class Device {
public void startup() { ... }
public void shutdown() { ... }

}

There are also two sensors, one for heat and one for pressure, which can be used to monitor the
device.

class Sensor extends Thread {
Device device;
private int value;

public Sensor(Device d) {
device = d;

}

public int getValue() {
return value;

}
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public void updateValue() { ... }

public void run() { ... }
}

Write a class Controller in Java Threads that can poll the sensors concurrently to running the
device. You should implement its run() method such that it starts the device and then monitors
it by waiting for and examining any new sensor values. The controller shuts down the device
if the heat sensor exceeds the value 70 or the pressure sensor the value 100. Also complete
the run() method in the class Sensor which calls updateValue() continuously and signals the
controller if its value has changed.

Exercise C.8 What is the difference between notify() and notifyAll()? When is it safe to
substitute one with the other?

Exercise C.9 Name and explain three forms of synchronization used in Java Threads.

Exercise C.10 Write down three possible outputs for the Java Threads program shown below:

public class Application
extends Thread {
public static X x;
public static Y y;
public static Z z;

public void run() {
z = new Z(); x = new X(z);
y = new Y(z);
System.out.print(”C”);
execute1();
z.h();
execute2();

}

public void execute1() {
System.out.print(”A”);
x.start();

}

public void execute2() {
y.start();
System.out.print(”L”);

}
}

class X
extends Thread {
public Z z;

public X(Z zz) {
z = zz;
z.n = 0;

}

public void run() {
synchronized (z) {
z.n = 1;
z.notify();
System.out.print(”K”);

}
}

}

class Y
extends Thread {
public Z z;

public Y(Z zz) {
z = zz;

}

public void run() {
System.out.print(”J”);
synchronized (z) {
while (z.n == 0) {
try {
z.wait();

} catch
(InterruptedException e) {};

}
System.out.print(”Q”);

}
}

}

public class Root {
public static void main(String[] args) {
Application app = new Application();
app.start();

}
}

class Z {
public int n;
public void h() {
System.out.print(”P”);

}
}
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C.5 Deadlock

While we have seen that locking is necessary for the proper synchronization of processes, it
also introduces a new class of errors in concurrent programs: deadlocks. A deadlock is the
situation where a group of processors blocks forever because each of the processors is waiting for
resources which are held by another processor in the group. In thread libraries, a common class
of resources are mutex locks. As explained in Section C.3, locks are requested using synchronized
blocks, and held for the duration of the method.

As a minimal example, consider the following class:

public class C extends Thread {
private Object a;
private Object b;

public C(Object x, Object y) {
a = x;
b = y;

}

public void run() {
synchronized (a) {

synchronized (b) {
...

}
}

}
}

Now imagine that the following code is executed, where a1 and b1 are of type Object:

C t1 = new C(a1, b1);
C t2 = new C(b1, a1);
t1.start();
t2.start();

Since the arguments are switched in the initialization of t1 and t2, a sequence of calls is possible
that lets the threads first acquire the locks to a1 and b1, respectively, such that they end up in
a situation where each of them requires a lock held by the other handler.

Note that there is no built-in mechanism of Java Threads that prevents deadlocks from
happening, and it is the programmers responsibility to make sure that programs are deadlock-
free.

Exercise C.11 Explain in detail how a deadlock can happen in the above example by describing
a problematic interleaving and the locks taken.

65



Answers to the exercises

Answer C.1 If all processes in a group are running at the same time, their execution is said to
be parallel. If all processes of a group have started to execute but only one process is running
at a time, their execution is said to be interleaved. We say that the execution of a group of
processes is concurrent if it is either parallel or interleaved. 2

Answer C.2 A context switch is the exchange of one process’s context (its program counter and
CPU registers) with another process’s context on a CPU. A context switch enables the sharing
of a CPU by multiple processes. 2

Answer C.3 A process can be in one of three states: running, ready, and blocked. If a process is
running, its instructions are currently executed on a processor; if a process is ready, it is waiting
for the scheduler to be assigned to a CPU; if a process is blocked, it is currently waiting for an
event which will set its state to ready. 2

Answer C.4 The computation takes at least 80 time units, as can be seen from the following
sequence diagram.

t1 t2 

evaluate 

finish 

40 

20 
80 

t3 

doTask1 
doTask2 doTask3 

20 

20 

30 

t4 

2

Answer C.5 A data race is the situation where the result of a concurrent computation depends
on scheduling. Mutual exclusion is a form of synchronization to avoid the simultaneous use of
a shared resource (such as a shared object) by multiple processes.

Java Threads allows to protect critical sections by synchronized blocks. Two blocks
guarded by the same lock object are guaranteed to execute in mutual exclusion. To protect
a shared variable of an object, a common pattern is to declare the variable private in the class
and declare all public methods accessing the shared variable synchronized. Then all method
bodies will be executed with mutual exclusion (having the common lock object this), and the
shared variable is protected against data races as it can only be accessed through these meth-
ods. 2

Answer C.6 The following simple example proves the point:

t1: increment();
t2: increment();

If we assume that the value of the counter is 0 at first, the value after both threads have finished
will always be 2 in the case of the SynchronizedCounter methods, and 1 or 2 if Counter methods
are used. The reason for this is that at the byte code level, the increment instruction consists
of the following steps
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temp = value;
temp = temp + 1;
value = temp;

which can be interleaved in the case of Counter. In SynchronizedCounter this cannot happen as
the synchronized block ensures that this group of instructions is executed atomically. 2

Answer C.7 The controller and the sensor can be implemented in the following manner, to-
gether with an appropriate root class:

class Root {
public static void main(String[] args) {

Device d = new Device();
Sensor h = new Sensor(d);
Sensor p = new Sensor(d);
Controller c = new Controller(d,h,p);
h.start();
p.start();
c.start();

}
}

class Controller extends Thread {
Device device;
Sensor heat;
Sensor pressure;

public Controller(Device d, Sensor h, Sensor p) {
device = d;
heat = h;
pressure = p;
}

public void run() {
device.startup();
synchronized (device) {

while (heat.getValue() <= 70 && pressure.getValue() <= 100) {
try { device.wait(); } catch (InterruptedException e) {}
}
}
device.shutdown();
}
}

class Sensor extends Thread {
Device device;
private int value;

public Sensor(Device d) {
device = d;
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}

public int getValue() {
return value;
}

public void updateValue() { ... }

public void run() {
while (true) {

synchronized (device) {
int oldValue = value;
updateValue();
if (value != oldValue) {

device.notify();
}
}
}
}
}

class Device {
public void startup() { ... }
public void shutdown() { ... }
}

Note that condition synchronization is used to check on the emergency shutdown conditions:
whenever the sensor obtains a new value, it will signal the controller, upon which the controller
rechecks the condition and blocks itself if it is not yet fulfilled. 2

Answer C.8 The call notify() wakes up exactly one waiting thread, the call notifyAll() wakes
up all waiting threads. A typical pattern for condition synchronization is

while (!condition) {
lock.wait();

}

In this case it is safe to substitute any calls to notify() with notifyAll(), although this is inefficient:
many threads which have been unblocked will just have to block themselves again as they find
the condition invalidated once they get there.

On the other hand, notifyAll() typically cannot be substituted by notify() without semantic
changes in other parts of the program. One reason is that threads can be blocked on various
conditions within a synchronized block and that notify-calls cannot distinguish between them.
The call notifyAll() will force all blocked processes to recheck their conditions, allowing at least
one to proceed. The call notify() will only unblock one arbitrary process, whose condition might
still be false; in this case a deadlock can happen, causing processes to wait for an event which
will never manifest itself (see Section C.5). 2

Answer C.9 There are three major forms of synchronization provided in Java Threads: mutual
exclusion, condition synchronization, and thread join. Mutual exclusion for object access can
be ensured by the use of synchronized blocks. Condition synchronization (waiting until a

68



certain condition is true) is provided via the methods wait() and notify() that can be called on
synchronized objects at the point where the condition is known to be false or true, respectively.
Joining threads is provided by the method join() which, called on a thread, causes the caller to
wait until the thread has completed execution. 2

Answer C.10 Three possible output sequences are:

• CAPLKJQ

• CAPLJKQ

• CAKPLJQ

In method run of class Application “C” is always printed at the beginning. Upon calling
execute1(), “A” is printed next and a new thread is started, which will run concurrently to
the application thread. Hence “K” can be printed before or after “P” (which results from the
call z.h()). “J” will be printed at the start of the thread y, after “P”. Because of the waiting on
the condition z.n == 0, “Q” will always be printed after “K”. 2

Answer C.11 The following sequence of events can happen. First thread t1 is executing, and
obtains a’s lock at the start of its synchronized block. After a context switch, thread t2 is
executing and obtains b’s lock, since the roles of a and b are switched in t1 and t2. After this
t1 will request b’s lock (currently held by t1), while t2 requests a’s lock (currently held by t2):
a deadlock has occurred as none of the threads can proceed any further. 2
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D Java Threads: Test

D.1 Background information

In this part of the test, we would like to collect some information concerning your prior experi-
ence with concurrent programming.

What level of studies are you currently completing?
� Bachelor in Computer Science
� Master in Computer Science
� PhD in Computer Science
� Other:

Which semester are you currently completing?

D.1.1 Prior experience with concurrency

Have you ever taken or are you currently taking a course other than Software Architecture that
covers concurrent programming?
� Yes
� No
� No, but I studied it on my own (e.g. through online tutorials, books, ...)

If yes, what course was/is it and when did you take it? (Please provide details below.)

� Parallel programming @ ETH Zurich by T. Gross in Spring
� Concepts of concurrent computation @ ETH Zurich by B. Meyer in Spring
� Other courses:

How much of the self-study material on concurrency that you worked with today did you already
know before?

� � � � � � � � � � �
none 10% 20% 30% 40% 50% 60% 70% 80% 90% all
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D.1.2 Programming experience (sequential and concurrent)

(1: a novice . . .
5: an expert)

Concerning your general programming experience, do you
consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with concurrent programming, do
you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with the programming language Eif-
fel, do you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with the programming language Java,
do you consider yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with Java Threads, do you consider
yourself. . .

1 2 3 4 5
� � � � �

Concerning your experience with SCOOP, do you consider your-
self. . .

1 2 3 4 5
� � � � �

D.1.3 Self-study material

Where did you work through the self-study material?
� In the morning lecture � In the exercise class � At home

(1: strongly disagree . . .
5: strongly agree)

The self-study material was easy to follow. 1 2 3 4 5
� � � � �

The self-study material provided enough examples to help me
understand the subject.

1 2 3 4 5
� � � � �

The self-study material provided enough exercises to help me
understand the subject.

1 2 3 4 5
� � � � �

I was able to complete the tutorial within 90 minutes. 1 2 3 4 5
� � � � �

The self-study material is a good alternative to the traditional
lectures.

1 2 3 4 5
� � � � �

I feel confident that I will be able to solve the tasks in this test. 1 2 3 4 5
� � � � �

Any comments on the self-study material:
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D.2 Sequential comprehension

Write down the output of the sequential Java program shown below.

Solution: AFSTML

public class Application {
public static A a;
public static B b;
public static C c;

public Application() {
c = new C(); a = new A(c);
b = new B(c);
System.out.print(”A”);
execute();
System.out.print(”L”);
}

public void execute() {
a.m();
b.n();
if (a.done && b.done)

System.out.print(”M”);
}
}

public class A {
C c;
boolean done;

public A(C cc) {
c = cc;
done = false;
}

public void m() {
c.f();
done = true;
}
}

public class B {
C c;
boolean done;

public B(C cc) {
c = cc;
done = false;
}

public void n() {
c.g();
done = true;
System.out.print(”T”);
}
}

public class Root {
public static void main(String

[] args) {
Application app = new

Application();
}
}

public class C {
boolean done;

public void f() {
System.out.print(”F”);
done = false;
}

public void g() {
System.out.print(”S”);
done = true;
}
}
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D.3 General concurrency concepts

What is multiprocessing?

� Execution of multiple processes, within a single computer sharing a single processing unit.
� Execution of a single process on a single computer.
� Execution of a single process within multiple computers.
� Execution of multiple processes within a single computer sharing two or more processing units.

Solution: d

Which of the following state transitions is not possible in the status of a process?

� running → ready
� ready → blocked
� blocked → ready
� running → blocked

Solution: b

In the space below explain the terms data race and mutual exclusion.

Solution: See self-study material.

What is a deadlock?

Solution: See self-study material.
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D.4 Program comprehension

Write down three possible (non-deadlock) outputs for the Java Threads program shown below:

Solution: Some possible output sequences include: APTSFFTSML, ATSFPFTSML, ATSPFTSFML,
APTTSSFFML, ATPTSFSFML, APTTSFFSML.

public class Application
extends Thread {

public static A a;
public static B b;
public static C c;
public static D d;

public void run() {
c = new C(); a = new A(c);
b = new B(c); d = new D();
System.out.print(”A”);
execute();
System.out.print(”L”);
}

public void execute() {
a.start();
b.start();
d.foo();
try {

a.join();
b.join();
} catch

(InterruptedException e) {};
if (a.done a && b.done b)

System.out.print(”M”);
}
}

public class A extends Thread {
C c;
boolean done a;

public A(C cc) {
c = cc;
}

public void run() {
try {

m();
m();
} catch

(InterruptedException e) {};
}

public void m() throws
InterruptedException {

synchronized (c) {
while (!c.done) c.wait();
}
synchronized (c) {

c.f();
c.notifyAll();
}
done a = true;
}
}

public class B extends Thread {
C c;
boolean done b;

public B(C cc) {
c = cc;
}

public void run() {
try {

n();
n();
} catch

(InterruptedException e) {};
}

public void n() throws
InterruptedException {

synchronized (c) {
while (c.done) c.wait();
}
synchronized (c) {

c.g();
c.notifyAll();
}
done b = true;
System.out.print(”T”);
}
}

public class Root {
public static void

main(String[] args) {
Application app =

new Application();
app.start();
}
}

public class C {
boolean done;

public void f() {
System.out.print(”F”);
done = false;
}

public void g() {
System.out.print(”S”);
done = true;
}
}

public class D {
public void foo() {

System.out.print(”P”);
}

}
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D.5 Program debugging

Identify errors (possibly compile-time) in the following Java Threads code segment. Justify
your answers by providing on the next page the line number and a short explanation for every
detected error. (The number of provided spaces does not necessarily correspond to the actual
number of errors.)

1 class A extends Thread {
2 static B b;
3 static boolean done = false;
4

5 public static void main(String[] args) {
6 A a = new A();
7 b = new B();
8 C c = new C(b);
9

10 try {
11 a.start();
12 b.start();
13 c.start();
14 while (!done) {
15 System.out.println(b.g());
16 }
17 b.notifyAll();
18 a.join();
19 c.start();
20 }
21 catch (InterruptedException e) {}
22 }
23

24 public void run() {
25 int i;
26 for (i = 0; i < 100; i++) {
27 b.f();
28 }
29 done = true;
30 }
31 }

1 class B {
2 int k = 0;
3

4 public synchronized int g() {
5 notify();
6 return k;
7 }
8

9 public void f() {
10 synchronized {
11 wait();
12 k++;
13 }
14 }
15 }

1 class C extends Thread {
2 private B b;
3

4 public C(B bb) {
5 b = bb;
6 }
7

8 public void h() {
9 synchronized (b) {

10 b.k−−;
11 notify();
12 }
13 }
14

15 public void run() {
16 int i;
17 for (i = 0; i < 100; i++) {
18 h();
19 }
20 }
21 }
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Solution: Some of the errors that could be mentioned include:

• Line 12: Method start() cannot be called on b, since class B does not inherit from Thread

• Line 17: calling notifiedAll() on non-synchronized b

• Line 19: trying to start a thread which has already completed

• Line 41: synchronized { instead of synchronized (...){

• Line 42: InterruptedException for wait() not caught

• Line 57: notify() on non-synchronized this
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D.6 Program correctness

Consider a class Data with two integer fields x and y, both of which are initialized to 0. Two
classes C0 and C1 share an object data of type Data. Class C0 implements the following behavior,
which is repeated continuously: if both values data.x and data.y are set to 1, it sets both values
to 0; otherwise it waits until both values are 1. Conversely, class C1 implements the following
behavior, which is also repeated continuously: if both values data.x and data.y are set to 0, it
sets both values to 1; otherwise it waits until both values are 0. The following condition must
always hold when data is accessed:

(data.x = 0 ∧ data.y = 0) ∨ (data.x = 1 ∧ data.y = 1)

Write a concurrent program using Java Threads that implements the described functionality.
Besides the mentioned classes Data, C0, and C1, your program needs to have a root class which
ensures that the behaviors of C0 and C1 are executed in different threads.

Solution:

1 public class Application {
public static void main(String[] args) {

Data data = new Data();
C0 c0 = new C0(data);

5 C1 c1 = new C1(data);
c0.start();
c1.start();
}
}

10

public class Data {
int x;
int y;

15 public void set x(int v) {
x = v;
}

public void set y(int v) {
20 y = v;

}
}

public class C0 extends Thread {
25 private Data data;

public C0(Data d) {
data = d;
}

30

public void set 0() {
synchronized (data) {
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while (!(data.x == 1 && data.y == 1)) {
try {

35 data.wait();
}
catch(InterruptedException e) {}
}
data.set x(0);

40 data.set y(0);
data.notifyAll();
}
}

45 public void run() {
while (true) {

set 0();
}
}

50 }

public class C1 extends Thread {
private Data data;

55 public C1(Data d) {
data = d;
}

public void set 1() {
60 synchronized (data) {

while (!(data.x == 0 && data.y == 0)) {
try {

data.wait();
}

65 catch(InterruptedException e) {}
}
data.set x(1);
data.set y(1);
data.notifyAll();

70 }
}

public void run() {
while (true) {

75 set 1();
}
}
}
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D.7 Feedback on the test

How much time did you spend on this test?

20’ 30’ 40’ 50’ 60’ 70’ 80’ 90’ 100’ 110’ 120’
� � � � � � � � � � �

The difficulty level of the test was. . .
(1: too easy, 2: easy, 3: just right, 4: difficult, 5: too difficult)

1 2 3 4 5
� � � � �

I feel confident that I solved the tasks of this test correctly.
(1: strongly disagree . . . 5: strongly agree)

1 2 3 4 5
� � � � �

Did you leave any questions of the test empty and if so, why?

Any comments on the test:
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