
Testable Requirements and Specifications

Jonathan S. Ostroff and Faraz Ahmadi Torshizi

Department of Computer Science and Engineering, York University,
4700 Keele St.,Toronto, ON M3J 1P3, Canada

{jonathan, faraz}@cse.yorku.ca

Abstract. A design specification is the artifact intermediate between
implemented code and the customer requirements. In this paper we argue
that customer requirements and design specifications should be testable
and testable early in the design cycle leading to early detection of re-
quirement and specification errors. The core idea behind early testable
requirements is that the problem is described before we search for a so-
lution that can be tested against the problem description. We also want
the problem description to drive the design. We provide a method for
describing early testable requirements and specifications and a support
tool called ESpec. ESpec allows for the description of testable require-
ments via Fit tables as well as testable design specifications via contracts
written in Eiffel using mathematical models following the single model
principle. The tool can mechanically check the requirements and specifi-
cations.

1 Introduction

Informal surveys such as those done by the Standish Group [5] show that a mi-
nority of software development finish on time and within budget. Many projects
fail entirely and have to be abandoned. In their recipe for success the Standish
group recommends that shareholders develop the ability to clearly articulate re-
quirements and translate these requirements between the business people (the
customers) and the technical people (software developers).

The software developer faces many difficulties in writing and communicating
requirements. As one IT specialist wrote [2]:

I was once in a meeting in which a team had to review a business specifi-
cation for an application enhancement. The meeting had been scheduled
for one hour. It lasted for three painful hours, because the team was
stumbling over each paragraph: Verbosity, ambiguity and an avalanche
of bullets conspired to hide the meaning of those phrases. ...
UML might be king in academic circles, but English is still the preferred
and most-used tool in the field when it comes to communication between
business users and developers. I have recently heard a tool vendor trying
to score points for his product based on the fact that the product uses
plain English, not UML, in order to capture requirements.

The computer

and its software

The world outside

The computer

The

solution

is here

The

problem

is here

Connections between

the world and the

computer

ICU

Patient

Analog

Device

Monitor

Machine

Heart

Beat

Sound

pulse

Register

Value

Fig. 1. The Computer (the Machine) and the World Outside the Computer
(Problem Domain)

In this paper we use the words “requirements” and “specifications” in the
sense of Jackson [7]. A design specification is the artifact intermediate between
implemented code and the customer requirements. We argue that customer re-
quirements and design specifications should be testable and testable early in the
design cycle leading to early detection of requirement and specification errors.
We provide a method for describing early testable requirements and specifi-
cations and a support tool called ESpec. ESpec allows for the description of
testable requirements via Fit tables adapted from [8] for Eiffel. Testable design
specifications are described via contracts written in Eiffel using mathematical
models following the single model principle. The tool can mechanically check the
requirements and specifications.

2 Requirements and Specifications

Consider the diagram in Fig. 1 illustrating the problem of measuring vital signs
such as the heartbeat of a patient in an ICU taken from [7]. There are four
different descriptions of the patient monitoring system.

P – Problem Domain: A patient’s heart can beat from 0 to 170 beats per
second (predetermined by human physiology).

R – Requirement: Monitor the patient’s heart beat and sound an alarm if it
is outside of the range from 60 to 100 beats per minute.

S – Specification: Alarm-Register := False when the Sound-Pulse-Register is
outside the range hexadecimal 3C to hexadecimal 64.

C – Computer Code: The machine code that implements specification S.

P
ro

b
le

m
 D

o
m

a
in

S
o
lu

ti
o
n

S
p
a
c
e

D
e
s
ig

n
(U

I
&

 O
b
je

c
t

m
o
d
e
l)

P
ro

g
ra

m
m

in
g

T
e
s
ti
n
g

Testable

Requirements (Fit)

Testable

Specifications

(Contracts and

Scenario Tests)

Time

Fig. 2. The role of Early Testable Requirements and Specifications in the design
cycle

The central requirement R is to monitor the heartbeat – not the sound pulses
or the register values in the machine (i.e. the implemented computer code). The
requirements are the effects in the problem domain that your customer wants
the machine to guarantee. The requirements are all about the phenomena of
the problem domain (not the machine). The predicate P described the fixed
constraints emerging from the problem domain.

The specification S refers to phenomena shared by the problem domain and
the machine. S specifies a design solution that we hope satisfies requirements R.
Finally, C is a description of the computer code needed to implement the de-
sign specification S. As mentioned earlier, the design specification is the artifact
intermediate between implemented code and the customer requirements.

Our core idea behind early testable requirements and specification is as fol-
lows. Requirements should be testable as early as possible so that the problem
is stated before we search for a solution. We also want the problem to drive
the design. We provide a method for describing early testable requirements and
specifications and a support tool called ESpec.

ESpec allows for the description of testable requirements via Fit tables adapted
from [8] for Eiffel. Testable design specifications are described via contracts writ-
ten in Eiffel using mathematical models following the single model principle. The
tool can mechanically check the requirements and specifications.

Our method and tool does not require a rational software development pro-
cess as described earlier. The developer may follow agile [1] or big design up front
methodologies. Our method does provide a framework for describing testable re-
quirements that can be written as early as possible in the design cycle as shown
in Fig. 2.

A rational software development might proceed as follows:

– Elicit and document the Requirements R of the customer in terms of the
phenomena in the problem domain. Constraints of the problem domain are
described by P .

– From the Requirements, derive a Specification S for the software code that
must be developed.

– From the Specification, derive a machine C (the code).

We may describe the development process as follows [10]:

1. Specification correctness: P ∧ S → R
2. Implementation correctness: C → S
3. System correctness: From (1) and (2) conclude that: P ∧ C → R

The first equation (specification correctness) asserts that we are developing
the right product, i.e. the one desired by the customer as described by R. The
second equation (implementation correctness) asserts that the product is being
developed correctly, i.e. the implemented code satisfies the design specification.

The third formula (system correctness) is a consequence of formulas (1) and
(2). It asserts that the code working in a problem domain P satisfies the customer
requirements.

3 Fit Tables as Testable Requirements

How do we make requirements testable? In this section we show how Fit tables
may be used to make requirements testable early in the design cycle. We use a
small application as a running example in this section and the sequel.

3.1 Informal requirements for a chat application

Suppose our customer is a company that needs a specialized chat application
allowing employees to communicate with each other. Chat rooms can be devel-
oped for technical support or discussions on various administrative issues. Some
of the informal requirements include:

[R1] A chat server has an Administrator and a public room called the Lobby.
[R2] A user may connect to the chat server initially landing in the Lobby.
[R3] A user may add or remove public or private rooms thus becoming the

owner of that room.

[R4] An owner may permit or reject other users from accessing rooms.
[R5] A user may enter or exit rooms as allowed by the owner of the room.
[R6] After entering an allowed room, a user may read and post messages in the

room.

The requirements are expressed in terms of the phenomena of the problem
domain such as chat rooms like the Lobby, users such as the Administrator and
owner relationships between users and rooms. Phenomena of the solution domain
such as linked lists of users or binary search routines for finding users in the lists
should not be part of the requirements.

3.2 A Fit table to test the first requirement

How do we convert the informal requirements into testable requirements? We can
make the first requirement testable with the simple Fit table shown in Table 1.

As described in [8], there are three basic tables types: Column, Action and
Row. A testable requirements document may contain informal text interleaved
with an arbitrary number of Row, Column and Action tables.

For requirement R1 we use an Action table. An Action table checks that a
sequence of actions performed on an application works as expected. In the sequel
we will also see examples of Row tables. Software developers may also use the
Fit framework to specify their own table types.

In the first row of Action table 1 the Customer provides an arbitrary title
such as: “R1: Chat Server Setup”. In the first column of the table we can see
keywords (start, check, enter and press) which denote the type of action
performed by each row.

The keyword start is used to initiate the chat server. Usually there is only
one start per Action table. Thus the second row of the table starts the business
logic for the chat server. The next Action table in the same document will use
the current chat server unless there is another start in that table (which would
re-initialize the server business logic).

The keyword used in the third row is check. It checks that a property (desig-
nated by the descriptive text in the second column) satisfies some value (specified
by the text in the third column). The action in the third row thus states that
“Is server running?” must have the value “True”.

Properties of the business logic are specified in the second column of the
Action table. The customer may use any descriptive string (say Str) to denote a
property (say Prop) in the second column. Once Str is specified then it always
denotes the same property Prop throughout this table and any other Action
table. Values in the third column of the Action table are interpreted by the Fit
framework as booleans, integers, reals, characters, strings and arrays of the basic
types. In Action table 1, “True” is a boolean, “1” is an integer, and “Admin” is
a string. As far as the customer is concerned, a value is just a descriptive string.

Consider the check for the property “Is [user] in [room]?” in row 9 of Action
table 1. We could have used the descriptive string “Is Admin in Lobby?” for the
property. However, that limits this description to the specific property involving

– Start the chat server.
– Check that the chat server is up and running.
– Check that there is one room (the Lobby).
– Check that there is one user (the Administrator).
– Set [user] to “Admin” and [room] to “Lobby”.
– Check that [user] “Admin” is connected and in [room] “Lobby”.
– Check that the owner of the “Lobby” is “Admin”.

R1: Chat Server Setup

start Chat Server

check Is server running? True

check Number of server rooms 1

check Number of server users 1

enter [user] Admin

enter [room] Lobby

check Is [user] connected? True

check Is [user] in [room]? True

check [room]'s owner Admin

Table 1. Chat Action table for requirement R1

the specific individuals Admin and Lobby. We would prefer to check for the
more generic property that some arbitrary user is in a given room. We use the
keyword enter to associate a value with a parameter of the property (like an
argument of a query). Thus at row 6, the customer associates the value “Admin”
with the parameter “[user]”. The customer could have chosen “some user” rather
than “[user]” in the second column or some other descriptive string. We use the
convention of surrounding the parameter with square brackets so that it stands
out as a parameter of the property, e.g. in the property “Is [user] in [room]?”
at line 9 the parameters are “[user]” and “[room]” entered at lines 6 and 7
respectively.

The keyword press is not used in Table 1 but it will be used in the sequel.
This keyword denotes an action (like pressing a button) that effects some change
in the business logic. The keyword press may be used together with enter to
denote a parameterized action, e.g. we may use press together with the param-
eterized action “[user] adds [room]” as in Action table in Fig. 13. This means
that user “Bob” adds the room “Technical Support” to the chat application, and
“Bob” is now the owner of the room.

How does the developer satisfy the requirements specified in the Action ta-
ble? The developer will need to write two kinds of classes: Fixture classes and
classes of the business logic (see Fig. 3). Fixture code acts as a glue code or

bridge between the customer-provided requirements and the business logic. The
ESpec tool provides fixture libraries that allow the developer to easily develop
such fixture classes. Fit framework can then use the developer written fixture
classes to parse the requirements document, extract the Row Column and Ac-
tion tables, interpret the tables and invoke the relevant business logic and then
reflect the results of running the business logic back to the tables in the require-
ments document. The rows that succeed are coloured green and those that fail
are coloured red.

Requirements

Fixture code Business logic

Fig. 3. Relationship between Fit tables, Fixture classes and Business logic

For example, to run Table 1, the developer writes an Action Fixture class
CHAT ACTION that binds developer defined routines (in the business logic) to
the properties in the table. These routines call the appropriate features of the
business logic. ESpec takes care of the rest of the processing as explained in
more detail in [14].

3.3 Implementation Correctness

Fit tables make the requirements testable. However, at this point, if we run
the Fit table in the requirements document it will fail. For example, the checks
associated with the value cells in Table 1 will display as red indicating that the
requirement is not yet satisfied. As yet there is no implementation code and
so we expect failure. Our goal is now to specify a design that will satisfy the
requirements (i.e. cause each test row in the table to pass).

1 scenario test: BOOLEAN is
2 local
3 server: CHAT SERVER
4 mike, anna: CHAT USER
5 mike room: CHAT ROOM
6 users: LIST[CHAT USER]
7 rooms: LIST[CHAT ROOM]
8 do
9 −− create the chat server and check it

10 create server.make
11 users := server.users
12 rooms := server.rooms
13 check server.user count = 1 end
14 check server.room count = 1 end
15
16 −− create 2 users Mike and Anna and connect them to the server
17 create mike.make (”Mike”)
18 create anna.make (”Anna”)
19 server.connect (mike)
20 server.connect (anna)
21 check server.user count = 3 and server.room count = 1 end
22 check mike.room = server.lobby and anna.room = server.lobby end
23 check users.has(mike) and users.has(anna) end
24
25 −− Mike creates and adds a room ‘‘Technical Support”
26 mike room := mike.create room (”Technical Support”)
27 mike.add room (mike room)
28 check server.room count = 2 end
29 check not mike room.is private end
30 check rooms.has(mike room) end
31
32 −− Mike changes the status of his room to private
33 mike.set private (”Technical Support”)
34 check mike room.is private end
35 check not server.is allowed (anna, ”Technical Support”) end
36
37 −− Mike allows Anna to join the Technical Support room
38 mike.allow user (”Anna”, ”Technical Support”)
39 check server.is allowed (anna, ”Technical Support”) end
40 Result := True
41 end

Fig. 4. Scenario Test to start a server, connect users, create a room and set the
room permissions

How does the developer specify implementation code that will satisfy the
requirements? It is unlikely that the code can be developed all at once. The
requirements are described at a relatively high level in terms of the phenomena
of the problem domain. Code will have to be developed in small chunks to
build up the functionality needed to provide a solution. This functionality is the
design which is intermediate between the code and the requirements. The Fit
table requirements were expressed in terms of the phenomena of the problem
domain. The design will be specified in terms of the phenomena of the machine
(solution space), i.e. we must specify the relevant classes and features that will
solve the problem posed by the requirements.

How do we specify testable designs? We will use a combination of Contracts
and Scenario Tests to specify the design. In this section we illustrate Scenario

Fig. 5. Design of the chat application as a BON class diagram

Tests and in the next section we will use Contracts. This should not be taken as
a description of a step-by-step software development methodology. In the actual
development, developers may use any combination of coding, Scenario Tests,
contracts and other development techniques in whatever order they choose. Our
contribution is to provide a method and tool for specifying designs as early as
possible in the design cycle and mechanically testing implementations against
the design specification.

Consider the Scenario Test in Fig. 4 expressed in the unit testing framework
developed for Eiffel [11]. A Scenario Test is written the same way as a unit test
but instead of testing only one unit of functionality, it tests the collaboration
between various elements in the business logic. The Scenario Test in Fig. 4 spec-
ifies a collaboration between classes CHAT SERVER, CHAT ROOM, and CHAT USER.
The test specifies specific features in CHAT SERVER such as:

– users: LIST[CHAT USER]
– rooms: LIST[CHAT ROOM]
– add room (a user: CHAT USER)

If all the classes and features in the Scenario Test are added, the project will
compile and the design illustrated in the BON class diagram in Fig. 5 is generated
automatically. The class diagram presents the design so far (classes and feature
signatures, but not yet code in the bodies of the features).

The ESpec quality workbench will run all the Scenario Tests and show which
ones fail with a red bar. The Scenario Test will fail if (a) the collaboration
between the various elements fails to satisfy the specified checks or to produce

R1: Chat Server Setup

start Chat Server

check Is server running? True

check Number of server rooms 1

check Number of server users 1

enter [user] Admin

enter [room] Lobby

check Is [user] connected?
True Expected

False Actual

check Is [user] in [room]?

True
Postcondition violated.

CHAT_SERVER get_user @10 server_has_it:
<00000000018BC810> Postcondition violated. Fail

CHAT_SERVER get_user @3
<00000000018BC810> Routine failure. Fail

check [room]'s owner Admin

Table 2. Result of running Table 1 with implementation or contract errors in
the business logic. Light grey indicates tests that succeed (green) and dark grey
tests that fail (red)

R1: Chat Server Setup

start Chat Server

check Is server running? True

check Number of server rooms 1

check Number of server users 1

enter [user] Admin

enter [room] Lobby

check Is [user] connected? True

check Is [user] in [room]? True

check [room]'s owner Admin

Table 3. Result of running Table 1 after fixing the business logic. All tests
succeed (light grey = green)

the anticipated results, or (b) the contracts fail while executing the tests. At this
point we have not specified any contracts so failures will be of type (a).

Scenario Tests (as in Fig. 4) thus do two things for us: (1) They specify the
design, in a (2) mechanically testable manner. Contracts will likewise specify
aspects of the design. With runtime assertion checking turned on the implemen-
tations are also checked against the contracts.

There is thus a synergy between the contracts and Scenario Tests. They both
specify aspects of the design and both are mechanically checkable. Contracts
act as test amplifiers, i.e. when we execute the tests, all contracts will also be
executed and tested.

3.4 Specification Correctness

Scenario Tests helped us to specify aspects of the design in an automatically
testable format. When these tests run successfully, we obtain a certain amount of
confidence that the implementation satisfies the specification. However, there is
yet no guarantee that the specified design satisfies the requirements as described
in the Fit tables. We may be designing the product right – yet, we still do not
know if we have the right product!

How do we test that our specified design satisfies the requirements? We do
this by hooking up the Fit tables to our business logic for the chat application
and running the Fit table tests. If we run Action table 1 with an incorrect
implementation or design, we get error results of the kind shown in Table 2.

Two types of errors are shown in Table 2. The first error (row 8 shown in dark
gray) indicates that the routine to check if a user is connected is not doing what
was expected (the value “True” was expected but the actual value returned by
the business logic was “False”). We refer to these as category 1 errors. Category
1 errors usually indicate that the design was not specified correctly. The imple-
mented code was correct in a sense that it did not trigger any contract violations
or Scenario Test errors yet it failed to satisfy the customer requirements. The
design specification (via Scenario Tests and contracts) is either incomplete or
even incorrect.

The second error (row 9 shown in gray) indicates a postcondition failure in
the business logic (in CHAT SERVER.get user). We refer to these type of errors as
category 2 errors. Category 2 errors usually indicate an implementation problem
in the business logic (i.e., the implementation failed to satisfy its contracts).

We will discuss the differences between these types of errors in the sequel.
The result of running Action table 1 (after all fixes) is shown in Table 3. All the
cells in the table are shown in light gray (green) indicating that all the Fit tests
succeed.

4 Writing Complete Modular Contracts

In the previous section we used Test Scenarios to write testable specifications.
In this section we explore the use of contracts for writing testable specifications.

class CHAT SERVER ...

feature {NONE} −− private features

rooms: LIST[CHAT ROOM]
users: LIST[CHAT USER]

feature −− public features

lobby: CHAT ROOM
admin: CHAT USER

connect (u: USER) is
require

a user /= Void
−− user u not already connected

do
...

ensure
−− add u to the existing users in the lobby

end

end

Fig. 6. Incomplete contract for routine connect

Design by Contract (DbC) is a well-know method for specifying the obliga-
tions and benefits of the client of a module (class) and its supplier. Languages
such as Eiffel, ESC/Java [4] and Spec# [3] follow the single model principle [12],
i.e. specifications (contracts) and implementation details are both an integral
part of the program text itself thus also allowing the implementation to be me-
chanically checked against the specification. The features of a class are described
by expressive preconditions, postconditions and class invariants and these con-
tracts can be tested at runtime by checking that the feature implementations
satisfy the contracts.

However, the contracting facilities of these languages do not yet allow for com-
plete contracts. We illustrate this lack and describe the use of an implemented
mathematical modelling library (ML) for Eiffel that facilitates fully descriptive
contracts following the single model principle so that the full contracts are part
of the program text.

Consider the contract for the routine connect in class CHAT SERVER in Fig. 6.
This feature allows a user u to connect to the server. A new user is not initially
connected. In the precondition of routine connect we would like to specify that

CHAT_SERVER

make

ensure location_model admin § lobby

 ownership_model lobby § admin

admin.server = Current

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]

ensure Result i: INTEGER | 0 i users.count users[i] users[i].room

Invariant
user_count = #location_model

room_count = #owner_model

1 user_count users.count

1 room_count rooms.count

admin /= Void and lobby /= Void

connect (u: CHAT_USER)

require u /= Void

u ´ location_model.domain and # location_model < Max_users

ensure location_model old location_model u § lobby

 ownership_model old ownership_model

MODEL

add_room (r: CHAT_ROOM; u: CHAT_USER)

require r Void and u Void

r ´ ownership_model.domain

u location_model.domain and r.owner = u

ensure ownership_model old ownership_model r u

 location_model old location_model

has_user (a_name: STRING): BOOLEAN

require

 a_name /= Void and not a_name.is_empty

ensure

 Result (u location_model.domain (u.user_name a_name))

has_room (a_name: STRING): BOOLEAN

require

 a_name /= Void and not a_name.is_empty

ensure

 Result (r ownership_model.domain (r.name a_name))

room_count: INTEGER

ensure

 Result ownership_model

user_count: INTEGER

ensure

 Result # location_model

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]

ensure Result i: INTEGER | 0 i rooms.count rooms[i] rooms[i].owner

CHAT_ROOM

CHAT_USER

make (a_name: STRING; a_user: CHAT_USER)

require a_name /= Void and a_user /= Void

ensure owner = a_user and name a_name

 occupant_model

name: STRING

occupants: LIST[CHAT_USER]

MODEL

occupant_model: ML_SET[CHAT_USER]

ensure Result i: INTEGER | 0 i

occupants.count occupants[i]

make (a_name: STRING)

require a_name /= Void

ensure current_room = Void and

chat_server = Void and

 user_name.is_equal (a_name) and

 owned_model = old owned_model

user_name: STRING

room: CHAT_ROOM

server: CHAT_SERVER

owned: LIST[CHAT_ROOM]

MODEL

owned_model: ML_SET[CHAT_ROOM]

ensure Result i: INTEGER | 0 i

owned.count owned[i]

owner: CHAT_USER

get_user (a_name: STRING): CHAT_USER

require a_name /= Void and not a_name.is_empty

 has_user (a_name)

ensure

 (Result.user_name a_name) and Result location_model.domain

get_room (a_name: STRING): CHAT_ROOM

require a_name /= Void and not a_name.is_empty

 has_room (a_name)

ensure

 (Result.name a_name) and Result ownership_model.domain

FEATURES

rooms: LIST[...]

users: LIST[…]

room owner

server

rooms: LIST [CHAT_ROOM]

users: LIST [CHAT_USER]

admin: CHAT_USER

lobby: CHAT_ROOM

Symbols legend:

 equals by definition

map

yields

pair

model equality (set, bag, list, map)

= reference equality

is a member of

 object equality

size of

Fig. 7. System Specifications in BON notation

a new user u is not yet connected, i.e. is not yet in our list of users. In the
postcondition, we would like to specify that the new user u is now added to the
existing users of the Lobby.

How do we specify these contracts? One possibility is to use the private
implementation data structures users and rooms which are linked lists of chat
rooms and chat users (respectively) to write the contracts. This is not ideal
because the implementation is low level and might change. We would like the
specification of the feature to be independent of low level implementation details.
In addition, not all classes are effective. Some classes are deferred (abstract) and
thus there is no available implementation.

So the question is: how do we specify complete contracts without depending
upon implementation detail?

4.1 The need for Mathematical Models

In order to fully specify the contracts of feature connect the chat application
must remember:

1. All the users that are already connected (so that a check can be made that
the same user does not connect twice).

2. All the users in the Lobby (so that the list of users of the Lobby can be
updated when the new user is connected).

We may use a mathematical model describe the above state of affairs. The
location model is a function from CHAT USER to CHAT ROOM as shown in Fig. 8.

Fig. 8. Location model – mapping from users to rooms

In the location model each user is associated with a room. The location
model may be described using the mathematical map class ML MAP in the ESpec
model library (these classes all have the prefix ML) as shown in Fig. 9. The ML
classes are immutable. Thus they have no commands that can change their state,
only queries that may return new maps constructed from the old maps as in
mathematics. These classes are thus mathematically expressive but not efficient.
This is not a problem as models are used solely in contracts and contract checking
can be turned off in final deliveries.

In Fig. 9, the location model is specified as

(a) BON mathematical notation

class CHAT SERVER feature

location model: ML MAP[CHAT USER,CHAT ROOM]
ownership model: ML MAP[CHAT ROOM,CHAT USER]

lobby: CHAT ROOM
admin: CHAT USER

connect (u: USER) is
require

u 6= Void ∧ u 6∈ location model.domain
ensure

location model ∼= old location model I u 7→ lobby
ownership model ∼= old ownership model

end
end

(b) Eiffel notation

class CHAT SERVER feature

location model: ML MAP[USER,ROOM]
ownership model: ML MAP[ROOM,USER]

lobby: CHAT ROOM
admin: CHAT USER

connect (u: USER) is
require

a user /= Void
not location model.domain.has key(u)

ensure
location model |=| old location model ˆ [u, lobby]
ownership model |=| old ownership model

end
end

Fig. 9. Complete contracts for routine connect using a mathematical model

location model: ML MAP[CHAT USER,CHAT ROOM]

The precondition of routine connect is u 6∈ location model .domain which asserts
that the user u is not already connected (i.e. the user is not in the domain of
the map). The postcondition is

location model ∼= (old location model) I (u 7→ lobby) (1)

which asserts that after execution of connect, the location model is extended
by (symbol I) the pair u 7→ lobby , i.e. the location map in the poststate is the
same as it was in the prestate but with the addition that user u is connected
and in the Lobby. The symbol ∼= is the model equality symbol. Two maps are
model equal provided they have the same elements in their respective domains
and map the same elements in the domain to the associated elements in their
respective ranges.

The BON [13] mathematical notation as in (1) is often convenient to use.
The equivalent Eiffel notation has been designed so as to be as close to the

mathematical notation as possible. As shown in Fig. 9(b) the Eiffel equivalent
of (1) is

location model |=| old location model ˆ [u, lobby]

The ML library has mathematical maps, sets, bags and sequences and the
normal operators of set theory and predicate logic have been implemented [9].
For example, the postcondition of query has user in Fig. 12 is specified as

Result =̂ ∃ u ∈ location model .domain • (u.user name ∼ a name) (2)

The symbol ∼ denotes object equality. The postcondition thus asserts that the
query holds when there exists some connected user whose name (as a string) has
the same characters as the query argument a user.

An implementor of class CHAT SERVER may provide any private implemen-
tation code that satisfies the contracts. For example, the implementor may use
two linked lists (users and rooms) for the implementation. However, all the
contracts are specified in terms of the model. Thus the implementor must link
the implementation to the model by providing an abstraction function [6] that
maps (or “lifts”) the implementation detail to the model as shown in Fig. 12.
For example for the location model, the abstraction function is

Result =̂ 〈〈i : INT | 0 ≤ i < users.count • users[i] 7→ users[i].room〉〉 (3)

The angle brackets 〈〈· · ·〉〉 is used for map comprehension (similar to set compre-
hension). Thus (3) asserts that the location model is a map consisting of pairs
users[i] 7→ users[i].room where users[i] is the item (i.e. the user) at index i in
the linked list users.

In addition to the location model, we will also need an ownership model which
is a map from rooms to users (owners) as shown in Fig. 11. For example, when a
user adds a new room it is the ownership model that changes while the location
model remains the same (e.g. see routine add room in Fig. 7). The domain of the
ownership model is the set of all rooms in the chat application. The contracts
(expressed in terms of the model) for the chat application are shown in more
detail in Fig. 7.

Fig. 10. Location model (mapping
from users to rooms)

Fig. 11. Ownership model (map-
ping from rooms to users)

CHAT_SERVER

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]

ensure Result i: INTEGER | 0 i users.count users[i] users[i].room

Invariant

user_count = #location_model and room_count = #owner_model

admin /= Void and lobby /= Void

connect (u: CHAT_USER)

require u /= Void and u ´ location_model.domain

ensure location_model old location_model u § lobby

 ownership_model old ownership_model

MODEL

has_user (a_name: STRING): BOOLEAN

require a_name /= Void and not a_name.is_empty

ensure Result u location_model.domain (u.user_name a_name)

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]

ensure Result i: INTEGER| 0 i rooms.count rooms[i] rooms[i].owner

PRIVATE

rooms: LIST [CHAT_ROOM]; users: LIST [CHAT_USER]

admin: CHAT_USER;

lobby: CHAT_ROOM;

Fig. 12. BON specification of the chat server

5 Contract violations in Fit tables

Section 3.3 used Scenario Tests to specify the design. Fit tables were able to
catch specification errors (as category 1 errors in which the expected value dis-
agreed with the actual values) in the design (category 1 errors may also reflect
implementation errors).

Section 4 used contracts to specify the design. The advantage of contracts (as
opposed to Scenario Tests for a particular execution) is that contracts specify
the complete behaviour of modules (classes). In ESpec, contract violations are
reflected back into the Fit tables (these are category 2 errors). This is useful
because a contract error in the Fit table indicates that the specification of the
design is correct, but the implementation does not satisfy the specified design
solution. The contract violation in the Fit table provides precise details as to
which feature fails which makes it easier to fix the problem.

We illustrate the use of contract violations in Fit tables with some new Fit
tables in our requirement document as shown in Fig. 13 and Fig. 14. These tables
convert requirements R2, R3, and R4 into a mechanically testable format.

Action table:

– Start a chat server, create three chat users (“Anna”, “Bob”
and “Tod”) and connect them to the server.

– User “Bob” creates a chat room called “Technical Support”
and adds it to the chat server.

– “Bob” changes the room status from public to private.
– “Bob” permits user “Anna” to join the room.

R2, R3 and R4: Scenario

start Chat Server

enter [user] Anna

press Connect [user]

enter [user] Bob

press Connect [user]

enter [user] Tod

press Connect [user]

enter [user] Bob

enter [room] Technical Support

press [user] adds [room]

press [user] makes [room] private

enter [user list] Anna

press [user] allows [user list] in [room]

check Total number of users 4

check Total number of rooms 2

Row table:
The following Row table checks
the status of the database of users and rooms.

R2, R3 and R4: Scenario Query

Room name Owner Occupants Is public? Permitted list

Lobby Admin Admin,Anna,Bob,Tod True Admin

Technical Support Bob Empty False Bob,Anna

Fig. 13. Testing requirements R2 – R4

We use an Action table to specify a sequence of actions such as adding users,
rooms and permissions. We then use a Row table to query and check that the
underlying database of users, rooms and permissions are as expected.

Row tables allow for powerful descriptions that collections of elements (e.g.
in lists, sets, bags and maps) are present as expected. For example, suppose only
“Bob” and “Anna” have been allowed to access the room “Technical Support”.
A single row in a Row table can check that these users alone are in the permitted
list by simple enumeration.

– User “Anna” enters room “Technical Support”

R2, R3 and R4: Scenario

enter [user] Anna

enter [room] Technical Support

press move [user] to [room]

– Checking the status of chat server using a Row Fixture

R2, R3 and R4: Scenario Query

Room name Owner Occupants Is public? Permitted list

Lobby Admin Admin,Bob,Tod True Admin

Technical Support Bob Anna False Bob,Anna

Fig. 14. Moving a user from one room to another

Fig. 13 has an Action table and a Row table. The Action table starts a chat
server, and adds users, rooms and permissions as shown. Consider the Row table
in Fig. 13. The customer specifies the header of the first column in the table as
“Room name”. This means that the customer will be querying a collection of
entities of type room considered as phenomena in the problem space.

It is of course up to the developer to connect the Row table to the business
logic via a Row fixture. In our case, the developer uses the fixture to link the
Row table to rooms in the business logic which is a linked list of CHAT ROOM. The
linked list and class CHAT ROOM are of course phenomena in the machine.

Each row in the Row table describes the properties of a room in the collection.
In the Row table of Fig. 13 the first row deals with room “Lobby” and the second
row deals with room “Technical Support”. These are the only two rows because
the customer has not created any other rooms. Suppose there are other rooms
but they are not expected in the table. Then execution of the Row table would
yield an error stating that there are surplus rooms in the business logic that
were not expected in the requirements. Thus Row tables represent exhaustive
descriptions of the collection.

The other column headings of the Row table in Fig. 13 describe properties
that each room must satisfy. The second column, for example, specifies who is
the owner of the room, the third column describes who are the occupants of
the room, the fourth column asserts whether the room is public (anybody may
enter), and the last column checks the permitted list. If the room is public then
the permitted list contains only the owner of the room.

Fig. 14 is a continuation of the requirement document described in Fig. 13, i.e.
it refers to the same chat server initialized and acted upon in Fig. 13. Subsequent
to the actions of Fig. 13, our customer uses the Action table in Fig. 14 to specify
that user Anna moves from the Lobby to Technical Support. As shown in the
Row table, our customer expects that user Anna is transferred from the Lobby
to Technical Support.

Do the Fit tests pass given the design developed in previous sections of this
paper? If we execute the Fit requirement tests described in Fig. 13 and Fig. 14
we obtain the results shown in Fig. 15 and Fig. 16.

R2, R3 and R4: Scenario

start Chat Server

enter [user] Anna

press Connect [user]

enter [user] Bob

press Connect [user]

enter [user] Tod

press Connect [user]

enter [user] Bob

enter [room] Technical Support

press [user] adds [room]

press [user] makes [room] private

enter [user list] Anna

press [user] allows [user list] in [room]

check Total number of users 4

check Total number of rooms 2

R2, R3 and R4: Scenario Query

Room name Owner Occupants Is public? Permitted list

Lobby Admin Admin,Anna,Bob,Tod True Admin

Technical Support Bob Empty False Bob,Anna

Fig. 15. Success: Result of executing tables in Fig. 13

Both tables in Fig. 15 succeed whereas the Row table in Fig 16 fails with a
category 1 error indicating that Anna is in two locations at the same time (in
the Lobby and Technical Support). According to the Row table, after moving
from one room to another, the customer’s expectation is that Anna is solely in
Technical Support and not in the Lobby anymore.

An investigations of the code shows an implementation error in the body of
routine CHAT SERVER.enter room. The developer simply forgot to remove the
user from the original room while adding this user to the new room thus causing
the user to be in two locations at the same time. This category 1 error in the
Fit table is an indication of an incomplete specification as the error should have
been caught by a contract violation (a category 2 error).

The fix for this problem is to convert a category 1 error into a category 2
contract error. Consider the specification of routine enter room in Fig. 17. The
postcondition is:

location model ∼= (old location model)⊕ (u 7→ get room(r))

R2, R3 and R4: Scenario

enter [user] Anna

enter [room] Technical Support

press move [user] to [room]

R2, R3 and R4: Scenario Query

Room name Owner Occupants Is

public?

Permitted

list

Lobby Admin Admin,Bob,Tod Expected

[Admin, Anna, Bob, Tod]
Actual

True Admin

Technical

Support

Bob Anna False Bob,Anna

Fig. 16. Failure: Result of executing tables in Fig 14

class CHAT SERVER
...
enter room (u: CHAT USER; r: STRING) is

−− Move user ‘u’ into room with string name ‘r’
require

(u 6= Void) ∧ (r 6= Void) ∧ ¬(r .is empty)
u ∈ location model.domain

ensure
user entered: location model ∼= (old location model ⊕ (u 7→ get room(r))
ownerships not changed: ownership model ∼= old ownership model

end

get room (r: STRING): CHAT ROOM is
−− returns a room with name ’r’

require
(r 6= Void) ∧ ¬(r .is empty)
has room (r)

ensure
(∃ room ∈ ownership model.domain | room.name ∼ Result.name)

end

...
location model: ML MAP [CHAT\ USER, CHAT\ ROOM]
ownership model: ML MAP [CHAT\ ROOM, CHAT\ USER]

invariant
disjoint users:
(∀ r1, r2 ∈ own model.domain | r1 6= r2 • r1.occupant model ∩ r2.occupant model ∼= ∅)
coverage: (∪ r ∈ own model.domain • r .occupant model) ∼= location model.domain

end

Fig. 17. BON specification of the invariant for the CHAT SERVER

where ⊕ is the symbol for map override. The postcondition asserts that the loca-
tion model in the poststate is the same as in the prestate except that the room
associated with user u is now changed to get room(r) where query get room
returns the chat room object associated with string r (this is a search routine).
The ownership model is left unchanged by the routine enter room.

1 class CHAT SERVER
2 ...
3 location model: ML MAP [USER, ROOM]
4 ownership model: ML MAP [ROOM, USER]
5
6 forall rooms (r1: CHAT ROOM): BOOLEAN is
7 do
8 Result := ownership model.domain.for all
9 (agent empty intersection (r1, ?))

10 end
11
12 empty intersection (r1, r2: CHAT ROOM): BOOLEAN is
13 do
14 if r1 /= r2 then
15 Result := (r1.occupant model ∗ r2.occupant model) |=| create {

ML SET[CHAT USER]}.make
16 else
17 Result := true
18 end
19 end
20
21 multi union (s: ML SEQ[CHAT ROOM]): ML SET[CHAT USER] is
22 do
23 if s.count = 1 then
24 Result := s.head.occupant model.to set
25 else
26 Result := (multi union (s.tail) |++ (s.head.occupant model)).to set
27 end
28 end
29
30 invariant
31 pairwise disjoint: ownership model.domain.for all (agent forall rooms (?))
32 coverage: multi union (ownership model.domain.to seq) |=| location model.domain

Fig. 18. Implementing the invariant using ML

The postcondition is correct but incomplete (as the error was category 1 and
not category 2). As shown in Fig. 7, class CHAT ROOM has an occupant model
(ML SET[CHAT USER]) that keeps track of the occupants of each room. There
is no assertion that ensures that the models of CHAT SERVER and CHAT ROOM
are consistent with each other. The consistency assertions are best written as
invariants in class CHAT SERVER as shown in Fig. 17.

The invariant disjoint users asserts that any two rooms are pairwise dis-
joint, i.e. a user may be in at most one room at a time. The second invariant
coverage asserts that the domain of the location model (i.e. all chat users)
consists of the union of the occupant model sets, i.e. all users specified in the
location model must be occupants of some room.

Fig. 18 shows how the invariants are written using the ML Eiffel library. The
invariant disjoint users is captured by enumerating through the list of all
rooms collecting, pairwise, intersections of the room occupants and then checking
that the resulting set is empty. Queries forall rooms and empty intersection
are agent routines that are used for this purpose (see lines 6–19 in Fig. 18). The
* infix operator is used for the intersection of two sets. The coverage property
is implemented using the multi union recursive agent. This agent collects the

R2, R3 and R4: Scenario

enter [user] Anna

enter [room] Technical Support

press move [user] to [room] Class invariant violated.

CHAT_SERVER enter_room @7 pairwise_disjoint:
Class invariant violated. Fail

CHAT_SERVER enter_room @11
Routine failure. Fail

Table 4. Specification violations are reflected to the Fit table

union of all users in all rooms using the occupant model of each room and then
returns a set composed of all those users. The |++ infix operator is used for the
union of two sets.

The Fit table now reports an invariant error in class CHAT SERVER (i.e. a cat-
egory 2 error) thus indicating an implementation problem in routine enter room
in class CHAT SERVER. This contract error is reported in the Fit table 4.

As shown in Fig. 19 a category 1 error (expected vs. actual discrepancy) may
indicate that the specification is either incomplete or even incorrect. A complete
specification (via contracts) would have been flagged with a contract error in
the Fit table. In the absence of a contractual specification error that pinpoints
the faulty routine, there may either be an implementation error or specification
error. By fixing the contracts we can pinpoint the precise routine that is not
implemented correctly.

Fit Table Violations
Specification Correctness P ∧ S → R Actual vs. Expected (cat. 1)
Implementation Correctness C → S Contract Violation (cat. 2)
System Correctness P ∧ C → R

Fig. 19. Interpreting Fit table violations

6 ESpec tool

Fig. 20 shows the ESpec tool1 in action. The tool allows the user to write testable
customer requirements and design specifications that can be checked mechani-
cally. ESpec provides feedback to the developer for Fit table requirement tests,
Scenario Tests and unit tests as shown in the figure under a unified green bar

1 www.cse.yorku.ca/∼sel/espec

(i.e. if all the various tests run correctly then a green bar is displayed). The
tool also allows formal verification of implementations with respect to contracts
using a theorem prover as described in [9].

Fig. 20. The Espec software quality workbench

References

1. Scott Ambler. Agile Model Driven Development is Good Enough. IEEE Software,
20(5):71–73, 2003. Agile Model Driven Development is Good Enough.

2. Tatiana Andronache. The english language as an effective it tool. Computerworld,
page 18, Feb. 2007.

3. Mike Barnett, Robert DeLine, Bart Jacobs, Manuel Fhndrich, K. Rustan M. Leino,
Wolfram Schulte, and Herman Venter. The Spec# Programming System: Chal-
lenges and Directions. Position paper at VSTTE, 2005.

4. Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Be-
yond Assertions: Advanced Specification and Verification with JML and ESC/-
Java2. In Springer-Verlag, editor, Formal Methods for Components and Objects
(FMCO’2005), LNCS, 2006.

5. Standish Group. Project management: The criteria for success. Software Magazine,
February 2001.

6. C. A. R. Hoare. Proof of correctness of data representations. Acta Inf., 1:271–281,
1972.

7. Michael Jackson. Problem frames: analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

8. Rick Mugridge and Ward Cunningham. Fit for Developing Software: Framework
for Integrated Tests. Prentice-Hall, 2005.

9. Jonathan Ostroff, Chen-Wei Wang, Eric Kerfoot, and Faraz Ahmadi Torshizi. Au-
tomated model-based verification of object oriented code. In Verified Theories:
Theories, Tools, Experiments (VSTTE Workshop, Floc 2006). Microsoft Research
MSR-TR-2006-117, 2006.

10. Jonathan S. Ostroff and Richard F. Paige. The Logic of Software Design. Proc.
IEE - Software, 147(3):72–80, 2000. The Logic of Software Design.

11. Jonathan S. Ostroff, Richard F. Paige, David Makalsky, and Phillip J. Brooke. E-
tester: a contract-aware and agent-based unit testing framework for eiffel. Journal
of Object Technology, 4(7), Sep-Oct 2005.

12. Richard Paige and Jonathan S. Ostroff. The Single Model Principle. Journal of
Object Oriented Technology, 1(5), 2002.

13. Richard F. Paige and Jonathan S. Ostroff. Developing BON as an Industrial-
Strength Formal Method. volume LNCS 1708. Springer-Verlag, 1999. Developing
BON as an Industrial-Strength Formal Method.

14. Faraz Ahmadi Torshizi and Jonathan S. Ostroff. ESpec – a Tool for Agile De-
velopment via Early Testable Specifications. Technical Report CS-2006-04, York
University, Toronto, 2006.

