
������� ���	
���� �������� ����� ��� ���������	�

��� ����� �������� �����������

�� ������ �� 	
���

�����������	�
�����

������ ������

	�����������	�
�����

������ ����

�
������� �
����

���������������

��������� �	�	
���
��������� �����
����
��	 ��������� �
�
�	������ �� �����

������������	����������	�
�����

���� ��	��
� ���� ���� ��!��� �� "	��#	� $���
�	 ������%	� ��	 ����
�%����� �����
�	�
� ��	 &�&' ���!��(����	�	��	 �� "	��#	� $���
�	 ��)%�����
$ ��*	�+
�� �� ����,	� ����- ���������(�� ������,%�	�
	��� ��.��	� �
+!��

��
 ����%����� �	������ ��	 ��!��� ���%�	� �� ��	 �	.	+��	�� �� ����	�
���
�	����� ��� �	������(� ,%�+���(�
�� .	������(��(��/%
+��� ����
�	-

������� �������		

� �
��	!	 0%���
�� &1�&� $���
 �����+��� ��
��	

� 2- �%��
� �- �	��� 3�����
��4� ��������� �	�	
���� 5$�

� �+
%�	 �
���6	� 5��.	����6	 '
����$%�� ��
��	

� ��+�(
�(7- '
%+� $

�+
�� 5��.	������ 8	��
��

� ��+��
� $��%+�	 3�����
��4� ��������� �	�	
���� 5$�

� �	�
�	 ���	++�� 5��.	����� �� &�
� 5$�

� ���
%� "	�	�� 2	���	+ �	����+�(�	�� 5$�

����	 ��	��	��

� 7�� 8�%���� �	�	
��� $��	������ $��
�	(�� ��9 �
,�� &��	+ �����
�����
5$�- ���������� ��� 	���
�� �
�
������ ���������
�

� $%��� 8%+
��� �	�	
���	�� ��������� �	�	
���� 5$�- ��
���� ��������

��
� ����� ��
���������� ����������

����������

���	�
�	� ,� ���� 0�
�	� ��������� �	�	
���� 52-

:

Formalising a High-Performance Microkernel

Kevin Elphinstone Gerwin Klein Rafal Kolanski
National ICT Australia ∗, Sydney, Australia

School of Computer Science and Engineering, UNSW, Sydney, Australia
{kevin.elphinstone|gerwin.klein|rafal.kolanski}@nicta.com.au

Abstract
This paper argues that a pragmatic approach is needed for integrat-
ing design and formalisation of complex systems. We report on our
approach to designing the seL4 operating system microkernel API
and its formalisation in Isabelle/HOL. The formalisation consists of
the systematic translation of significant parts of the functional pro-
gramming language Haskell into Isabelle/HOL, including monad-
based code. We give an account of the experience, decisions and
outcomes in this translation as well as the technical problems we
encountered together with our solutions. The longer-term goal is to
demonstrate that formalisation and verification of a large, complex,
OS-level code base is feasible with current tools and methods and
is in the order of magnitude of traditional development cost.

1. Introduction
Sometimes an incomplete engineering approach is better than a
complete, precise mathematical solution. As for normal software,
so also for formalisation and verification, seeking the perfect solu-
tion to a problem is at odds with the reality of limited development
costs.

The overall aim of our project is to design and verify a micro-
kernel-based operating system (Sect. 2). In this paper we argue that
a pragmatic approach is essential for large-scale projects such as
operating system (OS) verification. We aim to be pragmatic in the
sense that we are using a method that on first sight is not suitable,
because it will not work in general, because it does not provide
a complete solution to the problem, and because it is not fully
automatic where in theory it could be. Instead it is semi-automated,
systematic, cheap, easy to employ, and still gives the desired result.

Another of our overall goals is to demonstrate that formalisation
and verification of a large, complex OS-level code base is feasible
with current tools and methods and that the cost of this is in the
same order of magnitude as traditional development cost.

Our methodology is to develop an executable OS prototype in
the high-level programming language Haskell (done by the OS
team), then translate it to a formal specification (done by the theo-
rem proving team). The result will be the basis for refinement into a
high-performance C implementation of the OS, as well as the basis
for a further abstraction to verify security properties.

This paper focuses on the techniques employed to achieve a
practical translation process, the observations and lessons learnt.
Its main contributions are:

• a simple, pragmatic method for making the benefits of formal
verification and specification available to system architects in
traditional system design. It retains traditional means for testing

∗ National ICT Australia is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Re-
search Council

and validation while avoiding the need for unfamiliar specifica-
tion languages (Sect. 2).
• a practical method for translating complex, real-life, monad-

based Haskell [17] code to Isabelle/HOL, detailed in Sect. 3.
• experience from conducting a large scale verification project

(Sect. 4), in particular creating a large, complex specification
within a short time and with few resources, as would be com-
mon in an industrial setting.

At this early stage we can report that the methodology has been
successful and beneficial so far. The formalisation cost was signif-
icantly lower than the implementation and testing cost, which is a
significant improvement to our earlier experience on formalising
and verifying parts of the C implementation of the L4 microkernel.
The methodology resulted in a fully working microkernel proto-
type, implemented in Haskell, formalised in Isabelle/HOL, running
normal ARM binaries through a simulator. The formalisation has
uncovered a number of problems with the high-level language pro-
totype, including a potentially unbounded operation (Sect. 4).

Although we have only concluded the formalisation stage so far,
and have not proceeded to verification on that part of the project,
the formalisation already implies one theorem: all system calls
terminate.

2. seL4
A microkernel is an OS kernel designed to be minimal in code
size and concepts. The kernel is the part of the OS that runs in
the privileged mode of the hardware. L4 is a widely deployed sec-
ond generation microkernel [20] providing the improved reliability
and flexibility of the microkernel approach while overcoming the
performance limitations of its predecessors. The current L4 imple-
mentation is on the order of 10,000 lines of C++ and assembler
code.

The seL4 project is a descendant of L4, and aims to provide
a secure foundation for high-end embedded systems development
(e.g. mobile phones or PDAs). The security goals address two gen-
eral areas that are lacking in the existing L4 API: communication
control between applications, and kernel physical memory man-
agement. Control of communication is critical for both providing
isolation guarantees between subsystems, and providing confine-
ment guarantees of information possessed by an application. Con-
trol of physical memory consumed by the kernel is critical for pro-
viding availability guarantees for kernel services, and also for the
predictability of their execution times.

On embarking on the seL4 project, we wanted an approach
that had the following properties, while enabling the exploration of
the design space of potential API solutions that address the issues
outlined above

Figure 1. Overview

• The resulting API specification must be precise. Natural lan-
guage manual-like descriptions are ambiguous and unsatisfac-
tory.
• The approach must expose enough of the implementation de-

tails to allow the experimenter to be convinced a high perfor-
mance implementation is possible.
• It should provide a method for gaining experience with the API

by allowing construction of higher-level systems on top.
• It must be readily amenable to formalisation.
• The approach must be usable by kernel programmers who are

not adept in formal methods.

The approach taken was to use literate Haskell [17] to specify
and implement the seL4 API. Haskell, as a functional programming
language, is not a large paradigm shift for typical kernel program-
mers. This might sound surprising as OS kernels are not usually
developed in functional languages, but the proposition came from
the OS group, not the verification group. Haskell is side-effect free,
and at the same time allows us to explore implementation details of
the kernel if desired.

This methodology is in part born out of a pilot project on L4
that we conducted to investigate two aspects of the feasibility of
kernel verification: a formalisation of the L4 API using the B
Method (topmost horizontal layer in Fig. 1) [19], taking about
6 person months, and a full refinement proof for a non-trivial
subsystem (virtual memory) of L4 using Isabelle/HOL (vertical
slice in Fig. 1) [26], taking about 18 person months. In the current
work, the Haskell prototype serves as a solid, validated basis for the
design, formalisation and verification of seL4. The formalisation in
this paper occupies the horizontal layer between the most abstract
model and the C code.

For validation, to enable the API to be used without requiring
a real kernel implementation together with all the complexities of
managing real hardware, we created a simulator that implements
the ARM processor user-level instruction set and that transfers
control to the Haskell kernel for hardware events like page faults
and system calls. The simulator enables normal ARM application
binaries, compiled for instance from C, to be executed on our kernel
prototype.

At the present time, we have an initial seL4 API in Haskell
together with the simulator executing ARM binaries. We have
formalised this implementation using the mechanism described in
Sect. 3 and are now further validating the API by attempting to
prove the first security properties and at the same time porting our
high-level application environment [15] to the new platform.

As observed in the design iterations so far, we expect to be
able to readily adapt the API as we gain more experience in its
use for building systems on top of the kernel, without the time
consuming debugging usually associated with kernel programming

and without large time investments for tracking changes in the
formalisation.

3. Translating Haskell
This section gives an overview of our translation from Haskell
to Isabelle/HOL. Although some of the solutions below are tai-
lored to our specific problem, they are more generally useful and
they demonstrate that interactive specification and theorem prov-
ing tools like Isabelle/HOL are suitable for pragmatic, large scale
projects.

After discussing our choice of logic in Sect. 3.1, we describe the
translation process itself in Sect. 3.2. Our main aim is to keep the
translated code readable for interactive verification. Correctness, in
particular with respect to partiality, is not our main concern. What
will be implemented in the end is a refinement of the verified formal
construct in Isabelle. The original Haskell code serves to validate
the API design, not the implementation. Danielsson et al [5] show
why partiality does not matter in this translation if the program is
shown to terminate.

The last three subsections focus on particularly interesting parts
of the translation: termination (Sect. 3.3), monads (Sect. 3.4), and
the Dynamic extension of GHC (Sect. 3.5).

3.1 HOL or HOLCF?
Based on experience in our aforementioned pilot project, the ver-
ification tool of choice was the generic interactive theorem prover
Isabelle which provides two logic instantiations that might be suit-
able: HOL and HOLCF.

As the name suggests, HOLCF is an implementation of Scott’s
logic of computable functions on top of Isabelle/HOL. It is well
suited for faithfully describing features of Haskell such as par-
tial functions and lazy evaluation. The Programatica project [9]
attempts to automatically translate Haskell into Isabelle/HOLCF.
Even though automatic translation would be ideal, we chose HOL
over HOLCF, because Programatica at the time of writing was not
able to parse our code base, because partial functions and lazy data
structures do no play a major role in our code, and because HOLCF
as a logic is more heavyweight than HOL, introducing reasoning
about domains and continuous functions.

As the pilot study clearly showed that most of the effort will
be spent in the later stages of the project, we made the trade-
off towards more work in the specification phase instead of more
complex reasoning later.

3.2 Types and Terms
The translation proceeded by creating one Isabelle theory per
Haskell module. In the case of circular module dependencies which
are possible with GHC, we created two Isabelle theories for one
module — one with type and constant declarations only, the other
with the corresponding definitions.

The bulk of the translation from Haskell to Isabelle/HOL con-
sists of straightforward purely syntactic transformations, some of
them just symbol replacements like converting Haskell’s -> func-
tion arrow into Isabelle’s ⇒, and Haskell’s prefix notation for
type constructors into postfix notation in Isabelle/HOL. The fre-
quent simple case of algebraic data type declarations like data
D a = C1 a | C2 a Int is trivial to translate; the general case with
labelled fields like

data D a b = C1 { f1:a } | C2 {f1:a } { f2:Int }

has no direct counterpart in Isabelle, but can be simulated by defin-
ing separate field selector and update functions. If the appropriate
naming and type conventions are respected, the update functions
automatically become available in Isabelle as record update syn-
tax.

For many basic terms no translation is required (Haskell and
Isabelle syntax and semantics coincide apart from laziness), for
most, simple token replacements already do the trick.

Among the more interesting constructs are let, where Isabelle
does not allow recursive references. These would have to be lifted
out and declared in a separate function, although this did not oc-
cur in our application. The list comprehensions [e | pat <- xs,

P pat] that can be translated directly into [pat∈xs . P pat] are
only a small subset of the Haskell98 standard, but again were suf-
ficient for our application. For more complex list comprehension
expressions a separate function declaration might be necessary. Pat-
terns in lambda, case, let and list comprehension expressions are
restricted in Isabelle. Isabelle allows basic tuple patterns in let

and lambda, and non-nested constructor patterns only for case and
primitive recursion. More deeply nested patterns were translated
to selectors. For example, for the option datatype with the con-
structors Some ’a and None and the selector the (Some x) = x, the
expression let Some x = f would become let x = the f. More
complex patterns in case construct are translated into one or more
predicates combined with a let statement for name binding. For
example, case x of p1 -> t1; . . . is translated into if is_p1 x

then let p1 = x in t1 else . . . This is similar to the translation
the Haskell98 [17] report gives into the Haskell core language. The
difference here is that we use this expansion only when strictly nec-
essary to keep the translated code as close as possible to the origi-
nal.

Incomplete pattern matches are mapped to the value undefined

in Haskell which is semantically equivalent to⊥, a non-terminating
program. Compilers typically abort the program with an error mes-
sage when undefined or error, which takes a message as its ar-
gument, are evaluated. We handle incomplete pattern matches in
the standard Isabelle/HOL way: they are mapped to the value
arbitrary which exists for every type, but is left unspecified. Since
HOL is a logic of total functions, this value exists, but nothing
is known about it. We also map explicit calls to undefined and
error to arbitrary. This corresponds neatly with Haskell’s lazy
evaluation. In Haskell the error is only raised when undefined is
evaluated, i.e. when it contributes to the result of a function. In
Isabelle, proofs about the result of the same function only fail due
to arbitrary when the constant contributes to the result.

Our first instance of this translation process was almost com-
pletely manual and still only took a small fraction of the original
implementation cost in terms of effort. In the meantime, we have
automated most of this process. Our tool is highly incomplete and
manages an estimated 90% of the overall translation work automat-
ically with the remaining 10% supplied manually as stubs or sec-
tions of translated code. The main lesson from this is that although
Haskell is a very rich language and a complete, fully faithful trans-
lation is a sizeable project on its own, the easy, incomplete solution
does work in practice. It is sufficient even for complex, real imple-

mentations of software on the OS level to be able to translate the
part of Haskell with a relatively straightforward correspondence to
HOL.

A trivial, but important detail was maintaining, as far as pos-
sible, a 1:1 correspondence with the Haskell code in both naming
and the visual layout of functions. Since the translation was manual
anyway, we had initially started out to translate concepts instead of
syntax, along the way introducing slight abstractions. It quickly be-
came clear that the better way for ease of translation and tracking
change to the original was to translate purely syntactically first, and
develop abstractions by proofs later if necessary.

As mentioned above, our application does not use lazy data
structures and lazy evaluation as an essential feature. Laziness
occurred in expressions like zip xs [1..] which could easily be
translated to zip xs [1..length xs].

3.3 Termination
Using HOL instead of HOLCF introduces the problem that all
functions must be total. As mentioned before, this is our intention
anyway, but it introduces an additional proof burden when writing
the specification.

Fortunately termination for the bulk of the kernel code is ob-
vious as it does not contain recursion. These parts can be handled
by Isabelle’s constdef which introduces a new constant as an ab-
breviation of existing constants. Apart from one instance, all re-
cursion occurring in the code was easy to handle using Isabelle’s
primitive and well-founded recursion constructs. The one difficult
instance concerns the one long-running operation of the seL4 ker-
nel: revoking a capability. This is reflected in the code in a mutual
recursion over four different functions that traverse the so-called
mapping database which keeps track of capability derivations. Is-
abelle/HOL does support well-founded recursion in one argument,
but it currently does not directly support arbitrary mutual recursion.
To define these functions, we instead build one recursive function
that takes the union of the original parameters together with an ad-
ditional parameter that determines which of the branches is to be
executed. This momentarily introduces more complexity and large,
ugly terms, but the original function definitions as they appear in
Haskell can then be easily derived as lemmas. For validation and
proofs we use these lemmas, not the large construct containing all
recursive branches. This technique was documented in detail by
Slind [23].

Termination of this function still was nontrivial. The algorithm
follows pointers in a data structure that models physical machine
memory. We have shown a similar mechanism to terminate in
the pilot study [18], but, since we still expect changes from the
ongoing validation of the seL4 API in real systems, we would at
this stage ideally like to avoid deep proofs that might be obsoleted
faster than they were produced. A very simple method of at least
guaranteeing that termination depends on the pointer parameter
only is the observation that the set of machine words is finite and
that traversing the tree will visit each pointer at most once. This
termination criterion is easily accepted by Isabelle.

3.4 Monads
Since microkernels are inherently state-based, the Haskell imple-
mentation of seL4 uses monads [21] heavily to encapsulate this
state. On the one hand this explicit state representation is much
closer to HOL than for instance ML’s implicit program state. On the
other hand, faithfully representing Haskell monads in Isabelle/HOL
is problematic.

The main difficulty is that Haskell uses type constructor classes
for describing monads abstractly. A monad is a structure of type ’a

m where ’a is a type variable and m a type constructor (like list

or option), implementing two functions return :: ’a ⇒ ’a m

and bind :: ’a m ⇒ (’a ⇒ ’b m) ⇒ ’b m, written _ >>= _.
Although there is no way to enforce this in Haskell, to form a
monad, the two operations additionally have to satisfy the three
monad laws.

Isabelle does provide single parameter axiomatic type classes,
but it does not provide constructor classes, and can hence not
express monads in the same abstract fashion. There is, however,
nothing stopping us from defining concrete monads in Isabelle.
The seL4 implementation uses three monads: a state transformer,
a state transformer with an exception (ErrorT) monad on top, and
a state transformer with two exception monads on top. They are
easily formalised:

(’s,’a) state_monad = ’s ⇒ ’a × ’s

return a ≡ λs. (a, s)

f >>= g ≡ λs. let (v, s’) = f s in g v s’

gets f ≡ λs. (f s, s)

modify f ≡ λs. ((), f s)

(’s,’a,’b) error_monad = (’s, ’a + ’b) state_monad

returnOk ≡ return ◦ Inr

throwError ≡ return ◦ Inl

lift f v ≡ case v of Inl e ⇒ throwError e
| Inr v’ ⇒ f v’

f >>=E g ≡ f >>= lift g

Note that we did not formalise the monad transformer ErrorT,
but instead the result, an ErrorT StateMonad. The functions Inl

and Inr are the projections into the sum type. We leave out the for-
mal definition of the ErrorT (ErrorT StateMonad), it is analogous
and introduces another sum type in the result.

We initially defined (’s,’a) state_monad in the usual way as
a data type with the only constructor State ’s ⇒ ’a × ’s. This
ensures that state_monad is different from the function space ’s ⇒
’a × ’s and makes conversions between them explicit. Later, for
reasoning about the state monad, these explicit conversions got in
the way. Apart from purely algebraic reasoning, we often showed
equality of two state monads by extensionality (being equal if they
yield the same results for all start states). Stating this without ex-
plicit conversions was more natural and provided smoother automa-
tion.

It was easy to show that the three monad laws hold for all of
the instantiations, and it was also not hard to provide a slightly
modified do-notation where do x ← f; g x od stands for bind f

(λx. g).
We opted not to use Isabelle’s constant overloading, but instead

chose different names for each bind and return implementation
with corresponding do-notation (doE, doEE). The reason is again the
absence of constructor classes. To express the type of return for all
implementations, we would have to generalise it to ’a ⇒ ’b which
in turn dilutes the value of type checking the specification. That
means we traded off a small notational overhead against higher
assurance through type checking. In fact, we found the notational
overhead made the specification clearer than the original Haskell
code because in its nested do-blocks it was often not obvious in
which monad the operations are performed.

Fig. 2 shows a typical example of translated monadic code and
demonstrates how more complex case patterns are resolved.

For specification purposes, this concrete treatment of monads
proved fully adequate. The main disadvantage is that we cannot
reason abstractly about monads just in term of monad laws, which
could lead to duplication of theorems. So far this did not turn out
to be a problem. We mostly had to reason about the behaviour of
the state monad, which involved lemmas specific to state monads,
not lemmas about monads in general. Scalability was not a prob-

Haskell:
activateThread = do

thread <- getCurThread
state <- getWaitState thread

case state of
NotWaiting -> return ()
WaitingToSend { pendingReceiveCap = Nothing } ->

doIPCTransfer thread (waitingIPCPartner state)
WaitingToReceive {} ->

doIPCTransfer (waitingIPCPartner state) thread
_ -> error "Current thread is blocked"

Isabelle/HOL:
activateThread ≡
do thread ← getCurThread;

state ← getWaitState thread;
case state of

NotWaiting ⇒ return ()
| WaitingToSend eptr badge fault cap ⇒

if cap = None then
doIPCTransfer thread (waitingIPCPartner state)

else arbitrary
| WaitingToReceive eptr ⇒

doIPCTransfer (waitingIPCPartner state) thread
| _ ⇒ arbitrary

od

Figure 2. Typical monad code translation

lem. For some programs it might turn out inconvenient to not have
monad transformers available as such, but only their results. Ap-
plying significantly more than three transformers (as in our case) is
unlikely to occur in practice, though.

Although the method described above is very lightweight and
proved adequate so far, it would be more satisfactory and scalable
to be able to directly emulate constructor classes in Isabelle.

Dawson [6] shows that abstract reasoning about monads is pos-
sible in Isabelle/HOL by declaring a new type ’a m that encodes
type constructor application. This makes the types of return and
bind and the corresponding laws directly expressible. Unfortu-
nately, this technique prohibits instantiation.

Lüth et al [3, 16] have extended Isabelle with parameterised the-
ories. They show how this mechanism enables an abstract treatment
of monads together with a convenient instantiation mechanism. The
only drawback of the method is scalability of another kind: it re-
lies on Isabelle’s proof terms to produce the required instantiations.
Proof terms currently consume a significant amount of additional
resources (mainly memory). For small to medium-sized develop-
ments this does not pose a problem, but we expect the size of our
proofs to go beyond the limits of current ML systems if proof terms
are switched on.

Huffman [14] uses a method similar to Dawson’s for mod-
elling monads in Isabelle/HOLCF which he recently extended to
Isabelle/HOL [13]. Instead of declaring a new type for all type con-
structors, he creates an axiomatic class of type constructors and de-
fines a new type for each specific type constructor. For example,
instead of showing that ’a option is of class monad, one declares a
new type Option and instead shows that this is of class monad. It can
then be used as ’a · Option where · is a new operator for apply-
ing type constructors to types. The argument type ’a is restricted
to the class of representable types which are basically types whose
values can be enumerated. The approach is flexible, allows abstract
reasoning, generic do-notation, monad transformers, and instantia-
tion. It is, however, cumbersome to use because it requires explicit
conversion between e.g. ’a option and ’a · Option that are not
present in the Haskell code.

3.5 Dynamic
The Dynamic extension of GHC to Haskell98 allows a limited form
of type casting: automatic conversion of monomorphic types to the
type Dynamic and back.

This extension is used in the kernel implementation to model
physical memory as a map from addresses (machine words) to a
tuple of dynamic objects and their size:

psMap :: Map (PPtr w) (Int, Dynamic)

Kernel objects belong to the Storable type class and implement op-
erations which among others allow their storage to (storeObject)
and from (loadObject) this physical memory.

The question therefore is how to define this type class storable
and how to represent Dynamic in Isabelle/HOL. These two points
are related: had we not wanted to define a type class, the naı̈ve
solution of modelling Dynamic as the union (a sum or datatype) of
all types we possibly might want to store would work. Because
some of the types to be stored have parameters, so would the
union. Since the class storable already describes at least one type
variable, this conflicts with the fact that Isabelle supports single
parameter type classes only.

We therefore chose a concrete type that is large enough to sup-
port an injection of all storable objects: word8 list where word8

is the type of 8 bit machine words. This choice was arbitrary, we
could just as well have chosen natural numbers or anything else
large enough. We picked word8 list, because we already had some
of the infrastructure for encoding/decoding other types into it avail-
able from our work on a memory model for C pointers [27]. What is
new here is lifting these encodings to more complex data structures
by using parser combinators.

The axiomatic type class storable is built up as follows in
Isabelle/HOL.

axclass to_from_byte < type

to_byte :: ’a::to_from_byte ⇒ word8 list

from_byte :: word8 list ⇒
(’a::to_from_byte × word8 list) option

axclass storable < to_from_byte

from_byte (to_byte x @ xs) = Some (x, xs)

We use the class to_from_byte, a subclass of Isabelle’s default
type, to restrict the type of the two overloaded constants to_byte

and from_byte. The subclass storable introduces the defining ax-
iom. The constant from_byte has a slightly more complex type than
might be expected, because we are interested in what remains of the
stream when we have read an object (@ is the append operator).

We can now define a combinator and an extractor:

(f1 -- f2) bs ≡ let res1 = f1 bs;
res2 =

case res1 of None ⇒ None
| Some (obj, rem) ⇒ f2 rem

in case res2 of None ⇒ None
| Some (obj2, rem2) ⇒

Some
((fst (the res1), obj2), rem2)

x B f ≡ case x of None ⇒ None
| Some (y, rem) ⇒ Some (f y, rem)

This allows us to build more complex types from existing ones.
For example, if we have already proved that bool::storable, the
datatype used to model capability rights is introduced easily:

datatype cap_rights = CapRights bool bool bool bool

to_byte (CapRights b1 b2 b3 b4) =
to_byte b1 @ to_byte b2 @ to_byte b3 @ to_byte b4

from_byte bs ≡ (from_byte --
from_byte -- from_byte -- from_byte)
bs B

(λ(b1, b2, b3, b4).
CapRights b1 b2 b3 b4)

Type inference and overloading saves us from specifying which
to_byte and from_byte are to be used. We only need to give the
structure of the encoding.

After showing that arbitrarily sized machine words are storable,
we encoded natural numbers using repeated modulo/division by
255, with 255 itself as the terminator of the stream. Boolean values
were stored as byte values of 0 or 1; similarly for the option type,
but with the encapsulated object following it in the stream. Lists
were encoded as their length (a natural number) followed by their
contents. Functions can be encoded as long as their domains can be
shown to be finite enumerations; this is done by iterating over the
domain and encoding only the range. All other components were
based upon these primitives.

We found this approach to scale well beyond primitive types;
once these were defined, the build-up of all other storable data types
and records was swift, and the instantiation proofs automatic.

4. Experience
As mentioned above, the overall project goal is not to show that
microkernels can be verified in principle. The goal is to show that
and how it can be done with time and resources in the order of
traditional system implementation (within maybe a factor of 2 or
3). The goal is not to verify a toy implementation or simplified
abstraction, but a high-performance, binary compatible version of
seL4 that can directly be used on embedded devices such as mobile
phones.

The basic philosophy in planning and conducting this project
is not much different from conducting a software development
project. We are aiming to be pragmatic, to use existing tools as
far as possible, to employ automation when possible, and to use
systematic methods if not.

Translating Haskell in part manually instead of fully automati-
cally was a pragmatic decision. The cost of manual translation was
with about 1 person month significantly below that of implement-
ing the Haskell kernel in the first place. The total development cost
(including API design ca. 10 person months) was less than our for-
malisations in the pilot project had suggested. Change tracking us-
ing dependency tags in the source files together with normal version
control and shell scripts to pick out changes automatically proved
to be effective and again well below the cost of the implementing
the changes in Haskell in the first place. The overall cost of creating
a fully automated tool would have been significantly higher.

So far, the design and formalisation task has gone smoothly and
largely according to expectation.

This process of designing a new OS kernel API and formalis-
ing it at the same time was highly interactive and interwoven with
many iterations and it has not concluded yet. The translation to
Isabelle/HOL started relatively early, when the Haskell API was
nearing a first stable point and first user-level binaries could be
run through the machine simulator on top of seL4. Already during
the translation process, we found and fixed a number of problems,
for example an unintentionally unbounded runtime of the IPC send
operation. It was discovered because Isabelle demanded termina-

tion proofs for operations that were supposed to execute in constant
time.

5. Related Work
We have already mentioned work related to the translation of
Haskell [9, 14] and the treatment of monads in Isabelle [6, 14,
13, 3, 16] in Sect. 3.

Thompson [25] translates Miranda to Isabelle, but uses first
order logic as base and does not treat advanced features like monads
or Dynamic. Abel et al [1] give an automatic translation of the GHC
core language (into which Haskell is transformed for compilation)
into the type-theory based Agda system and into first order logic.
Some of our manual translations to Isabelle/HOL are similar to
those of Haskell to GHC core. Harrison and Kieburtz [11] present
P-logic, a program logic for Haskell that focuses on the strict and
lazy aspects of the Haskell semantics.

Hallgren et al [10] also produced a microkernel in Haskell. The
difference to our work is that they are interested in providing a
production kernel in Haskell running directly on the hardware. We
are producing a series of design prototypes that are later to result in
a high-performance C implementation.

Earlier work on OS verification includes PSOS [22] and UCLA
Secure Unix [30]. Later, KIT [2] describes verification of process
isolation properties down to object code level, but for an idealised
kernel with far simpler and less general abstractions than mod-
ern microkernels. A number of case studies [7, 4, 29] describe the
IPC and scheduling subsystems of microkernels in PROMELA and
verify them with the SPIN model checker. Manually constructed,
these abstractions are not necessarily sound, and so while useful
for discovering concurrency bugs, they cannot provide guarantees
of correctness. The VFiasco project [12] is verifying parts of the
L4-based Fiasco micro kernel directly on the implementation level
without a more abstract specification of its behaviour. The VeriSoft
project [8] is attempting to verify a whole system stack, includ-
ing hardware, compiler, applications, and a simplified microkernel
called VAMOS.

Spies [24] uses the high level specification language FOCUS to
describe the behaviour of an operating system. The difference to
our approach is that we use a language that is foremost a program-
ming language and that can being used as such by the kernel design
team without expert knowledge in formal methods. It is one contri-
bution of this work to show that this choice does not sacrifice the
ability to arrive at an exact formalisation with little effort.

Our approach occupies the middle ground between two ex-
tremes: the a priori approach where the kernel is designed formally
from the start, and the a posteriori approach where a traditional
(C/C++) implementation is created first and formalised later. Both
can be found in the literature, e.g. the formal design process of
PSOS [22] and implementation verifications such as [7, 4, 29, 12].

In our setting, the a priori approach would design the kernel di-
rectly in the theorem prover and extract a program to be used for
validation. This requires that the OS designers are intimately famil-
iar with the formal specification language, which they are usually
not. They also would be restricted in their use of the language by the
executable fragment of HOL, since validation of low-level design
decisions is necessary to distinguish between those designs that can
possibly be implemented efficiently and those that cannot. This re-
striction is significant, because even full Isabelle/HOL, while per-
fectly suited for specification, is not a comfortable programming
language yet, certainly not one for rapid development, testing and
prototyping of sizeable, low-level, and largely imperative systems.

The a posteriori approach would create a traditional C imple-
mentation first. Folklore says and our own experience [28] shows
that the effort for formalisation here is significantly higher and cor-
respondence to the prototype much less obvious. Additionally, the

effort for implementation is significantly higher as well — we es-
timate the effort for creating a micro-kernel prototype the tradi-
tional way in our OS group to be about 1 person year. This does
not include the numerous iterative changes to the API that we went
through in our process.

Our approach lies in between. Compared to the a priori method,
we enjoy the richness and expressiveness of a full functional pro-
gramming language and keep the intricacies of formalisation from
the OS designers. Compared to the a posteriori method, we arrive
at a precise formalisation very quickly and easily. We also signif-
icantly speed up development and make an iterative prototyping
process possible that in a few months has gone through more API
changes than what would otherwise have taken years to implement.

6. Conclusion
In this paper, we have shown how formalisation can be included
in the creation of an OS microkernel while maintaining OS design
concerns as the main driving factors. We are convinced that this
approach is amenable to spreading software verification wider into
industry use, because it makes it easier to achieve scale, and to
achieve formalisations quickly and systematically. Note that the
formalisation activity can be carried out by a separate group of
people — there is no need to replace an established design team
with people who are trained in formal methods. This is an important
difference to other techniques such as creating design prototypes in
the theorem prover directly.

We have shown how a significant part of Haskell98, including
a number of common GHC extensions that occur in practice can
be systematically translated into Isabelle/HOL. It was not our aim
to provide a complete translation for all language features, as our
target language HOL is not suited to this task. The programs that
are likely to work well with our method are those that terminate and
do not make essential use of laziness. Programs that are likely to be
problematic are those that make heavy use of laziness and advanced
type system features like multi-parameter type classes. As we have
shown, though, some of these problems can be solved, at least for
specific applications.

We have received feedback on earlier version of this paper in
both directions: on the one hand that it is obvious that one would
want to be pragmatic in this way and on the other hand that it
will not work in the longer term, because the lack of automation
will introduce inconsistencies. With longer experience in tracking
change and staying in synchronisation with Haskell over many
prototype iterations we can safely disagree with the latter. The
former criticism is harder to rebut. It is, of course, obvious that
you want to be pragmatic when you know with hindsight that the
approach works. The main message of this paper is that it does
work, and that it does work well. One can in fact formalise large
(5.000 loc literate Haskell), real-world programs at a low cost, even
though the translation is not fully automatic, HOL and Haskell do
not quite match, and the method we use is incomplete. This fact in
our view is far from obvious.

We have additionally created (but not shown here) a more ab-
stract specification that is suitable for proofs on security and invari-
ants on kernel data structures. We are currently proving that it is
indeed a formal abstraction of the result of the Haskell translation.
Again, starting this process has already helped uncover problems in
the Haskell implementation that slipped through code reviews and
tests (such as an incomplete test in the revoke-capability operation).

This shows that formalisation and the use of theorem proving
tools is beneficial even if full verification is not yet performed or
is not even planned. In our setting the formalisation cost so far has
been significantly lower than the implementation and testing cost,
while the design team did not have to switch to completely new
methods or notations.

We currently have a fully working microkernel, implemented
in Haskell, running normal ARM binaries through a simulator. We
have fully formalised this microkernel in Isabelle/HOL by system-
atic translation. Next to continuing validation and development of
the kernel, this formalisation is the basis for future verification of
properties of the system (which we have already started), and a for-
mal refinement of the formalisation down to high-performance C
code.

Acknowledgements We thank Jeremy Dawson and Brian Huff-
man for discussions on their monad formalisations. We are also
grateful to Manuel Chakravarty, Michael Norrish, and Kai Engel-
hardt for reading earlier drafts of this paper.

References
[1] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell. Verifying

Haskell programs using constructive type theory. In Haskell’05,
Tallinn, Estonia, 2005.

[2] W. R. Bevier. Kit: A study in operating system verification. IEEE
Transactions on Software Engineering, 15(11):1382–1396, 1989.

[3] E. Broch Johnsen and C. Lüth. Theorem reuse by proof term
transformation. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, International Conference on Theorem Proving in Higher-
Order Logics TPHOLs 2004, volume 3223 of LNCS, pages 152–167.
Springer, Sept. 2004.

[4] T. Cattel. Modelization and verification of a multiprocessor realtime
OS kernel. In Proceedings of FORTE ’94, Bern, Switzerland, October
1994.

[5] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and
loose reasoning is morally correct. In J. G. Morrisett and S. L. P.
Jones, editors, POPL, pages 206–217. ACM, 2006.

[6] J. Dawson. Compound monads and the kleisli category. http:
//users.rsise.anu.edu.au/~jeremy/pubs/cmkc/, 2006.
Draft.

[7] G. Duval and J. Julliand. Modelling and verification of the RUBIS
µ-kernel with SPIN. In SPIN95 Workshop Proceedings, 1995.

[8] M. Gargano, M. Hillebrand, D. Leinenbach, and W. Paul. On the cor-
rectness of operating system kernels. In Proc. 18th International Con-
ference on Theorem Proving in Higher Order Logics (TPHOLs’05),
pages 1–16, Oxford, UK, 2005.

[9] T. Hallgren, J. Hook, M. P. Jones, and R. B. Kieburtz. An overview
of the programatica toolset. High Confidence Software and Systems
Conference, HCSS04, http://www.cse.ogi.edu/~hallgren/
Programatica/HCSS04, 2004.

[10] T. Hallgren, M. P. Jones, R. Leslie, and A. P. Tolmach. A principled
approach to operating system construction in haskell. In O. Danvy
and B. C. Pierce, editors, ICFP, pages 116–128. ACM, 2005.

[11] W. L. Harrison and R. B. Kieburtz. The logic of demand in Haskell.
Journal of Functional Programming, 15(6):837–891, 2005.

[12] M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report
TUD-FI02-03-März, TU Dresden, 2002.

[13] B. Huffman. Constructor classes in Isabelle/HOL. http://www.
csee.ogi.edu/~brianh/, 2006. Formal Proof Development.

[14] B. Huffman, J. Matthews, and P. White. Axiomatic constructor
classes in Isabelle/HOLCF. In J. Hurd and T. F. Melham, editors,
TPHOLs, volume 3603 of LNCS, pages 147–162. Springer, 2005.

[15] The Iguana operating system.
http://www.ertos.nicta.com.au/software/kenge/iguana-project/
latest/, 2006.

[16] E. B. Johnsen, C. Lüth, and M. Bortin. Formal software development
with Isabelle. http://www.tzi.de/~cxl/awe/sfd.pdf, 2006.

[17] S. P. Jones. Haskell98 language and libraries, revised report, Dec
2002.

[18] G. Klein and H. Tuch. Towards verified virtual memory in L4. In
K. Slind, editor, TPHOLs Emerging Trends ’04, Park City, Utah,
USA, 2004.

[19] R. Kolanski and G. Klein. Formalising the L4 microkernel API. In
B. Jay and J. Gudmundsson, editors, Computing: The Australasian
Theory Symposium (CATS 06), volume 51 of Conferences in Research
and Practice in Information Technology, pages 53–68, Hobart,
Australia, Jan. 2006.

[20] J. Liedtke. Towards real µ-kernels. CACM, 39(9):70–77, 1996.

[21] E. Moggi. Computational lambda-calculus and monads. In
Proceedings 4th Annual IEEE Symp. on Logic in Computer Science,
LICS, pages 14–23. IEEE Computer Society Press, Washington, DC,
1989.

[22] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and
L. Robinson. A provably secure operating system: The system,
its applications, and proofs. Technical Report CSL-116, SRI
International, 1980.

[23] K. Slind. Reasoning about Terminating Functional Programs. PhD
thesis, Technische Universität München, Institut für Informatik, 1999.

[24] K. Spies. Eine Methode zur formalen Modellierung von Betriebssys-
temkonzepten. Phdrep, Technische Univerität München, 1998.

[25] S. Thompson. A Logic for Miranda, Revisited. Formal Aspects of
Computing, (7), March 1995.

[26] H. Tuch and G. Klein. Verifying the L4 virtual memory subsystem.
In Proc. NICTA FM Workshop on OS Verification, pages 73–97.
Technical Report 0401005T-1, National ICT Australia, 2004.

[27] H. Tuch and G. Klein. A unified memory model for pointers. In
G. Sutcliffe and A. Voronkov, editors, 12th International Conference
on Logic for Programming Artificial Intelligence and Reasoning
(LPAR-12), volume 3835 of LNCS, pages 474–488, Jamaica, Dec.
2005.

[28] H. Tuch, G. Klein, and G. Heiser. OS verification — now! In
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems, pages 7–12, Santa Fe, NM, USA, June 2005. USENIX.

[29] P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and
G. Back. Formal methods: a practical tool for OS implementors.
In Proceedings of the Sixth Workshop on Hot Topics in Operating
Systems, pages 20–25, 1997.

[30] B. Walker, R. Kemmerer, and G. Popek. Specification and verification
of the UCLA Unix security kernel. CACM, 23(2):118–131, 1980.

http://users.rsise.anu.edu.au/~jeremy/pubs/cmkc/
http://users.rsise.anu.edu.au/~jeremy/pubs/cmkc/
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04
http://www.cse.ogi.edu/~hallgren/Programatica/HCSS04
http://www.csee.ogi.edu/~brianh/
http://www.csee.ogi.edu/~brianh/
http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://www.ertos.nicta.com.au/software/kenge/iguana-project/latest/
http://www.tzi.de/~cxl/awe/sfd.pdf

��������� ��	
����
�

�� ��� ����	� ���
�����

������� ��	
��� ���
�� �����

�������� �����		���� �����
����

� ���������	��

��� ��� ��������	
� ��
����� �� 	� � ������ ������ ����
�	�
 �� ����
�� ��� ������ ��
�	���
�� ����� 	� �������� �����	
� ��� � �	�� ������ ��
���	�	���	�
� �� ���� ����	��	
� ���!	�� ��	�� ��� � �����	�	
� �� ���

�"#!� ����������� �� ����� ����� �
������
�	
� �� ��	� ������ ������
�� �����
� � ���� $� ��� �
����	
� ��� ���!	�� �� %&� ��������� '	!�

�
 ������	�
 ������ ��� ���� ������	
�� ������� ��� ������� ��� ������	 ��
�	�� ��� %&� ������ ������ ��� ���� 	� �������� ��
�������� �� %&�
��� ��
� �� ����
 � ��� 	�� ������ ����� �
� �� ��!������� ��� ��
� ��
!��	�� ����	 �� ���!	��� �� ���	� ���������

��	� ���(��� 	
��	��� �)�
�*� !��	+���	�
 ���� ,� ��� ��� �
��� ���-

	�� ������ ������ .���� �
 ��� ������ ����� ��+
	�	�
 	
 ��� %&�
����	+���	�
 ��� �� ��!� ��!	��� � ��������� ��� ��
!���	
� �
 ������	�

����� 	
�� � ������	�	�
�� ���	� ������� ���� 	� ���	�+� �� 	� �
� �
�� 	� ���
������	�
 	� ������	 �� �	�� ��� ������ �����*�
��	�
 �� ��
�	���
��� /�
���
 ��� ��� ��� ���!�� ����0 1� �� ������	
� ��
�	���
���

 �� ��� 	�� ������ �����

�
 %&�� ����	��� ������	 2������	
� ���
��3 ������� � �����
 �������
��
�����
���� �
 (���	
� �	�� ��� ������ ������ �����	��� ������� ������
������ ������ ��������� ��
�����
��� ������� ���
���� ���� �
� ��	�� 	
-
������	�
�� ������ ���
 ������� ����	�	� ������� ����	
�� &������ ���!	��
	� �0����� � ��� ����� 	
 ��	�� ������ ������	�
� ��� ���� !	�	 �� ��
�������� .� ��
����	
	
� ��� ����� �� ������	�
�� � ������ ����� �����-
�	
�� ��	�� !����� ��� � �����
�� � ���� ���� ������	�
� %&� 	
��������

���
�
���
���	� 	���� �
� �������� ��� ���� �� ���� ������ ������
������ �	��	
 � %&� ������� �0���� ��� !	�	 	�	�� �� ����� �������� ���	
�
������� ������	�
� �� ���
���� �������� ������� ���!	�� �
��� ���	��
��
�	���
�� 	� ���� ��
����	
�� ���
 ���� �
��� ������� ��
�	���
���

%&� 	
������ ������� ��� ��� �� ��
����
	���	�
� ��� ��� ������� �����-
��
� ������ � ������ �� ���� ������	�
 �
�	� ��� ����� ������� ��!� ��������
���	� ��������
�	
� ���	���� 4
�� ���� ������ ��� ������� 	�� ���	��� ���
������� ��� ������ ������	�
� 5��� �
 	������
���	�
 ���
���	
�� � ��-
�	�� 	� �������� �� ��� �	��	
�� ������	�
�� � ������ +��� �����	 ��� �����
������� ���� 	� ��� ������� ��� ���	�� �
� ���
 ��	�� �
�	� ��� �������
��!� ������� ��� ���	��� %&� ���� �0��� � 	�������	� ���	��� ��
�	��	
�
�� ��� ��	��� �������
�� ��� �	
��� �
� ��� ��
� �������	
� � ���	�� 	
��
��� �������� 	
������	�
� �	!�� ��� ���������� ��� �������
	�� �� �� �����
��������	�
� �����
��	��	
� �� ����� ��!	
� �� ��	��

6!��� �������		���� ������	�
 	� 7�����	
� ��8 	
 ����� �� � 2��� ��3
�������
�� �����	�
 �
� ������-����� �������
�� �����	�
� �
 ��� ������
�������� 	
 ��� ������	�
� �
 ��	� ������ �� �����	�� ����
�	�
 �� ������
������ ��������� ��� ��� �� �����	�
������� �	
����� ������ ���	�� ������	�
��
	
����	
� ������	�
� � �	0���
� �������� ��	� ���!�� �� � ��� ���� ������-
���
 ��9��
�	�� ����� �
 ���	�� ��������� ��	� �
����� ��9��
�	�� ��
�	���
��
��� ���	�� ��
�	���
�� ����� ����� ��� ���� ���	�� ������ � � � �	!�
 ������
�� ������� ������ � ����� �*� ������	
� ������� �������� �
� ����� �*� ������	
�
������� ��������� ���� � ���	�� ������ ���!�� �� ��� ���� ����� �����	
 �������
�������� ����� �������

6��� ����� �����	�
 �� 	� � �	
��� ������ �
 �*� ������	�
� �
� ��� ��	���
�
� ���	�� ������	�
�� ���� �������
�� ������ �*� !	�� �� ��� ������	�
� 2��-
�� ��� �� ���� ��� 	
����� ������� ����� � ������� ����� ���� ��3 ��	�
�����	�
 ���� ����� �	�� �������� 5����������� 	� ���� ����� �	�� ��� � -
���!� �� ���!	�� �� ��� ������	�
 2��� !����� �����
�� � �����3: ���� ����
������	�
 ���� �����
 ��� !���� ��	���
 � ���
�	� ������ ��	�� ������	�

�� ��� �	!�
 �����	�
 2� ����-��+
��
��	�
� �	
�� �� 	� �	
���3�

5�
�� �
� ���	�� �������
�� ��� ��+
�� ��
��� ���	�� ������	�
�� ���
�	0���
�� �����
 � ��
�� �
� � ���	�� 	� ���� ��� ������ 	� ���������; ����
	�� ������� �� � �������� � ��� �������� <�
�� � ��
�� �	
�� � 	����
������ �� �� ���� 	
 ����� �� ������ ��
�	���
��� ��	�� � ���	�� ���� ���
���� ��� ��� ��������

=

� ����� ��� ������

��� 	
��� �� ��� ���� 	
������ ��� 7������� �����8 �� ������	�
� ��������
 � ���� ������� ��� !����� �����
�� � ��� ���� ������	�
�� �
� 	
	�	�� !�����
��� ���� ������ �����	�
� �
 � !��	� ������	�
 ������ ��� ������� ���� ���
���� �������	!� ������	�
� 	
 ��� ���� ������ ���� ��� ��
 	� �������� �
� �
	9�� ��� �	
���� �
�
� �������	!� ����� ��� ������� �����
 � ��� �	
���

�
� � ��� ��
�
�� ��� ������	�
 ����� 	� %&�-��
�	���
�� �� ��
� �� ���� � ����� �	�-

����	
� ��� � ���!�� �����	
� ��� ���� ������� �
� 	� 	� 	�
�� %&�-��
�	���
�
�� ��
� �� ���� ���� 5�� ��	� �� ��� � ����� ����	
� ���(��� >� ����
�	������ ��� ������	�
� ��
���� 	
 � �	������ ������ 4�����	�
� ��� �����-
����� �
� ����
	��� 	
 �����
� ���� �
 ��� � ���!	
� ������� ��� ����-
��	�
� ��� ��!� � �	������ ���� �����
 ���� ����	
� ��	�� ��� � ���!��
 ����� ��� ������ ���	�� ������	�
� 2	
����	
� ���	���3 ��� �	������� 	
 ���(
	
 � �������� �����
� �	
�� ���� ��� ���� �� ��� �����
 ���	�� ����� ��� ���
��������

?������ ��	�� ������	�
� ��!� � ����	�� ������� 6��� ������� ��	�� 	�
� ���!�� � ������� ����� ���
 ��� ������ ���� 	����� 	�; ����!��� �������
��� � ���!� ������� ��	��� 	
 �	0���
� ������� ��� ������	
� ������� 2���-
�����
�	
� �� 6������ > 	
 �., �� ��� %&� @�
����� ����	+���	�
3 ����
-
������� ��	� ���������

�����!�����
� A B

��������� A =

������
??2��>3
?/2��=3

������
??2��=3
?/2��>3

(5): RW(x,1)

(0): RR(x,1)

(1): RW(x,2)

(2): RW(x,2)

(3): RR(x,2)

(4): RW(x,1)

��	� 	� �
 ������� �� %&�-��
�	���
� ���!	��� ��� ���� 	
��� 	� ����

	
 ��� ����-��
� ��� ��� ������ �����	�
 � 	� �	!�
 ��� 	
	�	�� !���� B�
��� ������� ����	�	���� 	
 ��	� ������	�
� 4
� ������ �������� � �������
���� 2??3 �� � 2�����
	
� ��� !���� >3� �������� � � ������� ��	�� 2?/3

�

�� � 2���	�
	
� ��� !���� =3� ��� ����� ������ �������� � ������� ���� �� �
2�����
	
� =3� �������� � � ������� ��	�� �� � 2���	�
	
� ��� !���� >3� ���
������ ��� � ���
���	
��	�	!� �� ����������� ���������� �� ��9��
�	��
��
�	���
��� �	
��
� ��� �� ����� �� ��� ������	�
� ��
 �����	
 ��� !�����
�����

4
� ��� �� ��
��	!� �� ��	� 	� �� ��+
� ���� ������� ��	�� �� � 7���	��8
�� ��	���: ��� 7����8 ��	��� � ���!�� � ��� ������ ���� 	����� 	�� �
� ���
�!��� ����� ������� � 7!	�����8 ��	�� ���� 	� � ���!��� �
 �
 �����
�����
����� �� ��� � ������ �� ��� �� ��� !	����� ������� ��	���� 	����� � �����
�������� ���� � 	
������� 2�
 ��
������ ���� ������� ���� 	� �
�� 	
������
	
 ��� �����
����� ����� �� ��� ������ ���� 	����� 	�� �� ����� 	�
�
��� ���
!	����� ���	�� �� ������� ������3

��� ���� ������ 	
 ��� �	���-��
� �� ����� �����
����� �����	
�� ���
���� ������� ��� ������	�
� �� ���� 2>3 �
� 2=3 ��� ���	�� �� ��� ����
������� ��	�� 2�	�	������ 2$3 �
� 2,33� ��� ������� ����� ��� ��� �������
��	��� �	0���
���� C����!��� ���� ������*� �����
����� �����	
� 	
������
�
�� ��� ������� ����� 	����� � ���� ������� �
�������� ����(
�� 	� 	�
��
��� �����
�	 �	�� �� � ������ �� �����	
 ��� ������� ���� !����� �� �����
��������

��� ������	
� ������� 2��������
�	
� �� 6������ 1 	
 �., �� ��� %&�
@�
����� ����	+���	�
3 	���������� ��� �������
���	�
 �� ���	�� ������	�
��

��������� A =

������
?/2��>3
�/2��>3
?/2��=3

������
??2��=3
??2��>3

(0): RW(x,1)

(2): SW(y,1)

(3): RW(x,2) (4): RW(x,2)

(1): RW(x,1)

(6): RR(x,1)

(5): RR(x,2)

��	� 	� �
����� %&�-��
�	���
� �������� �
 ��� +��� ������*� ������	�
�
��� �����
�� �� ��� 	
���!�
	
� ���	�� ��	�� 2�/3 	���	�� ���� ��� �������

$

���� � ���!� ��� ��� ������� ��	��� 	
 ������� ����� 2���� 2B3 ���� �������
2�3 �
� 2>3 ���� ������� 2$33� ��� 2����
�	���� ���
���	
��	�	!�3 ���� �������
��� ��� �� ��� ���� ���� ��� ����
� ������ ��� � ���!� 	�� ��
 ����� ��� ��
������ �� 	
�	����� 	
 ��� �������

�	
�� ��� ����� �������
�� � �������� ����� �� ������	�
�� ��� �����
��
�� � ����� 	
�	����� %&�-	
��
�	���
��� �
 ��� ���� �� %&� ��
�	���
��� ��
����!� ����� 	���	�� � ���
�	�	!	�� ���� ��� �	������� ������ 5�� %&�-
	
��
�	���
� ������	�
 ������� �� (
�� ����� ���� � � ����� ���!�
�	
� ��	�
�������� ������ �� �� ���� ��� ��� ����� 	
!��!�� 	
 ���� ����� 2�� ������3�
��� ������	
� ������� 2��������
�	
� �� 6������ D 	
 �., �� ��� %&�
@�
����� ����	+���	�
3 ����� ��� %&�-	
��
�	���
� ������� ��� �	��������

��������� A =

������
?/2��>3
?/2��=3

������
�?2��=3
�?2��>3

(2): RW(x,2)

(0): RW(x,1)

Conflicting write

(4): SR(x,2)

Possible sourceSameVariable

(5): SR(x,1)Conflicting write

StrictOnThread

��	� ���!	�� 	� %&�-	
��
�	���
�� ��� ������� ��	��� ���� � � ���!��
	
 ������� ����� �	
�� ���� ������� �
 ��� ���� �����	�
� �
� ��� ����� ����
 � � ���!�� 	
 ������� ����� �	
�� ���� ��� ���	��� ��� +��� ���� ������ 2���
!���� =3 	���	�� � ��	��-���� ����
��
�� ���� ����� � ����� 	
 ��� ������
������

� �����������	��

6��� ������	�
 	� �
����� �� � ����� ��
��	
	
� ��� ��� ����!�
� ����	 ����
2����� 	���	
� ������� ������ ����� ������ �����	�
� !���� ����E��	���
3�
��� ������� ����� ��� ���� 	
��� �
� ��
!���� 	� 	
�� � ��� �� ������� ��	
�
� 	��
EF�� ������� ��� ������ ��� ���
 ��� 	
�� ��� ��� ��
����	�
 ���-
����� ����� ������� ���
� �	�� ��
����	
�� ���	!�� ���� ��� ������ ������
���!	�� ��� 	
��� ��� ��
����	�
 �� ��� ��� 	
���
���

������ ��
����	�
 �������� ������	
� �� ��� ������	
� �	��-��!�� ������-
���	���	�
 �� ��� %&� ������ ����� =�� ��	�� 	� ���	!�� ���� ��� ��+
	�	�

	
 ��� %&� ����	+���	�
 ��� /� ��� ��� ����	�����: 2����� � �3 �� 	
�	����

,

���� ������	�
 � 	� ������� ����� ������	�
 �� �
� 2����� � �3 �� 	
�	����
���� ���� ������	�
 � ���� 	�� !���� ���� ��	�� ������	�
 �� ��� ����	�����
����� �
� ����� ��� ���� �
����� �� ���� �� !��	� ��� 	
 ��� ��� �
���	
��

/� ��	
 �	�� ��
����	
�� �
 ��� �����	
	
� ������ �� 	� 	���F��	!� �
�
���
�	�	!�� 6��� ���	�� ������	�
 	� ������� �	�� ������� �� �!��� �����
������	�
� �
� ��� ������� ������	�
� � ���!�� � ���� ������ � 2�� ��
����
 � 2��� � A �33 ��� ������� ��������

����	��
������	������ �����	
���� �

�� � �����	 �2����� � �3

����	�������	�	������ �����	
���� �

��� �� � � �����	 2����� � � � ����� � �3� ����� � �

����	��������	�	��	������ �����	
���� �

�� � ������� ��� � � �����	

22��� � A �3 � 2��� � A �33 � 2	����	�� � � 	����	�� �3
� ����� � � � ����� � �

?����	��	
� ����
�	�
 �� ������	�
� � � �	
��� ������ 2���� ��� �� � ���
��	�� ��� 	����� ����	 ���� ��� �9���: 2	�� � A 	�� �33� ��� ������� �����
�� ������	�
� 2�� 	���	�� � ��� ������� ���
��� !���� 2�� �3 ��� ����
	
������	�
 �3 ���� � ��	
��	
�� 	
 ��� �����: ��
F	��	
� ������	�
� 2����
������	�
� �
 ��� ���� �����	�
� ����� �
� �� ��� ��� ������	�
� 	� � ��	��3�
�
� ����� ����� �
� ������	�
 	� ���	���

����	��	�� � � �

2	�� � A 	�� �3 � 2�� � A �� �3 � 2	���	�� � � 	���	�� �3

���	����������� � � � 2	�� � A 	�� �3 � 2	����	�� � � 	����	�� �3

��������������� � � �

2�� � � �� �3 � 2����	��	�� � � � ���	����������� � �3

����	�������������� �����	
���� �

��� � � �����	 ��������������� � � � ����� � �

��� ��+
	�	�
 �� ���	�-����� ���	�� 	���	�� ���� ��� � �	!�

��	��-��	�
������
��	�� ������	�
� ������ ��� ������� ���� �������� ����� �
� ��	��
��� ��������� ?����	��	
� ����
�	�
 �� � �	
��� ������� ��	� 	� 	���	�� �

1

����	��������������� �	
��
��	�� �
� ��	� ������	�
� ��� ���	�� �
�
��
�� ������� ����� ���� � ��	
��	
��� �� �
����� ��� �����	
� ������
�	0���
� �������� ��
��� � ������� ��
����	
�� 2<���� 2��� � A ��� �3 ���
�
���� ���
��	�� � �
� ��	� � ��� ��	��� �������� 	
 ��� ���� ������3

�������	������ �����	
���� �

��� � � �����	

2�� � A ���	��3 � 2�� � A ��	�3 � 2��� � A ��� �3� ����� � �

����� �� ����	�� ��� ��
�	�	�
� �
 ���� ������	�
�� ��� !���� �����
��
 � ���� ���� ���� � �����	
� �� 	
 ����� �� ��� !���� ���	�
�� � ����
��	��� /� ��� ���� � ���� ������	�
 � ����	 ���
 � ��	�� ������	�
 � 	� ���
�����	�
� �
� !����� �� ��� ������	�
� ������ �
� ����� 	�
� 	
���!�
	
�
��	�� ���� �!����	��� ��� !���� ��	���
 � ��

�� �
���� ���� �!��� ���� ������	�
 � ��� �
 �����	
	
� ��	��� �� ���
� ������ ��	�� 	� � �	�G�
��	�
 �� ��� ���� 2����� � � � ����� � �� � 3�
����� �� ��� ��� ��	��� 	
 ��� ����� ���� ����� � 	
 �����	�
 �
� !����
����	 ����� ��	� 	� ���	�+�� 	� �
� �
�� 	� 2����� � �3 	� ���� ��� ���� ��

�� � ����� ���� �� ���
 � ���� ������� ��

����	����������� �����	
���� �

��� � � �����	

	����� � � 	���	�� � � 2�� � A �� �3 � 2�� � A �� �3
� ������ � � � ����� � �

5����������� 	� � ����� ���� �� �
� ��	�� � ���� ����� � �	������ ���
!���� �� � ���� � ������� �	���� ����� � �� ����� ��

����	������ ���� �����	
���� �

� � � ������� ��� �� � � 2������� �����	 �3
	����� � �

	���	�� � � 2�� � A �� �3 � 2�� � A �� �3 �
	���	�� � � 2�� � A �� �3 � 2�� � �A �� �3
� ������ � � � ����� � � � ����� � �

/��
 ��� ��� ������� ��� ��
������ ��� ��� ���!�� ��	�� �� +
� � ���	�-
��	
� !��	� �� ���	�
��
� H�� �� � �����	�
 	� ���
�� ��� ������� ��	
�� �
����� ����	
� � ����	 �� �����	
�� �� � �����	�
 	�
�� ���
�� �� ������� ���
����� ���� ��� ��� �
���	
� �
� ������ � ����� ����	
� ��� ������

H

� ������ ����

�����
���� ��� ���� �������� �� � ��!�� �� � ������	�
 ���� 	� ������ ����!��
���� ���� �� %&� ����� ��	� 	� 	
 (���	
� �	�� ��� ������ ����� ��+
	�	�

	
 ��� %&� ����	+���	�
� 4�� ��	���� ���� �� ��� ��� ��
 ��	����� �����-
�
�� �� ��� �Æ�	�� ����	+���	�
� <���!��� ��	� ��9�	��� � ��
��� ��
!���	�

���� ������ %&� ������ ���� �� �
 	����	��� ������	�
 ������ 5�� ��������
�� �	�
	+��
� �	��� ��	� ������� 	� �
�	����� ���� �
 	������	!� ��� �� 	�
�� ���	!� ������	�
 ������ �������	����� ���� %&� ����� /� ���� ���� ��	�
�
��
����
� �	�� ��(� ��� ����	���	�
 � ����	 �� ���� ��� ��� ��!�������
�
� �����
���

����������

>� '����I	� ���� ����� �������������	��
������

=� J����	
 ������
� ��������� !��	+���	�
 �� %&� ������ ��
�	���
���
C�����*� ����	�� C	��	��
 ����
����	��� %
	!���	��� =BB1� �!�	�� �� ��
������������������������	���������������������

�� ��� %&� ��
����	��� %&� ��
����� ����	+���	�
� !�>�=� C�� =BB,�

$� %&�I��	+�� ��������� �����������������������	�����	����������������������

,�)��)�
�� ���
����� ������ ��
��� ���		����� �����	 ��� ������

�����		� &�K ����	�� %
	!���	�� �� %���� =BB$�

1� ����0 ���� ����� ���������������������������	������	��������

H� @� L��
� �
� �� C��	(� ��� 9���� ��� �Æ�	�
� �����
 ���	�+� 	�	��
���!���� �
 ��
����� ���� ��������� ����� ,D=M,N,� =BB=�

D

Automated Model-based Verification of Object-Oriented Code

Jonathan Ostroff, Chen-Wei (Jackie) Wang, Eric Kerfoot and Faraz Ahmadi Torshizi ∗

Department of Computer Science and Engineering, York University,
4700 Keele St., Toronto, ON M3J 1P3, Canada.

Abstract

ESpec is a suite of tools that facilitates the testing and verification of object-oriented Eiffel
programs in an integrated environment. The suite includes unit testing tools (ES-Test) and Fit
tables (ES-Fit for customer requirements) that report contract failures. This paper describes
ES-Verify (part of ESpec) for automatically verifying a significant subset of Eiffel constructs
written with a value semantics. The tool includes a mathematical model library (sequences,
sets, bags and maps) for writing high-level specifications, and a translator that converts the
Eiffel code into the language used by the Perfect Developer (PD) theorem prover. Preliminary
experience indicates that the vast majority of verification conditions are quickly and automati-
cally discharged, including loop variants and invariants. ES-Verify is the first automated Eiffel
verification tool and allows the developer to use the clean syntax and object-oriented structures
of Eiffel, together with its mature industrial-strength design by contract (DbC) mechanism.

1 Introduction

A software product is reliable if it is correct (performs its tasks according to specification) and
robust (reacts appropriately to abnormal conditions). How should specifications be provided and
how do we check that software behaves according to its specification? Design by Contract (DbC)
is a promising method for answering these questions. A class can be specified via expressive pre-
conditions, post-conditions and class invariants [19].

A variety of object-oriented languages have followed this contracting approach to software qual-
ity such as Eiffel [19], Spec# [4, 3], JML [17] tools like ESC/Java2 [10, 7], and UML/OCL [5].
A “lightweight” formal approach to checking the correctness of code works by runtime assertion
checking, i.e. the contracts are checked as the code is executed and an exception is raised if there
is a contract violation. However, we would also like to reason formally about the correctness of
programs and to mechanize such process. Automated verification of object-oriented code has been
pursued in systems such as Spec# and JML tools like ESC/Java2.

ESpec (Eiffel Specification) toolset is a unified environment allowing software developers to
combine Fit tables (ES-Fit for customer requirements and acceptance tests) with contracts and
unit testing tools (ES-Test). This means that a single integrated tool can be used to specify,
develop, test, and verify the requirements and design of a software product. Formal verification
is a substantial addition to the capabilities of the ESpec toolset, allowing for a combination of
lightweight validation and automated deductive verification.

In this paper we describe the automated model-based verification for a significant subset of Eiffel.
The following three components, which together we call the ES-Verify, are under development as
part of the ESpec suite:

∗Email: {jonathan, faraz}@cs.yorku.ca. Eric.Kerfoot@comlab.ox.ac.uk. Supported by a grant from NSERC.

1

• An Eiffel Model Library (ML) for specifying the abstract state of a program without exposing
its implementation details. This library is similar to the model-based specifications as in
B [1] and Z [20], except that it is object-oriented. ML contains classes such as ML SEQ,
ML SET, ML BAG, and ML MAP. These classes are both immutable and executable. They
are immutable so that software properties specified in the pre- and post- conditions as well
as the class invariants can be based on them. They are executable so that contract violations
will be reported (if any). This mathematical library is thus useful for lightweight verification
even in the absence of a theorem prover.

• An Eiffel base library (ES BASE) of data structures (classes such as ESV ARRAY, ESV LIST,
ESV SET, and ESV TABLE) for the efficient implementation of software products. The prefix
“ESV” stands for an “ESpec Value” structure, which is part of the ESpec base library (built on
top of the Eiffel base library via inheritance) for implementing code. These ESV classes apply
a value semantics [12], but for efficiency they are mutable. While class features are contracted
via ML (which are executable but inefficient due to their mathematical immutability), their
bodies are implemented via the ES BASE classes (which are mutable and hence efficient, but
not as suitable for specifications as ML ones).

• A translator that will convert Eiffel code implemented via ES BASE and specified via ML into
an equivalence written in a specification language Perfect [14]. The advantage of this translator
is that there is, associated with the Perfect language, a fully-automated reasoning tool - Perfect
Developer (PD) - that fits well for our source Eiffel code. PD supports object-oriented,
model-driven, and DbC software development as well as its verification [11]. PD converts
its specification (written in the Perfect Language) into complete verification conditions and
attempts to automatically discharge their proofs.

As stated, ES-Verify uses the PD tools (the Perfect language and its associated theorem prover).
Although we are impressed by the expressiveness and power of the PD tools, we have not used them
in the intended fashion. The intended use of PD tools is that developers write their specifications
in the Perfect Language, which is then used to automatically generate executable code (e.g. Java
or C++). In this respect, Perfect is akin to model-driven development (MDD) methods. Perfect
also has a notion of refinement that can be used to improve the efficiency of the generated code.

We have examined the Java code and found that the generated code - much longer and more
complex than the original contract-based specification - is not intended to be read. The MDD
approach is useful if there is never a need to deal with the generated code. However, Perfect spec-
ifications are neither directly executable nor is there a debugger at the model level. As a result,
our preference is to write code in Eiffel. Eiffel has a mature industrial-strength contracting mecha-
nism with a full set of tools such as debuggers, profilers, documentation, and browsing capabilities.
The language is admired for its clear syntax and expressive use of a full range of object-oriented
constructs such as multiple inheritance.

Our approach is to write the code in Eiffel and thus retaining the simple but expressive use of its
language constructs. The Eiffel code is then translated into Perfect using (a) the Perfect refinement
constructs for Eiffel feature implementations and (b) the Perfect contracting mechanism for Eiffel
contracts. The Eiffel model library (ML) was designed in order to avoid mismatches between itself
and the Perfect data structures. Theorem proving program involving genericity and loops (with
their invariants) is a non-trivial task, and this work shows that model libraries (such as ML) must
be designed with the target theorem prover in mind. In the sequel we will use the abbreviation PD
for the combination the Perfect specification language and its associated theorem prover.

2

ML_MODEL[G]*

ML_COLLECTION[G]*

ML_SEQ[G]

ML_SET[G]

ML_MAP[G, H]

ML_HASH_MAP[G, H->HASHABLE]

ES_MATH

count, infix “#”: INTEGER

is_empty: BOOLEAN

infix “|=|”: BOOLEAN -- equality of items determined by `object_comparsion`

hold_count* (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): INTEGER

object_comparison: BOOLEAN

appended_by, infix “|>”: ML_SEQ[G]

{^ML_COLLECTION.extended_by}

from_hash_table (t: HASH_TABLE[H, G]): like Current

from_array (a: ESV_ARRAY[G]): like Current

to_set: ML_SET[G]

for_all (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

there_exists (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

compare_objects*, compare_references*

from_list (l: ESV_LIST[G]): like Current

from_set (s: ESV_SET[G]): like Current

to_bag: ML_BAG[G]

from_two_arrays

(k: ESV_ARRAY[G]; v: ESV_ARRAY[H]): ML_MAP[G, H]

comprehension (c: FUNCTION[ANY, TUPLE[G], BOOLEAN]): like Current

to_set: ML_SET[ML_PAIR[G, H]]

to_seq: ML_SEQ[ML_PAIR[G, H]]

to_bag: ML_BAG[ML_PAIR[G, H]]

extended_by* (x: G): like Current

to_seq: ML_SEQ[G]

domain: ML_SET[INTEGER]

extended_by, infix “^” (x: G): ML_SET[G]

prepended_by, infix “|<”: ML_SEQ[G]

is_value_equal*, infix “|==|”: BOOLEAN -- deep value equality

union, infix “+” (other: ML_SET[G]): ML_SET[G]

intersection, infix “*” (other: ML_SET[G]): ML_SET[G]

difference, infix “-” (other: ML_SET[G]): ML_SET[G]

is_disjoint_from, infix “|##|” (other: ML_SET[G]): BOOLEAN

from_an_item (x: G): ML_SET[G]

override (x, y: G): ML_SET[G]

remove (x: G): ML_SET[G]

is_subset_of, infix “|<<=|” (other: ML_SET[G]): BOOLEAN

from_table (t: ESV_TABLE[G, H]): ML_MAP[G, H]

head, last: G -- head = Current[0], tail = Current[count-1]

front, tail: ML_SEQ[G] -- tail is everything except `head`

is_subseq_of, infix “|<<=|” (other: ML_SEQ[G]): BOOLEAN

override (i: INTEGER; x: G): ML_SEQ[G]

from_two_lists

(k: ESV_LIST[G]; v: ESV_LIST[H]): ML_MAP[G, H]

domain: ML_SET[G]

range_bag: ML_BAG[H]

item alias "[]" (k: G): H

ML_BAG[G]

item alias "[]" (i: INTEGER): G

has (x: G): BOOLEAN

has_key (k: G): BOOLEAN

extended_by (k: G; v: H): ML_MAP[G, H]

extended_by_pair, infix “^” (p: ML_PAIR[G,H]): ML_MAP[G, H]

remove (k: G): ML_MAP[G, H]remove (i: INTEGER): ML_SEQ[G]

union, infix “+” (other: ML_MAP[G, H]): ML_MAP[G, H]

intersection, infix “*” (other: ML_MAP[G, H]): ML_MAP[G, H]

difference, infix “-” (other: ML_MAP[G, H]): ML_MAP[G, H]

is_disjoint_from, infix “|##|” (other: ML_MAP[G, H]): BOOLEAN

override (x: G; y: H): ML_MAP[G, H]

Figure 1: Core Classes in the Mathematical Library (ML) for Model-based Specification
3

STACK[G]

count: INTEGER

item: G

require count > 0

ensure Result = model.last

model: ML_SEQ[G]

ensure Result = < i: INTEGER | 0 i imp.count imp[i] >

put(x: G)

ensure model = old model x

Invariant

NONE

imp: ARRAY[G]

count = #model

0 count imp.count

remove

require count > 0

ensure old model = (model old item)

MODEL

class STACK[G] feature

 put (x: G) is

do

imp.force (x, imp.count)

ensure

model |=| old model |> x

end

…

end

(a) BON Diagram of STACK

(c) Stack LIFO property

(b) put feature of STACK

class STACK_PROPERTIES[G] feature

 lifo (s: STACK[G] ; x: G) is

require

 s /= void

do

 s.put (x)

 s.remove

ensure

 s.model |=| old s.model

end

…

end

Figure 2: STACK[G] modelled by ML SEQ[G]

2 Models via ML

As explained in [20] with reference to Z, formal specifications use mathematical notation to describe,
in a precise way, the properties which a software product must have, without unduly constraining the
way in which these properties are achieved. We may call the mathematical description an abstract
model of the system under development. The model describes what the system must do without
saying how it is to be done. Models allow questions about what the system does to be answered
confidently, without the need to either disentangle the information from a mass of detailed program
code, or speculate about the meaning of phrases in an imprecisely-worded prose description.

In Z, the mathematical models are based on predicate logic and the set theory, and thus obey a
rich collection of mathematical laws which makes it possible to effectively reason about the way a
specified system will behave. But these models are not oriented towards computer representation.

The model library (ML) described in this paper encodes predicate logic acting on sets, sequences,
bags, and maps (as in Z), but the mathematical theories are structured as classes (instantiated to
immutable objects needed for mathematical specification) whose features (e.g. ∀, ∃,∈, set compre-
hension, etc.) are pure functions executable in the object-oriented style. The Eiffel agent mechanism
for iteratively applying a supplied expression to a collection is much used.

The classes of ML are shown in Fig. 1. Contracts may be specified using ML and these con-
tracts are executable. When runtime assertion checking is turned on, contract violations (if any)
are signalled via exceptions, thus indicating an inconsistency between the implementation and its
specification. The complete specification of a system and its implementation can be provided in the
same compilable and executable Eiffel text (e.g. see class STACK[G] in Fig. 4). The immutable ML
classes will be inefficient (due to its re-construction of a new ML object every time a feature such
as appended by is invoked), by comparison to the mutable classes in the Eiffel or ES base library
(such as ARRAY and LIST). But this is acceptable as contract checking may be turned off in the final
delivered code which will only use the efficient base library for implementation.

As a simple example, consider the BON [22] contract view of a generic stack as shown in Fig. 2a.

4

The model of the stack consists of a ML SEQ[G] (i.e. a sequence of items of type G, where G is a
generic parameter) and count (the number of items in the stack). The contracts of all the other
features of the stack can be described in terms of the sequence and count . In the absence of a
sequence to model the stack (i.e. with just the model attribute count), the best post-condition for
the stack push operation put is

count = old count + 1 ∧ item = x (1)

However, such abstract specification violates Einstein’s maxim to “make everything as simple
as possible, but not simpler” because it is incomplete. For example, an implementor can satisfy the
above specification yet change old values of the stack that are not at the top. Therefore, we need
a frame condition that says the old part of the stack remains unchanged. By adding a sequence to
the model we can now express the complete contract as

model = oldmodel I x (2)

where I is the appended by (pure) function of a mathematical sequence that returns a new sequence
same as the old one, but with the argument item appended to the end. Since (2) ⇒ (1), there is
then no need to write (1) as it is entailed by the model post-condition. With the full model we can
then provide the complete contracts for the pop operation remove and the query item that returns
the top of the stack. The Eiffel notation follows the BON notation quite closely as shown in Fig. 2b.
For I, we may use either the appended by function or alternatively the infix operator |> as shown
in class ML SEQ in Fig. 1.

Model classes such as ML SEQ hold items that may be stored either by reference or by value.
Eiffel has the expanded construct for constructing a value semantics. We thus introduce the notion
of model equality (infix operator |=|) which depends on what type of comparison is requested (see
ML MODEL in Fig. 1). The default is that two model sequences (say s1 and s2) are compared for
their stored items via reference equality (i.e. s1 |=| s2 iff the two sequences have the same size
and the items stored at each index both refer to the same object). A specifier may invoke feature
compare objects (see ML MODEL), in which case the items stored at each index will be compared
based on how the inherited feature is equal (of the actual generic type G) is defined 1.

With our contracts complete, and even in the absence of implementation details, we may already
begin to validate our specification based only on the model. For example, the last-in-first-out (LIFO)
property of the stack can be specified as shown in Fig. 2c. In the absence of implementation, we
cannot execute or unit test the LIFO property. However, with the translator and theorem prover,
the LIFO property will prove with a warning that the body of put and remove must be refined with
an implementation.

We must now refine the specification to an efficient implementation. We choose mutable struc-
tures such as an array or linked list. We may use ARRAY from the Eiffel base library, or from the
ES base library if a value semantics rather than a reference semantics is desired (i.e. by declaring
imp:ESV ARRAY[G]).

Next we need to define the abstraction relation between the abstract space in which the abstract
program is written (i.e. model) and the space of the concrete representation (i.e. imp). This can
be accomplished by giving an abstraction function which maps the concrete variables into the
abstract objects which they represent. We may do this as follows. The body of the query model (a
ML SEQ[G]) for the stack in Fig. 2 could be a loop that iterates through the implementation array
and returns an equivalent sequence with the same elements as the array. That is, we “lift” the
mutable array into a mathematical immutable sequence. The abstraction function [16] is captured
by the post-condition of query model as follows:

1is equal in Eiffel is similar to equals in Java

5

Result = 〈i : INTEGER | 0 ≤ i < imp.count • imp[i]〉 (3)

where the angle brackets 〈 〉 stand for sequence comprehension in the same way that { } stands for
set comprehension. For example, {i : INT | 0 ≤ i ≤ 2 • i + 1} = {1, 2, 3}. Set, bag, sequence or
map comprehension presents expressive notation for abstraction functions and is supported in ML.
The Eiffel ML library uses the agent construct for writing comprehension (see Fig. 1). However,
for the post-condition of model we may use one of the pre-defined ML functions from array that
“lifts” an efficient mutable array to a mathematical sequence. Function from array returns a new
sequence whose items refer to the same items as in the array imp between 0 · · · count − 1. So the
post-condition (3) writen in ML becomes:

Result |=| Result.from array(imp.subarray(0,count-1))

which asserts that the resulting sequence returned by the model is model-equal to the implementa-
tion array treated as a sequence. The contracts of all other features remain the same as they are
all described in terms of model.

2.1 The Birthday Book example – ML specifications and loop invariants

The author of [21] reports that a web-enabled database system, consisting of 35,799 lines of Perfect,
generated 9810 proof obligations and proved automatically in 4.5 hours (1.6 seconds per proof)
on a modest laptop. We believe that the above performance is sustainable for reasonable chunks
of code but there is minimal refinement and PD does the code generation. However, in our case
there is refinement from high level models to more complex constructs (e.g. loops their variants
and invariants), and thus the demands on PD are much greater. Nevertheless, by means of careful
matching between ML and PD data structures as well as tuning of the translator, we can achieve
proofs of the vast majority (if not all) verification conditions.

The birthday book example [20] nicely illustrates refinement to loops and more intensive use of
ML as shown by the BON diagram in Fig. 3a.

The model for the birthday book is a combination of the number of name-and-date pairs stored
(i.e. count) and a ML MAP[NAME, DATE] (i.e. a set of name-and-date pairs). Alternatively, this map
is a function whose domain is a set of names and whose range is a bag of dates. The features of the
birthday book include the ability to add a new pair (e.g. [Peter , (March 1)]), find a birthday given
a name, and a remind function that for a given date d returns the set of names whose birthday is
on d .

The remind function returns a set of names (SET[NAME]) where SET is an efficient mutable
structure from either the Eiffel or ES base library. The birthday book is implemented as two
arrays: one for names and the other for dates. The post-condition of the remind query is

{n : NAME | Result .has(n) • n} = {n ∈ model .domain | model [n] = d • n} (4)

where the RHS expression means the set of all names, from the domain of the model map, whose
birthday is on the provided date d . And this must be equal to the LHS expression which represents
the set of all names returned by the remind function. The Eiffel notation for the remind function
is shown in Fig. 3b. The Eiffel post-condition of the remind query in (4) now becomes:

model_set.from_set(Result) |=| model.comprehension(agent date_matches (?, ?, d)).domain

The agent function used in the post-condition (and loop invariant) of the remind query is:

6

BIRTHDAY_BOOK

count: INTEGER

add_birthday (n:NAME; d: DATE)

require model.has_key(n)

ensure count = old count + 1 and model = (old model) ^ [n, d]

find_birthday (n:NAME): DATE

require model.has_key(n)

ensure Result = model[n] and model = old model

remind (d: DATE): SET[NAME]

 ensure {n: NAME | Result.has(n) n} = {n model.domain | model[n] = d n}

 model = old model

model: MAP[NAME, DATE]

ensure Result = [i: INTEGER | names.lower i names.upper [names[i], dates[i]]]

names: ARRAY[NAME]

dates: ARRAY[DATE]

Invariant

count = #model

names.count = dates.count and names.is_unique

NONE

MODEL

(a) BON Diagram of BIRTHDAY_BOOK

(b) remind feature of BIRTHDAY_BOOK

class BRITHDAY_BOOK feature

remind (n: NAME ; d: DATE): SET[NAME] is

 local

 i : INTEGER

do

create Result.make

from

 i := dates.lower

invariant

 pd_modify ("i, Result")

 i >= 0 and then i <= names.count

 i < names.count implies names.valid_index (i)

 inv: -- see text

variant

 dates.count - i

until

 i = dates.count

loop

if dates.item (i).is_equal (today) then

 Result.extend (names[i])

end

 i := i + 1

end

ensure

 model_set.from_set (Result) |=|

 model.comprehension (agent date_matches (?, ?, d)).domain

end

 …

end

Figure 3: Birthday Book

date_matches (x: NAME; y, date: DATE): BOOLEAN is

do

if y.is_equal (date) then

Result := true

end

end

By defining a slice of the model map, according to the current loop counter i as well as arrays
names and dates, as follows:

mSlice(i ,names, dates) =̂ 〈〈j : INTEGER | 0 ≤ j < i • [names[j], dates[j]]〉〉 (5)

we can show that the loop invariant for the remind query has been constructed to approximate and
hence similar to its post-condition:

{n : NAME | Result .has(n) • n} = {n ∈ mSlice(i ,names, dates).domain | model [n] = d • n} (6)

And the equivalent Eiffel loop invariant (inv in Fig. 3b) is:

model_set.from_set (Result) |=|

model.from_two_arrays(names.subarray (0, i-1),dates.subarray(0, i-1)).

comprehension(agent date_matches (?, ?, today)).domain

3 The Eiffel to PD Translator

Underlying Theorem Prover

Our goal is to automatically verify Eiffel code specified via ML as in the stack and birthday book
examples. The question would be, which theorem prover do we use? The Perfect Developer (PD)

7

specification language and theorem prover [12] is a technically mature product that is aligned with
the object-orientation and design by contract paradigms. PD theorem prover has about the same
level of power and automation as Simplify [13] that is used for static verification in Spec# and
ESC/Java2. Simplify handles integers and booleans at the primitive level while PD has a greater
repertoire (e.g. reals, characters, and strings). PD specification language also has a library of generic
sequences, sets, bags, and maps well-suited to ML [14]. A limitation of PD is that it discourages
reference semantics [12]. It is well-known that the presence of multiple references to a common
object causes aliasing and makes sound and complete static verification problematic. Therefore,
PD, unlike say Java and Eiffel, adopts a value semantics by default and discourages the use of
reference semantics 2. Despite these limitations, we have adopted PD for automated deduction in
our ES-Verify tool, and we are in the process of constructing a library of base Eiffel classes with a
value semantics (see Introduction) using the Eiffel expanded construct. As a future goal we have
to expand our tool to handle verification of reference aliasing and inheritance.

The theoretical foundations of PD are Floyd-Hoare logic and Dijkstra’s weakest pre-condition
calculus and it has the power of first-order predicate calculus, as well as a few higher-order con-
structs [11]. The prover generates verification conditions and aims for verifying the total correctness
(termination and refinement satisfying specification) of the input code. It delivers either a proof,
upon success in discharging all verification conditions, or otherwise a list of warnings, possibly ac-
companied by useful fix suggestions. Output from the prover can be in formats such as HTML or
Tex. From an academic point of view, there is a lack of information about the inner workings of
the PD theorem prover (as opposed to an interactive theorem-proving system such as Isabelle [5]).
Ideally, the logical rules used in correctness proofs should be open for inspection so that independent
trust can be established. However, the PD theorem prover does provide the complete proof, and
thus the product is robust and suitable for engineering use [15].

Outline of Class Translation

Fig. 4 shows how the Eiffel generic stack example is translated into its equivalent PD specifications.
The translator assumes that all Eiffel classes to be translated have already been compiled and type-
checked. On the Eiffel side (left of Fig. 4), there are three different feature declarations: the public
feature declaration3, the model feature declaration4, and the implementation feature declaration5.
And on the PD side, there are three corresponding sections: abstract, internal and interface.

We first consider the Eiffel public feature declaration. Each Eiffel public attribute (e.g. count)
becomes a variable (i.e. var declaration) in the PD abstract section. In order to allow client classes
to access this variable, it must also be redeclared as a function in the PD interface section (hence
the first line in the PD interface section reads function count). Each Eiffel public command (e.g.
put) and public query (e.g. item) become a schema and a function in the PD interface section,
respectively.

We then consider the Eiffel model feature declaration. In stack we only have the query model,
but in general we may have attributes and queries (but no commands) in this declaration. Each
Eiffel model attribute becomes a variable in the PD abstract section. Each Eiffel model query
(which is essentially the abstraction function), not only becomes a variable in the PD abstract
section, but also becomes two functions in the PD internal section. The first PD function uses
the same name as the Eiffel model query and its definition (expression following symbols ˆ =,

2In PD, if a reference semantics is adopted, then, roughly speaking, a heap declaration, e.g. heap MyHeap, would
be required. Although we have several simple PD examples on basic aliasing effect, we have not yet experienced much
the power of the prover on handling reference semantics. Escher Technologies Ltd. is in the process of developing a
new beta intending to properly handle the issue.

3The part under the label feature{ANY}.
4The part under the label feature{ML MODEL, ANY}.
5The part under the label feature{ML MODEL}.

8

i.e. is-defined-as) corresponds to the translated post-condition6 of the that query. The second
PD function is a twin function with a verification name suffix. This twin function has the
same definition but with a refinement (via...end segment) underneath which is the translated
body of the Eiffel model query. This twin function is needed because future versions of PD will
disallow refinement/implementations of abstraction functions. Since we desire to verify that the
model implementation satisfies its post-condition, we need this twin function. In stack the Eiffel
query model becomes (a) a variable model in the PD abstract section, and (b) a function model
and its twin refined function model verification in the PD internal section.

Now we consider the Eiffel implementation feature declaration. All features under this dec-
laration appear in the PD internal section in the obvious way, i.e. Eiffel attributes become PD
variables, Eiffel queries become PD functions, and Eiffel commands become PD schemas. More-
over, since Eiffel agent expressions in loop invariants are private, they should be declared in this
feature declaration; however, agent expressions in pre-/post-conditions may be declared in either
the public or model feature declaration part for access from clients. One such example is the agent
function date matches occurring in the loop invariant and post-condition of the remind feature in
birthday book.

Finally we consider the Eiffel class invariants. Those clauses that only refer to public or model
attributes become equivalent invariants in the PD abstract section; otherwise, they become equiv-
alent invariants in the PD internal section.

Outline of Routine Translation:
As stated, Eiffel commands and queries become PD schemas and functions, respectively. For

an Eiffel command that may modify the current object, frame constraints are needed. In order to
specify frame constraints, PD supports a change clause7. For translation into PD, we use in Eiffel
specification a pd modify8 declaration with its string argument passed as a list of attributes that the
PD schema may change. For an Eiffel command or query, its require clause (for pre- condition) and
ensure clause (for post-condition) appear as equivalent PD pre and satisfy clauses, respectively.
For Eiffel command, its ensure clause (with its pd modify declaration) appears as the equivalent
PD change and satisfy clauses under a post declaration. For Eiffel query, it is translated in the
same way as it for a command except there is no pd modify declaration in its post-condition, and
thus there exists no change list and post declaration for its translation in PD. Moreover, the Eiffel
old notation for the value of expressions in a pre-state is converted into the equivalent PD primed
notation. Finally, the body of an Eiffel command or query appears as an equivalent PD via ... end
refinement segment.

4 Comparison with other tools

We compare ES-Verify with the other two similar software verification tools: ESC/Java2 and Spec#.
Tools like ESC/Java2 and Spec# allow the developer to increase the confidence of already

existing Java and C# code following an Annotated Development approach by adding specifications
as annotations [12]. Spark Ada [2] is a successful example of Annotated Development, but the
specifications are usually only partial (in particular, expressing data refinement is difficult)[12].
When applied to an object-oriented language that uses reference semantics or makes heavy use
of pointers, correctness has to be sacrificed in order to allow more potential bugs to be spotted,
otherwise very little can be verified. Spark Ada instead preserves correctness by subsetting the Ada
language. This is the strategy that ES-Verify has assumed where references and inheritance are for
now not used.

6More precisely, RHS of the first post-condition clause which has a matching type with it of that query.
7The new ECMA specification for Eiffel has a somewhat equivalent only clause.
8A boolean function that takes as argument a string and always returns true, and thus can always pass the run-time

contract checking. Expression pd modify("*") is an abbreviation meaning all attributes may change.

9

c
la

s
s

M

Y
_

S
T

A
C

K
[G

]
c
re

a
te

m
a

k
e

fe
a

tu
re

 {
A

N
Y

}
--

p
u
b

lic
 f

e
a
tu

re
 d

e
c
la

ra
ti
o
n

m
a

k
e

is
--

c
o

n
s
tr

u
c
to

r

d
o

 c
re

a
te

 i
m

p
 ;

 c
o
u

n
t

:=
 0

e
n

s
u

re

p
d

_
m

o
d

if
y

("
*"

)

#
m

o
d

e
l
=

 0
 a

n
d

c
o

u
n

t
=

 0

e
n

d

c
o

u
n

t:
 I
N

T
E

G
E

R

it
e

m
:
G

 i
s

re
q

u
ir

e
 c

o
u
n
t

>
 0

d
o

 R
e
s
u

lt
 :

=
 i
m

p
 [

c
o
u
n

t
-

1
]

e
n

s
u

re
 R

e
s
u

lt
 =

 m
o
d
e

l.
la

s
t

e
n

d

p
u
t(

x
:
G

)
is

d
o

if
im

p
.i
s
_
e

m
p

ty
 t

h
e

n
im

p
.f

o
rc

e
 (

x
,
0

)

e
ls

e if
c
o

u
n

t
=

 i
m

p
.c

o
u

n
t
th

e
n

im
p

.g
ro

w
 (

im
p

.c
o

u
n

t
*

2
)

e
n

d

im
p
.p

u
t

(x
,
c
o

u
n
t)

e
n

d

c
o

u
n

t
:=

 c
o

u
n

t
+

 1

e
n

s
u

re

p
d

_
m

o
d

if
y

("
*"

)

c
o

u
n

t
=

 o
ld

 c
o

u
n
t

+
 1

 a
n

d
 t

h
e
n

m

o
d
e
l
|=

|
(o

ld
 m

o
d

e
l
|>

 x
)

e
n

d

fe
a

tu
re

 {
M

L
_
M

O
D

E
L

}
--

im
p

le
m

e
n
ta

ti
o

n
 f

e
a

tu
re

 d
e
c
la

ra
ti
o
n

im
p
:
E

S
V

_
A

R
R

A
Y

[G
]

fe
a

tu
re

 {
M

L
_
M

O
D

E
L

,
A

N
Y

}
--

m
o
d

e
l
fe

a
tu

re
 d

e
c
la

ra
ti
o
n

m
o

d
e

l:
 M

L
_

S
E

Q
[G

]
is

d
o

 c
re

a
te

 R
e
s
u
lt
.m

a
k
e

;
R

e
s
u
lt
 :

=
 R

e
s
u

lt
.f
ro

m
_

a
rr

a
y
(i
m

p
.s

u
b

a
rr

a
y
 (

0
,
c
o

u
n

t
-1

))

e
n

s
u

re

R
e
s
u

lt
 |

=
|

R
e
s
u
lt
.f
ro

m
_

a
rr

a
y
 (

im
p
.s

u
b

a
rr

a
y
 (

0
,

c
o

u
n

t
-1

)
)

e
n

d

in
v
a

ri
a
n

t

c
o

u
n

t
>

=
 0

 a
n

d
 t

h
e
n

 c
o
u
n

t
<

=
 i
m

p
.c

o
u
n

t
 a

n
d

 t
h

e
n

 c
o

u
n

t
<

=
 #

 m
o
d

e
l

e
n

d

im
p

o
rt

"E
S

V
_
A

R
R

A
Y

.p
d
",

"M

L
_

C
O

L
L
E

C
T

IO
N

.p
d

";

c
la

s
s

 M
Y

_
S

T
A

C
K

 o
f
(

G
)

 ^
=

a
b

s
tr

a
c

t

v
a

r
m

o
d
e
l:

M

L
_

S
E

Q
 o

f
(

G
)

,

c
o

u
n

t:
 i
n

t;

in
v

a
ri

a
n

t
c
o
u

n
t
<

=
 #

m
o
d
e

l;

in
te

rn
a

l
//
re

fi
n
e
m

e
n
t

v
a

r
im

p
:

E
S

V
_

A
R

R
A

Y
 o

f
(

G
)

;

in
v

a
ri

a
n

t
c
o
u

n
t
>

=
 0

 &
 c

o
u

n
t

<
=

 #
im

p
;

fu
n

c
ti

o
n

m
o

d
e

l

^=
 (

fo
r

i
::
 0

 .
.

<
#

im
p

.s
lic

e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e

(0
,

(c
o
u

n
t-

1
)-

0
+

1
)[

i]
);

fu
n

c
ti

o
n

m
o
d
e
l_

v
e
ri
fi
c
a
ti
o
n

:
M

L
_

S
E

Q
 o

f
(

G
)

^=
 (

fo
r

i
::
 0

 .
.

<
#

im
p

.s
lic

e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e
(0

,
(c

o
u

n
t-

1
)-

0
+

1
)[

i]
)

v
ia v

a
r

R
e

s
u

lt
:

 M
L

_
S

E
Q

 o
f
(

G
)

;
R

e
s
u

lt
!

=

M

L
_

S
E

Q
 o

f
(

G
)

{}
 ;

R
e

s
u
lt
!

=

(f
o

r
i
::
 0

 .
.

<
#

im
p
.s

lic
e
(0

,
(c

o
u
n

t-
1
)-

0
+

1
)

y
ie

ld
 i
m

p
.s

lic
e

(0
,

(c
o

u
n

t-
1

)-
0

+
1

)[
i]
);

v
a
lu

e
 R

e
s
u

lt
;

e
n

d
;

in
te

rf
a

c
e

//
p

u
b
lic

 m
e
th

o
d
s

fu
n

c
ti

o
n

c
o

u
n

t;

b
u

il
d

 {
}

 /
/c

o
n
s
tr

u
c
to

r
e

q
u
iv

a
le

n
t

to
 E

if
fe

l
`m

a
k
e
’

p
o

s
t

c
h

a
n

g
e
 m

o
d

e
l,
 c

o
u

n
t
s

a
ti

s
fy

 #
m

o
d

e
l'

=
 0

 &
 s

e
lf

'.
c
o
u
n

t
=

 0

v
ia

im
p
!

=

E
S

V
_
A

R
R

A
Y

 o
f
(

G
)

{}
 ;
 c

o
u
n
t!
 =

 0
 e

n
d

;

s
c

h
e

m
a

!
p
u

t(
x
 :

 G
)

p
o

s
t

c
h

a
n

g
e

m
o
d

e
l,
 c

o
u

n
t

s
a
ti

s
fy

s
e

lf
'.
c
o
u
n

t
=

 c
o
u
n

t
+

 1
,
m

o
d
e
l'

=
 m

o
d
e
l.
a

p
p

e
n

d
(

x
)

v
ia if

[i
m

p
.e

m
p

ty
]:

 i
m

p
!

=
 f
o
rc

e
 @

 E
S

V
_

A
R

R
A

Y
_

H
E

L
P

E
R

 o
f

 G
 (

im
p

,
x
,

0
)

;

[]
: if

[c
o

u
n

t
=

 #
im

p
]:

im
p
!

=
 g

ro
w

 @
 E

S
V

_
A

R
R

A
Y

_
H

E
L
P

E
R

 o
f
 G

 (
im

p
,
#

im
p

*2
);

[]
:
p

a
s
s

fi
;

im
p
!

=
 p

u
t

@
 E

S
V

_
A

R
R

A
Y

_
H

E
L
P

E
R

 o
f

 G
 (

im
p
,

x
,
c
o
u
n
t)

fi
;

c
o

u
n

t!
 =

 c
o

u
n

t
+

 1

e
n

d
;

fu
n

c
ti

o
n

it
e
m

:
G

p
re

 c
o

u
n

t
>

 0
 s

a
ti

s
fy

 r
e

s
u

lt
=

 m
o
d

e
l.
la

s
t

v
ia

 v
a

r
R

e
s
u

lt
:
 G

 ;
 R

e
s
u

lt
!
=

 i
m

p
[c

o
u
n

t
-

1
]

;
v
a

lu
e
 R

e
s
u
lt

e
n

d
;

e
n

d
;

Figure 4: STACK example: The Translation Layout from Eiffel into Perfect Language
10

ES-Verify takes advantage of the built-in Eiffel DbC constructs, enabling it to both immedi-
ately use the run-time debugging as well as the ES-Test tool and formalize these specifications by
translating them into PD code. JML tools like ESC/Java2 and jmlc [8] exist separately to support
static verification and runtime assertion checking. The current release of ESC/Java2 claims it now
runs in the JML runtime assertion checker. The Spec# system supports both static verification
and runtime assertion checking in Microsoft Visual Studio. That is, the code accompanied with
its specifications in ESC/Java2, Spec#, and ES-Verify are immediately executable. However, the
goal of ESC/Java2, Spec#, and ES-Verify is to find bugs rather than prove total correctness. An
interesting property of these tools is that they neither warn about all errors nor do they warn only
about actual errors [6] and may raise false alarms due to the nature of logical proof.

The PD theorem prover has approximately the same level of proving power as the B theorem
prover. It is capable of dealing with all the primitive types including reals, quantification, and set
theory. Also, PD is used to verify itself with about 130,000 verification conditions. In proving data-
intensive applications like the Birthday Book example (with loop invariants and model contracts
in both pre- and post- conditions), PD has been able to discharge all the verification conditions.
When we attempted to code the Birthday Book example in Spec#, with the same set of model
specifications, it did not even translate the code into the intermediate one and start verifying. A
number of specifications had to be removed in order to make it verify. Unlike ESC/Java2 and Spec#,
ES-Verify can reason about generic classes. The updated version of ESC/Java2 is compatible with
Java version 1.4, but not 1.5 which includes generic types. Spec# compiles generic types but did
not yet verify them at the time we attempted to code the Stack example in it.

ES-Verify follows an Abstract Specification and Refinement approach as in the B-method. This
approach requires a notation that can adequately express both an abstract specification and an
implementation. Data refinement is a key feature, i.e. you develop the specification using an
abstract data model (in our case ML), then refine the data model if necessary with an efficient
implementation. The notation and the semantics are designed for correctness and provability unlike
traditional programming languages, so there is no need to sacrifice correctness. Our declared model,
if not deferred, is defined in terms of other fields, and thus is used as a model field not accessible
to clients. ESC/Java2 and Spec# (following JML) include the ability to declare specification-only
model fields [9] and abstraction functions for representing the relationship between the value of the
model field and the implementation so that refinements can be proved. The authors in [18] claim
the existing techniques for JML model variables suffer from soundness, modularity, expressiveness,
or practical problems. They present a simpler but more expressive methodology for model fields,
but it has not yet been implemented.

ESC/Java2 and Spec# provide precise feedback as to where errors occur. Our tool does not yet
provide such precise feedback. However, the output html file produced by the PD theorem prover
is informative. That line number easily associates with the Eiffel feature having the same name
or assertion tag, so that it is relatively easy to track back to where the problem was. We have to
improve this feedback reporting in future versions.

5 Conclusion

We have presented in this paper a system where we make use of the mathematical but executable
ML library and the translator to convert clean and expressive Eiffel code into PD for automated
verification. The translation process transforms each Eiffel construct into an equivalent PD one so
that this one-to-one relation between Eiffel and PD constructs allows us to assign the semantics of
the PD language to that of Eiffel. Of course such semantics depends upon the soundness of PD.

When the ES-Verify translator is applied to the Eiffel code for the birthday book example, the

11

PD theorem prover generates 158 verification conditions which are all automatically discharged.
This includes proof of termination via the loop variant. We used a value semantics class ESV ARRAY
for the two implementation arrays. Preliminary experience with other examples indicates that the
vast majority of verification conditions are quickly and automatically discharged, including loop
variants and invariants, without any interaction with the user. The user may add axioms (with the
danger of introducing inconsistencies) or assertions to help the theorem prover, but this is mostly
unnecessary. Future work aims to extend the verification to handle the issue of reference aliasing
and inheritance.

Acknowledgements: We deeply appreciate the help we have received from David Crocker of
Escher Technologies with the Perfect toolset. Likewise we would like to acknowledge helpful feedback
from Bertrand Meyer and Bernd Schoeller of ETH Zurich. This work was funded by a Discovery
Grant from NSERC.

References
[1] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press, 1996.

[2] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-Wesley, 2003.
With Praxis Critical Systems Limited.

[3] Mike Barnett, Robert DeLine, Bart Jacobs, Manuel Fhndrich, K. Rustan M. Leino, Wolfram Schulte, and Herman
Venter. The Spec# Programming System: Challenges and Directions. Position paper at VSTTE, 2005.

[4] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# Programming System: An Overview.
2004.

[5] Achim D. Brucker and Burkhart Wolff. A Proposal for a Formal Ocl Semantics in Isabelle/Hol. In Theorem
Proving in Higher Order Logics, volume LNCS 2410. Springer-Verlag, 2002.

[6] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino,
and Erik Poll. An overview of JML tools and applications. In Thomas Arts and Wan Fokkink, editors, Eighth
International Workshop on Formal Methods for Industrial Critical Systems (FMICS 03), volume 80 of Electronic
Notes in Theoretical Computer Science (ENTCS), pages 73–89. Elsevier, June 2003.

[7] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond Assertions: Advanced Specification
and Verification with JML and ESC/Java2. In Springer-Verlag, editor, Formal Methods for Components and
Objects (FMCO’2005), LNCS, 2006.

[8] Yoonsik Cheon. A runtime assertion checker for the java modeling language. TR 03-09, Department of Computer
Science, Iowa State University, April 2003.

[9] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model variables: cleanly supporting
abstraction in design by contract. Softw. Pract. Exper., 35(6):583–599, 2005.

[10] David R. Cok and Joseph R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building
and using ESC/Java2. Technical Report NIII-R0413, Nijmegen Institute for Computing and Information Science,
May 2004.

[11] David Crocker. Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement. In Tools
Exhibition Notes at Formal Methods Europe, 2003.

[12] David Crocker. Safe Object-Oriented Software: The Verified Desing-By-Contract Paradigm. In F.Redmill &
T.Anderson, editor, Twelfth Safety-Critical Systems Symposium, pages 19–41. Springer-Verlag, London, 2004.

[13] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program Checking. Journal of
the ACM (JACM), 52(3):365–473, 2005.

[14] Escher Technologies. Perfect Developer Language Reference Manual, 3.0 edition, December 2004. Available from
www.eschertech.com.

[15] Ingo Feinerer. Formal Program Verification: a Comparison of Selected Tools and Their Theoretical Foundations.
Master’s thesis, Vienna University of Technology, January 2005.

[16] C. A. R. Hoare. Proof of Correctness of Data Representations. In Acta Informatica, volume 1, pages 271–281.
Springer-Verlag, February 1972.

[17] Gary T. Leavens, K. Rustan M. Leino, and Peter Mller. Specification and verification challenges for sequential
object-oriented programs. TR 06-14, Department of Computer Science, Iowa State University, May 2006.

[18] K. Rustan M. Leino and Peter Mller. A verification methodology for model fields. ESOP 2006.

[19] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[20] J.M. Spivey. The Z Notation: A Reference Manual (2nd edition). Prentice-Hall, Englewood Cliffs, N.J., 1992.

[21] Brian Stevens. Implementing Object-Z with PerfectDeveloper. Journal of Object Technology, 6(2):189–202,
March-April 2006.

[22] Kim Walden and Jean-Marc Nerson. Seamless Object Oriented Software and Architecture. Prentice Hall, 1995.
Seamless Object Oriented Software and Architecture.

12

 1

Cross-Verification of JML Tools: An ESC/Java2 Case Study

Patrice Chalin and Perry James

Dept. of Computer Science and Software Engineering,
Dependable Software Research Group, Concordia University

www.dsrg.org

Abstract. This paper presents a case study in the use of the JML Run-time Assertion
Checker (RAC) compiler on ESC/Java2, an extended static checker for the Java Modeling
Language (JML). We believe that overall product quality is maximized by the use of
complementary verification tools. Use of the JML RAC allowed us to uncover deeper
problems with the design of ESC/Java2 than was possible with static analysis alone. Some
problems that were found with the RAC are discussed, along with tentative and
implemented solutions.

1 Introduction
The two main components of the Dependable Systems Evolution Grand Challenge (also named
GC6) [1, 2] are the Verifying Compiler (VC) project and the Verified Software Repository
(VSR). A Verifying Compiler is envisioned as a tool to be used by mainstream developers to
statically prove that a program is correct. The VSR is meant to hold, among other things,
examples of early VC prototypes and “challenge codes,” i.e., realistic programs in the form of
source code, specifications, and documentation that will be usable as benchmarks for the
purpose of exercising proposed VC candidate technologies [3].

This paper reports on our progress in preparing the verification tools of the Java Modeling
Language (JML) [4] as potential candidates for inclusion in the VSR. Since the verification
tools themselves are written using JML-annotated Java, they can serve as challenge codes as
well. More precisely, this paper presents a case study in the use of the JML Run-time Assertion
Checker (RAC) compiler on ESC/Java2, an extended static checker for JML.

The main thesis of this paper is that overall product quality is maximized by the use of
complementary verification tools. For example, routine application of the ESC/Java2 to itself
has resulted in the elimination of common coding and specification errors. The strength of
ESC/Java2 is that it performs fully automated verification and offers a familiar compiler-like
interface to developers. As is typical with fully automatic checkers, it has compromised
completeness and soundness for efficacy. On the other hand, use of the JML RAC allows
specifiers to verify (albeit at runtime) most assertions, and hence can achieve a much higher
degree of completeness. As a consequence, use of the JML RAC has allowed us to uncover
deeper problems with the design of ESC/Java2.

The remainder of the paper is organized as follows: In Section 2 we give a brief introduction to
JML and its supporting verification tools. Section 3 covers the main design issues in ESC/Java2
that have been uncovered by using the JML RAC. We conclude in Section 4.

 2

2 JML and its tools
The Java Modeling Language (JML) is a Behavioral Interface Specification Language (BISL)
for Java that supports Design By Contract (DBC) [5, 6] as well as more advanced features such
as frame properties and specification-only fields [7]. JML enjoys support from a wide range of
tools that are useful for verification, including the following [8]:

• JML RAC, also called the JML Compiler (jmlc). Compiling JML annotated Java files
using jmlc instruments the code with runtime checks of the correctness of the class
contracts.

• ESC/Java2 can perform extended static checking—i.e., a form of fully automated
verification of contracts that is neither sound nor complete.

• LOOP compiler can be used to compile JML-annotated Java classes into PVS theories
containing proof obligations. Discharging the proofs using PVS establishes the (total)
correctness of the classes.

As can be imagined, use of the LOOP tool and PVS in conducting verifications requires a high
level of sophistication on the part of their users. The JML RAC and ESC/Java2, on the other
hand, offer a familiar compiler-like interface and conduct verification fully automatically and
tend to be the main verification tools used by developers.

When both tools are used during development, the following informal process has proven
useful. First, use is made of ESC/Java2 to eliminate obvious errors. When a specification
becomes too involved, ESC/Java2 will report that it is unable to prove, e.g., that a method body
satisfies its contract. In this case, one must resort to using the JML compiler. Even though
some assertion expressions are not executable (e.g., some forms of quantified expression), the
RAC can generally check more specification statements than ESC/Java2. The caveat, of
course, is that the compiled code must be run so that as many input cases as possible are
exercised. Another tool, JMLUnit, can be used as a test oracle, automatically creating JUnit test
cases from JML specifications. In the next section we explain how we made use of the JML
RAC to further verify the contracts of the ESC/Java2 application classes.

3 Case study

3.1 Compiling ESC/Java2 source with the JML RAC

This project was initiated in the summer of 2005. Prior to that time, the ESC/Java2 source had
not been compiled with the JML RAC. Overall, it took approximately four developer-weeks to
make the necessary updates to both the ESC/Java2 source based on problems reported by the
static checking component of the RAC. Most of these changes were due to slight
incompatibilities between the syntax accepted by the JML compiler and that used in the source
files. A few bugs were removed from (or, more accurately, enhancements were made to) the
repository of API specifications (e.g., java.lang, java.lang.util, etc.) that are distributed
with ESC/Java2.

The exercise also allowed us to uncover and file reports on 8 bugs in the JML RAC. A major
problem, which was only recently resolved, prevented the JML RAC from creating
instrumented .class files for three classes because the checking code had a try/catch block that is
larger than the limits allowed by the JVM [9]. With this problem overcome, we were able to
compile the 550 classes of the ESC/Java2 application with jmlc in a little over 7 minutes (on a
2GHz P4). These classes are distributed over 3 main packages:

 3

• javafe, a common front end used by ESC/Java2 and other tools, such as Houdini [10].
• escjava, a package that builds on the services provided by the Javafe to implement the

extended static checking functionality.
• junitutils, various support utilities, particularly with automated testing.
In the subsections that follow, we detail some of the major problems reported by ESC/Java2
when running the RAC compiled version. Note that all of these errors were identified during
static initialization. That is, these errors report inconsistencies between the static initialization
code and the JML specifications of the ESC/Java2 classes. The errors are presented essentially
in the order in which they were discovered. As was mentioned in the introduction, we will see
that the errors identified have fairly deep design implications.

3.2 AST node invariants not established by constructors

The first error to be reported by the RAC instrumented ESC/Java2 is shown in Figure 1. While
possibly intimidating to the uninitiated, just a little training is generally sufficient to make sense
of the error report. We can see that the class invariant (JMLInvariantError) of the
PrimitiveType class was violated on exit (i.e., during the verification of the postcondition) of
the PrimitiveType constructor (represented by <init>). How is it that ESC/Java2 did not
report this error? We will see why this is so shortly.

The violation occurred at line 128 of the file Primitivetype.java. This file is part of the
collection of javafe Abstract Syntax Tree (AST) node classes. An excerpt of the file is given
in Figure 2. The figure shows only one sample invariant clause (constraining the value of the
tag field) at the start of the file. A static make() method and the problematic constructor are
also shown. At line 128, we see that the body of PrimitiveType() is empty. Its associated
Javadoc comment explains why. Apparently, a fundamental design decision for the AST node
class hierarchy had been to have all AST nodes created via maker methods (generally named
make()). The maker methods first invoke a default constructor having an empty body and then
proceed to initialize the object fields. The AST node instance returned by this maker method is
meant to satisfy its class invariant.

Of course, class invariants are meant to hold for all instances of the class including those
created by default constructors with empty bodies. Since this is clearly not the case for the AST
node constructors, use is made of the ESC/Java2 nowarn pragma. This pragma allows
developers to instruct ESC/Java2 to ignore certain kinds of errors—e.g., invariant errors in the
case of PrimitiveType. As a reminder to developers of the obligation to establish the class

Exception in thread "main" org.jmlspecs.jmlrac.runtime.JMLInvariantError:
by method PrimitiveType.<init>@post
File "Javafe/java/javafe/ast/PrimitiveType.java", line 128, character 15
regarding specifications at
File "Javafe/java/javafe/ast/PrimitiveType.java", line 35, character 17 when
'tag' is 0
'this' is [PrimitiveType tmodifiers = null tag = 0 loc = 0]
at javafe.ast.PrimitiveType.checkInv$instance$PrimitiveType(PrimitiveType.java:958)
at javafe.ast.PrimitiveType.<init>(PrimitiveType.java:210)
at javafe.ast.PrimitiveType.internal$makeNonSyntax(PrimitiveType.java:97)
at javafe.ast.PrimitiveType.makeNonSyntax(PrimitiveType.java:3029)
at javafe.tc.Types.internal$makePrimitiveType(Types.java:154)
at javafe.tc.Types.makePrimitiveType(Types.java:4016)
at javafe.tc.Types.<clinit>(Types.java:19)
at escjava.Main.<init>(Main.java:78)
at escjava.Main.compile(Main.java:215)
at escjava.Main.main(Main.java:177)

Figure 1. Run-time assertion violation reported by ESC/Java2 compiled with the JML RAC

 4

invariant after calling the default constructor, a specification-only (ghost) variable named
“I_will_establish_invariants_afterwards” was created. We see in Figure 2 how the
make() method uses the default constructor, sets the instance fields, and sets the special-
purpose ghost variable to true.

While there are a number of solutions to this problem, the simplest was to eliminate the default
constructor in favor of constructors that establish invariants right from the start. In doing so, we
simplified the design by consolidating the instance creation process, eliminating the
I_will_establish_invariants_afterwards variable and the nowarn pragma. In this
way, both ESC/Java2 and the JML RAC can process the resulting specifications. While our
new design impacted almost two hundred classes, most of the changes were confined to AST
node generation routines and templates.

We note that there are generally two main reasons for using nowarn pragma:

1. When a specifier believes something to be true but the verifier is unable to confirm its
truth. In such a case, the RAC facility can confirm that the specification does indeed hold
at runtime for the exercised test cases.

2. When a specifier knows something to be false, but wants to ignore it for the moment and
continue making progress (in verifying other parts of the program). The RAC will catch
these violations and prevent the system from being usable.

It would be helpful to developers if all nowarns were commented with the reason for their
presence. Instances of (2) should be resolved as quickly as possible so that all of our tools can
be used in support of our development efforts. It would appear that the case treated in this
subsection is an instance of (2)—maybe there was a belief that the use of non-default
constructors was not feasible, when in fact it turns out to be straightforward.

3.3 Internal AST node instances vs. AST node class invariants

public class PrimitiveType extends Type
{
 /*@ invariant (tag == TagConstants.BOOLEANTYPE || ...); */
 public int tag;

 //@ requires (tag == TagConstants.BOOLEANTYPE || ...);
 //@ ensures ...
 public static /*@ non_null */ PrimitiveType
 make(TypeModifierPragmaVec tmodifiers, int tag, int loc)
 {
 //@ set I_will_establish_invariants_afterwards = true;
 PrimitiveType result = new PrimitiveType();
 result.tag = tag;
 result.loc = loc;
 result.tmodifiers = tmodifiers;
 //...
 return result;
 }

 /**
 * Construct a raw PrimitiveType whose class invariant(s) have not
 * yet been established. It is the caller's job to initialize the
 * returned node's fields so that any class invariants hold.
 */
 //@ requires I_will_establish_invariants_afterwards;
 protected PrimitiveType() {} //@ nowarn Invariant,NonNullInit; // ** LINE 128 **
 ...
}

Figure 2. Excerpt of javafe/ast/PrimitiveType.java

 5

The next two problems reported by the RAC are related to the creation of an internal field for
the length of arrays (viz., lengthFieldDecl), itself of type int (Figure 3). The violations
were, firstly, of the invariant of GenericVarDecl that type.syntax be true (i.e., that the
type be an AST node read from a file, not an internally create type like Types.intType)—see
Figure 4. The second violation had do to with the with the locId of the FiedlDecl maker
method: it was required to be different from Location.NULL. Of course, neither of these
conditions is satisfied by the call to make() in Figure 3.

After some analysis, and two unsatisfactory attempted solutions, the approach we implemented
was to create a new maker method and constructors for FieldDecl and GenericVarDecl that
do not take a location. These would set the GenericVarDecl’s locId to Location.NULL.
To capture the idea of an internal field, an isInternal() method was added to
GenericVarDecl. This method returns true exactly when the location is not equal to
Location.NULL. Because of these changes, FieldDecl’s new maker method no longer
mentions location, and the old one remains unchanged. The invariant of GenericVarDecl,
FieldDecl’s super class, was changed to reflect that syntax is true exactly when
isInternal() is false. To reflect that there are no internal AST nodes of subclasses other
than GenericVarDecl (viz., FormalParaDecl and LocalVarDecl), all other AST node
classes have !isInternal() as an invariant.

3.4 Specification and polymorphic structures

public static /*@ non_null */ FieldDecl lengthFieldDecl
 = FieldDecl.make(..., lenId, Types.intType, Location.NULL,...);

Figure 3. Declaration of length field for arrays in javafe.tc.Types

package javafe.ast;

public abstract class GenericVarDecl extends ASTNode
{
 ...
 public /*@ non_null @*/ Type type;
 //@ invariant type.syntax;
 ...
}

public class FieldDecl extends GenericVarDecl implements ...
{
 ...
 //@ requires locId != javafe.util.Location.NULL;
 //@ ensures \result != null;
 public static FieldDecl make(...,
 /*@ non_null @*/ Type type,
 int locId, ...)
 {
 //...
 }
}

Figure 4. Excerpts from GenericVarDecl and FieldDecl of javafe.ast

 6

A very interesting design problem that runtime assertion checking highlighted involved (a
violation of) behavioral subtyping [11]. As mentioned above, Java’s primitive types are
represented using instances of PrimitiveType. This class belongs to the javafe package,
which is common to tools that need a Java front end. Primitive types are distinguished by a tag
attribute. The maker methods require that a valid tag be used when creating a new instance of
PrimitiveType, and an invariant ensures that the tag remains valid. A valid tag is defined in
PrimitiveType to be one of ten given tag values. The tags themselves are defined in the
class javafe.ast.TagConstants.

As was mentioned earlier, the escjava package makes use of services of the Java front-end
package. In particular, it makes direct use of the PrimitiveType class to define ESC/Java2-
and JML-specific primitive types such as lockset and \bigint. To do so, new tags are
defined in escjava.ast.TagConstants. Unfortunately, the static creation of, e.g., the
escjava lockset primitive type results in a violation of the PrimitiveType maker
method’s precondition—see Figure 5—since the maker is given a tag value that is not one of
the expected ten “valid” values.

One approach considered was to define a subtype of javafe.ast.PrimitiveType named
escjava.ast.EscPrimitiveType and represent the ESC/Java2 and JML primitive types
with instances of this new class. Unfortunately, the semantics of class invariants and the
enforcing of behavioral subtyping in JML make it impossible to write any useful class contracts
for PrimtiveType and EscPrimitiveType in such a case (even if, for example, we use an
auxiliary boolean method isValidTag). The problem is illustrated in Figure 6. The first
problem to be noticed is that it is difficult to choose an appropriate class invariant restricting the

Exception in thread "main"
org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError: by method
PrimitiveType.makeNonSyntax regarding specifications at
File "Javafe/java/javafe/ast/PrimitiveType.java", line 78, character 16
when
 'tag' is 247
 at escjava.Main.compile(Main.java:4138)
 at escjava.Main.internal$main(Main.java:118)
 at escjava.Main.main(Main.java:3479)

Figure 5. RAC error: violation of PrimitiveType maker method precondition

package javafe.ast;
public class PrimitiveType extends Type {
 //@ invariant (tag == TagConstants.BOOLEANTYPE || ...); // ???
 public int tag;

 //@ requies ???
 protected PrimitiveType(…, int tag, int loc) {
 this.tag = tag;
 ...
 }
}

package escjava.ast;
public class EscPrimitiveType extends PrimitiveType
{
 //@ requires (* tag is a valid javafe tag or an esc tag *);
 protected EscPrimitiveType(…, int tag, int loc) {
 // tag might not be a valid PrimitiveType tag!
 super(tmodifiers, tag, loc);
 }
 // ...
}

Figure 6. Sample (invalid) solution: excerpts of PrimitiveType and EscPrimitiveType

 7

value of tag. E.g., it cannot be limited to only javafe tags, otherwise EscPrimitiveTypes
could not be created. We cannot say in javafe.ast.PrimitiveType that the legal tags also
include those of the escjava.ast package since this would create circular dependencies
between javafe and escjava. Similarly, notice how the EscPrimitiveType constructor
invokes the PrimitiveType constructor (via super). For this call to be permitted, what
precondition must the PrimitiveType constructor have with respect to its tag parameter?

Instead of trying to work with the untenable solution consisting of two classes, we decided to
extract an interface and allow both the Java front end and ESC tools to implement this common
interface. The interface has both a code and model version of an isValidTag method. By
specifying that the code version result is the same as the model version’s we are able to
statically verify the invariant that isValidTag always returns true.

The two implementations of the interface (viz., JavaFePrimitiveType and
EscPrimitiveType) have implementations of isValidTag that compare against the
appropriate values in each case. Their makers and constructors require that the tag value passed
to them be valid, as determined by their local versions of isValidTag. Since the value passed
to the makers and constructor is valid, and since this value is stored as the type’s tag, the
invariant can be statically shown to hold. This solution is illustrated in Figure 7.

 8

4 Conclusion
Use of the JML RAC has enabled us to uncover significant design flaws and inconsistencies
that ESC/Java2 was unable to report (either due to its unsoundness or incompleteness). Trying
to detect these through a manual code review would have been very tedious. Having a tool with
another verification approach allowed us to rapidly see problems buried in the code. As
expected, the problems that the RAC reported were non-trivial: ESC/Java2 had already been
run on itself and the trivial problems exposed had been dealt with. The issues raised by the
RAC had deep implications (e.g., violations of behavioral subtyping). Careful engineering
analysis of both the specification violations and the related source code allowed us to resolve
the issues without falling into deeper traps.

This next step in our verification efforts has allowed us to uncover design issues in the
ESC/Java2 front end and type system whose resolution has resulted in a system that has higher
consistency between its specification and implementation. We will continue to run RAC-

package javafe.ast;
public interface PrimitiveType
{
 //@ public model instance int _tag;
 //@ pure model boolean specIsValidTag(int tag);

 //@ ensures \result == specIsValidTag(_tag);
 /*@ pure */ boolean isValidTag();

 //@ public invariant isValidTag();

 //@ ensures \result == _tag;
 /*@ pure */ int getTag();
}

package escjava.ast;
public class EscPrimitiveType implements PrimitiveType
{
 /*@ spec_public */ private int tag;
 //@ public represents _tag <- this.tag;

 /*@ public normal_behavior
 @ ensures \result == (JfePrimitiveType.isValidTag(tag) ||
 @ tag == TagConstants.LOCKSET || ...);
 @*/
 public static /*@pure*/ boolean isValidTag(int tag) {
 return (JfePrimitiveType.isValidTag(tag) ||
 tag == TagConstants2.LOCKSET || ...);
 }

 /*@ also
 @ public normal_behavior
 @ ensures \result == EscPrimitiveType.isValidTag(tag);
 @*/
 public /*@pure*/ boolean isValidTag() {
 return isValidTag(tag);
 }

 /*@ public normal_behavior
 @ ensures \result == EscPrimitiveType.isValidTag(tag);
 @ public model pure boolean specIsValidTag (int tag) {
 @ return EscPrimitiveType.isValidTag(tag);
 @ }
 @*/

 /*@ protected normal_behavior
 @ requires EscPrimitiveType.isValidTag(tag);
 @ ensures this.tag == tag && ...;
 @*/
 protected /*@pure*/ EscPrimitiveType(..., int tag, int loc) {
 this.tag = tag; ...
 }
}

Figure 7. Excerpt of correct redesign of PrimitiveType

 9

instrumented versions of ESC/Java2 to uncover further bugs. We hope to soon begin using
ESC/Java2 to analyze the source for the JML Compiler, as it also has a large JML-annotated
code base. Using the tools iteratively to analyze both themselves and each other should allow
us to enhance their quality, hence making them more likely potential candidates for inclusion in
the Verified Software Repository.

References
[1] UKCRC, "Grand Challenges for Computer Research, ," UK Computing Research Committee

(UKCRC) 2006.
[2] J. C. P. Woodcock, "Grand Challenge 6:Dependable Systems Evolution," 2006.
[3] J. C. Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock, "The verified software repository: a step

towards the verifying compiler," Formal Aspects of Computing, 2006.
[4] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry, and P. Chalin,

"JML Reference Manual," 2006.
[5] B. Meyer, "Applying Design by Contract," Computer, vol. 25, pp. 40-51, 1992.
[6] G. T. Leavens and Y. Cheon, "Design by Contract with JML," Draft paper 2005.
[7] P. Chalin, J. Kiniry, G. T. Leavens, and E. Poll, "Beyond Assertions: Advanced Specification and

Verification with JML and ESC/Java2 (Tutorial Paper)," in Fourth International Symposium on
Formal Methods for Components and Objects (FMCO'05), 2005.

[8] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, and E.
Poll, "An Overview of JML Tools and Applications," International Journal on Software Tools for
Technology Transfer (STTT), vol. 7, pp. 212-232, 2005.

[9] F. Rioux, "Effective and Efficient Design by Contract for Java," in Dependable Software Research
Group (DSRG), Faculty of Engineering and Computer Science, Department of Computer Science
and Software Engineering. Montreal, Quebec: Concordia University, 2006.

[10] C. Flanagan and K. R. M. Leino, "Houdini, an Annotation Assistant for ESC/Java," presented at
International Symposium of Formal Methods Europe, Berlin, Germany, 2001.

[11] B. H. Liskov and J. M. Wing, "A behavioral notion of subtyping," ACM Transactions on
Programming Languages and Systems, vol. 16, pp. 1811-1841, 1994.

Static Stability Analysis of Embedded, Autocoded

Software

Eric Feron∗ and Arnaud Venet†

1 Introduction

Embedded software-based control systems are commonly constructed using model-based design
environments such as MATLAB/SimulinkTMfrom MathWorks. These environments allow the
system designer to establish critical properties ensuring the reliability of the system (stabil-
ity, disturbance rejection, etc.) directly at the model level, using a rich mathematical toolset.
However, the software implementation substantially transforms the mathematical model by
introducing numerous programming artifacts (aggregate data structures, pointers) and alter-
ing the numerical representation (platform-dependent floating/fixed-point arithmetic, and, in
the most extreme cases, conversion from continuous-time dynamics to discrete-time dynamics).
Verifying that the reliability properties of the system are preserved by the implementation is ex-
tremely challenging, yet in many cases critically important. Model-based design environments
usually come with an autocoder i.e., a code generation tool that automatically synthesizes an
implementation of the embedded controller from the specification of its model. Autocoders
are getting increasingly used in practical applications for they greatly simplify the implemen-
tation process. In many corporations however, including aerospace and automotive industries,
autocoding is essentially precluded because its properties are considered to be not adequately
trustworthy.

Static program analysis tools have recently proven successful in tackling the certification of
embedded software-based control systems. ASTREE [3], developed by P. Cousot’s team in
France, can automatically verify the consistency of floating-point arithmetic in the electric-
command control system of the A380, Airbus’ super-jumbo carrier. C Global Surveyor [7],
developed by Kestrel Technology LLC, can verify the absence of pointer manipulation errors
in the mission-control software of NASA’s Mars Exploration Rovers. However, the scope of
static analysis has been essentially limited to robustness properties, i.e., ensuring the absence
of runtime errors during the execution of the program. Verifying functional properties by static
analysis for a system to be used in the field requires (1) translating a reliability property of the
model into the implementation setting, using the appropriate data structures and numerical

∗Georgia Institute of Technology, feron@gatech.edu
†Kestrel Technology, 4984 El Camino Real #230, Los Altos, CA 94022, arnaud@kestreltechnology.com

1

libraries, and (2) tracking the evolution of this property over all execution paths using abstract
interpretation techniques. This process requires a tight coupling between the model description
and its implementation. While such tight coupling is rarely achieved in practice, it can exist
at least when the implementation is automatically generated from the model. Autocoders, like
Real-Time StudioTMfor SimulinkTM, are increasingly being used in industry for the development
of embedded control software. This means that static analysis techniques specialized for codes
automatically generated from high-level models can be developed to meet market needs.

The approach we are investigating consists of translating the formal proof of reliability prop-
erties of an embedded logic into a dedicated static analyzer that automatically carries out the
corresponding proof on the code generated from the model. Whereas today’s commercial (and
even known academic) static analyzers for embedded mission- and safety-critical software are
handcrafted, we propose to use our prior research to construct the dedicated static analyzer au-
tomatically. Ultimately, the system designer would be provided with a fully automated engine
that performs verification of the generated code without requiring any additional information
other than the high-level model specification.

The paper is organized as follows. In Sect. 2 we describe the challenges posed by the analysis of
autocoded embedded control software and how they are addressed in our approach. In Sect 3
we propose a research agenda toward the analysis of reliability properties for embedded control
software. Section 4 discusses current issues that come up during the design of the static analysis.

2 Challenges

There are two major challenges in developing a tool for the automated verification of reliability
properties of embedded control software automatically generated from a high-level model:

1. How do we translate a property of the high-level model into a property of the code
generated from that model? What are the features of the autocoder we must know to
effectively build this translator?

2. How do we specify the basic components of the static analyzer required to verify the
desired property? How do we specialize the analyzer to the code generated by a given
autocoder?

We discuss these challenges in the following subsections.

2.1 Property Translator

The autocoder of the model-based design environment generates code from the model in a
predictable way. Therefore, we expect to be able to map a property of the model’s variables

2

into a property of the data structures used in the model’s implementation. Commercial model-
based design environments offer rich libraries of basic components for building systems and the
properties of interest may greatly vary depending on the nature of the system designed.

The model-based design environment we have chosen is the Matlab/SimulinkTMtool suite; the
family of systems we are beginning with is that of closed-loop dynamical systems, represented on
the one hand by a family of differential equations that capture the system’s physics, and on the
other hand the closed-loop control algorithm and its associated code. The functional properties
we are interested in include closed-loop systems stability, closed-loop system performance (eg
tracking performance), and reachability analyses. We are currently interested in describing
how to map that property to the implementation by conducting an extensive study of the code
generated from a benchmark of systems in that family.

2.2 Static Analysis Specification Framework

Checking the transposed property of the model on the code may require a specific analysis
algorithm that takes into account the underlying computational model (floating/fixed-point)
and the nature of the reliability property (linear or ellipsoidal invariants). Moreover, the code
generated by the model-based design environment may use programming language constructs
(like pointers or union types in C) that pose a difficulty for the static analyzer. These constructs
may require dedicated analysis algorithms (pointer analysis, type analysis) specially tailored
for the particular structure of code produced by the autocoder. These static analyzers are
strongly specialized toward the family of models and properties considered. This does not
require rewriting the analyses from scratch for each of these configurations. We need a library
of baseline static analysis algorithms (pointer analysis, floating-point analysis, type analysis,
etc.) and a framework for combining them in a way to address each configuration’s unique
requirements. We are in the process of establishing a taxonomy of static analysis algorithms and
describing a specification framework for expressing arbitrary combinations of these algorithms.

3 Research Agenda

3.1 Overview of the problem: Illustrative example

Consider a dynamical system described by the following equations of motion

d
dtx = y
d
dty = u + w

(1)

where x is the variable to be controlled, u is a control variable, and w a disturbance whose
value is unknown (for example wind gusts). We assume a sensor system is able to read x.

3

A typical embedded system design problem is to come up with a logic that, based upon suc-
cessive readings of x(t) over time, is able to generate a sequence of control inputs u(t) such
that the “closed-loop” system is stable (that is, the variable x never grows out of bounds),
and achieves proper disturbance rejection, that is, minimizes the deviations of x generated by
w. Control systems engineering provides a convenient framework to achieve such performance
requirements, by using linear dynamical systems as a modeling framework for such a logic. For
example, the logic may be specified by the dynamical system:

d
dtx1 = y,
d
dtx2 = −10x2 + y,
u = −0.01x1 + 9

10x2 − 10y

(2)

and it is indeed easy to check (via a simple eigenvalue computation, for example) that the
system specification consisting of (3) and (2) is stable, and therefore correctly achieves the most
important requirement for the embedded system. An alternative and more powerful stability
criterion consists of computing an invariant for (3) together with (2). Such an invariant might
easily be obtained by considering the evolution over time of V (x, y, x1, x2), with

V (x, y, x1, x2) =

x
y
x1

x2

T

768.5818 −0.5000 0.8254 −6.3254
−0.5000 82.5378 50.0000 6.7959
0.8254 50.0000 495.5018 4.4932
−6.3254 6.7959 4.4932 0.6616

x
y
x1

x2

The level sets of V are ellipsoids, and, in the absence of perturbations w, the system (3) together
with the logic specification (2) satisfies

d

dt
V ≤ 0

for any initial condition. This in turn ensures all variables of the closed-loop system specification
remain bounded, and therefore the system is stable.

Consider now the implementation of the logic (2): This implementation must replace the
continuous-time system (3) by a difference scheme instead, with or without variable time step.
Other significant differences may exist, including the coding of all variables in floating-point
arithmetic. The invariant function V may, however, still be used to prove the stability of the
system (3) together with the implementation of the controller specification (2). This is what we
propose to achieve by conducting static analysis on the code generated from the model, using
Abstract Interpretation techniques. Kestrel Technology has a substantial body of implemented
analyzers based on abstract interpretation and libraries [7, 6] available. These algorithms are
being incorporated in CodeHawk, a generic static analysis development framework that enables
the automated construction of static analyzers from a set of requirements.

3.2 From system-level properties to implementation-level properties

In the case of the reliability property presented in the previous section (stability), we have to
prove the preservation of an ellipsoidal invariant. This property is expressed on a continuous

4

model and has to be transformed so that it can be checked directly on the implementation of a
discrete model extracted from the continuous formulation. This process can be split up in two
separate steps:

(1) Generate a discrete executable model from a continuous formulation.

(2) Translate the discrete executable model into an actual program.

The first step is a standard mathematical transformation that is fairly independent from the
choice of a particular autocoder. In order to assess the feasibility of our approach, we are
designing a static analysis framework that operates on the executable model of (1). This ex-
ecutable model can be seen as the most detailed operational formulation that can be stated
independently from the characteristics of the target programming language. Since this formu-
lation does not use low-level programming language constructs we can focus on the algorithmic
aspects of the static analysis. We assign a syntax and semantics to this operational model in
order to conduct formal reasoning on it and define its abstract interpretation rigorously. The
connection between this intermediate operational model and the actual implementation is in-
vestigated independently by studying the code generated from a benchmark of representative
models that we are building build for that purpose.

3.3 Tailoring the analyzer to the property to verify

The executable model of the system introduces a complex control-flow with loops that represents
the iterative computation of the control logic over discretized time. This has the effect of
breaking down the simple formulation of the original logic into a number of intermediate steps.
This means that the original invariant that holds at some points in the executable code does
not hold at some others. Therefore, the analysis must be able to model how the invariant is
transformed by elementary operations of the executable model. We need what is called in the
jargon of Abstract Interpretation an abstract domain. In the case of ellipsoidal invariants, we
need to construct an abstract domain that can represent all possible ellipsoidal invariants over a
given set of variables as well as the associated semantic transformers. The semantic transformers
model the effect of elementary operations like initializing a variable or incrementing its value.

The executable model on which we are working hides low-level implementation details, there is
one feature of the target platform that we must take into account at this level because of its
impact on the design of the abstract domain: the computational model of reals (floating/fixed-
point arithmetic). How roundoffs are performed and imprecision is propagated is extremely
important, because the accumulation of roundoff errors can cause a violation of the invariant
and compromise the stability of the control system. This issue extends to other discretizations
that may be performed automatically, such as time discretization. Tracking the propagation of
roundoff and discretization errors requires a proper abstraction of the floating-point computa-
tional model that is amenable to mechanized analysis.

The design of the abstract domain is the most critical aspect of our approach. It requires ex-
pertise both in Abstract Interpretation and Control Theory in order to devise a representation

5

of invariants that will effectively enable checking the correctness of the executable model with
good performance. Fortunately, there is a substantial body of work already published that ad-
dresses many the problems involved in the design of such abstract domains, like the inference of
numerical invariants for floating-point computations [5] or the discovery of ellipsoidal invariants
for the analysis of linear digital filters [4], with extensions to uncertain dynamical systems [1].
Abstract domains specialized for certain properties can be combined in various ways in order
to obtain more expressive ones that can handle more complex properties. Therefore, the effort
of building a new abstract domain is incremental. We plan to use CodeHawk as a repository of
abstract domains as well as a generator for building new abstract domains from combination
of existing ones.

3.4 Analyzing implementation artifacts

Studying the analysis of the executable model provides us with the core concepts for carrying
out the verification at the implementation level. In order to translate these concepts into an
actual analyzer that operates at the generated code level, we need a number of auxiliary analyses
whose purpose is to recover structural data from the implementation artifacts. For example,
consider the following function which has been taken out of the C code generated by Real-Time
Studio from the sample continuous model described in Section 3.1.

static void rt_ertODEUpdateContinuousStates(RTWSolverInfo *si , int_T tid)
{

time_T tnew = rtsiGetSolverStopTime(si);
time_T h = rtsiGetStepSize(si);
real_T *x = rtsiGetContStates(si);
ODE1_IntgData *id = rtsiGetSolverData(si);
real_T *f0 = id->f[0];
int_T i;

int_T nXc = 2;

rtsiSetSimTimeStep(si,MINOR_TIME_STEP);

rtsiSetdX(si, f0);
logic_derivatives();
rtsiSetT(si, tnew);

for (i = 0; i < nXc; i++) {
*x += h * f0[i];
x++;

}

rtsiSetSimTimeStep(si,MAJOR_TIME_STEP);
}

6

This function updates the control variables at each time step accordingly to the specified logic.
In order to recover the original components of the continuous model we must perform a pointer
analysis that is able to distinguish between elements of arrays accessed through pointers (like
x and f0) and a numerical analysis that is able to infer the range of index variables (like i)
used for manipulating the model data. If we consider pointer analysis for example, there is a
broad spectrum of existing algorithms that greatly differ in terms of precision and scalability.
Depending on the structure of the code produced by the generator or just the family of models
considered, we may have to choose different algorithms. In order to achieve this we need a high
level of flexibility for specifying the set of analyses to be performed on the code.

We plan to use the CodeHawk static analysis generator that precisely enables the rapid devel-
opment of efficient analyzers from a list of requirements. What has to be studied, however, is
how to state these requirements for this specific application, i.e., how to recover the structure
of the high-level model. This means that we have to determine a formalism that both specifies
which combination of analysis to use and how to tie the results of the analysis back to the
model components. This formalism would ultimately be integrated within CodeHawk. We are
now studying the features that such a formalism should possess and we will propose a tentative
definition from experiments conducted on a benchmark of models using CodeHawk.

4 Some Current Issues: Designing the Collecting Semantics

When analyzing code, a central issue is the design of what is called the collecting semantics [2].
The collecting semantics describes how much information from the original program must be
retained in order to verify the desired property. The collecting semantics forms the base model
on which static analysis is conducted. Higher levels of semantic collection allow one to define
more compact models of the software execution, but this task may also be more complex, since
information must be collected over several lines of code and then linked into a compact model.
Thus, lower semantic levels (like “line-by-line” analyses) are more desirable from the standpoint
of analyzer simplicity and adaptability. We now show on a simple example that testing typical
control-related invariants raises interesting issues with respect to the collecting semantics.

Consider a C code implementation of the simple recursion

for(;;) {
x+ = Ax;
x = x+;

}

(3)

In this infinite recursion, x ∈ Rn is the state of the system, and the matrix A ∈ Rn×n is a
square matrix. We assume the matrix A to be stable, that is, all trajectories x converge to zero,
which is equivalent to the spectral radius of A being strictly less than 1. A typical invariant
used to prove this property is a quadratic function of the state x, that is, a function of the
form V (x) = xT Px, where P ∈ Rn×n is a positive definite, symmetric matrix. Such quadratic

7

invariants can always be found if the matrix A is stable, and the monotonic decay of V is
equivalent to the matrix inequality (in the sense of the partial order of symmetric matrices):

AT PA− P ≤ 0

Assume such a matrix P is known. A software implementation of (3) might include several
lines of code to carry the line x+ = Ax, and then several other lines of code to implement
x = x+. When n > 1, the latter command can raise significant issues, especially if they are
distributed throughout the code as is often done. Indeed, each line of code corresponds to the
substitution of one entry of the state vector x at a time. The effect on the invariant is, most
often, disastrous. Indeed, considering for example a substitution of pointer values of the kind

for (i =0; i < n; i++) {
∗(x + i) = ∗(x+ + i);

}

Then the value of the invariant V after the first line of this recursion is
a1x
x2
...

xn

T

P

a1x
x2
...

xn

 ,

where a1 is the first row of the matrix A, and the difference between this and V (x) = xT Px is
a1x
x2
...

xn

T

P

a1x
x2
...

xn

− xT Px,

or
a1x− x1

0
...
0

T

Px + xT P

a1x− x1

0
...
0

 +

a1x− x1

0
...
0

T

P

a1x− x1

0
...
0

 .

the last of the three terms is positive, such that the candidate invariant xT Px decays if and
only if, writing a1 = [a11 a12 . . . an

1] and introducing b = [a11− 1 a12 . . . an
1], we have, for any

x:
xT bT p1x + xT pT

1 bx ≤ 0

where p1 is the first row of P . However, it is well known from linear algebra that such an
inequality is possible only if b and p1 are collinear and oriented in the same direction, which
is usually not the case. Thus, the invariant xT Px does not decay line-by-line, and we must
first collect the entire substitution of x by x+ before the invariant decays. This substantially
constrains the design of the collecting semantics and the static analysis, since all possible
execution traces of a loop must be collected and represented by one semantic object.

8

Conclusion

Static analysis of embedded software arising from autocoded specifications is a necessary step
towards broad and safe acceptance by the industrial community. This paper has outlined a
research program aimed at achieving this task by exploiting the underlying structure arising
from this type of software, using abstract interpretation and control systems analysis methods.
The execution of this research is an oingoing activity and its findings will be reported in future
publications.

References

[1] Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. Linear matrix inequalities
in system and control theory. SIAM Studies in Applied Mathematics 15 (1994).

[2] Cousot, P. Semantic foundations of program analysis. In Program Flow Analysis: Theory
and Applications, S. Muchnick and N. Jones, Eds. Prentice-Hall, Inc., Englewood Cliffs,
1981, ch. 10, pp. 303–342.

[3] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
and Rival, X. The ASTRÉE Analyser. In Proceedings of the European Symposium on
Programming (ESOP’05) (2005), vol. 3444 of Lecture Notes in Computer Science, pp. 21–30.

[4] Feret, J. Static analysis of digital filters. In European Symposium on Programming
(ESOP’04) (2004), no. 2986 in LNCS, Springer-Verlag.

[5] Miné, A. Relational abstract domains for the detection of floating-point run-time errors.
In ESOP’04 (2004), vol. 2986 of LNCS, Springer, pp. 3–17.

[6] Venet, A. A scalable nonuniform pointer analysis for embedded programs. In Proceedings
of the International Static Analysis Symposium, SAS 04 (2004), vol. 3148 of Lecture Notes
in Computer Science, Springer, pp. 149–164.

[7] Venet, A., and Brat, G. Precise and efficient static array bound checking for large
embedded C programs. In Proceedings of the International Conference on Programming
Language Design and Implementation (2004), pp. 231–242.

9

