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Abstract
We present a new system, Genesis, that processes sets of
human patches to automatically infer code transforms and
search spaces for automatic patch generation. We present re-
sults that characterize the effectiveness of the Genesis infer-
ence algorithms and the resulting complete Genesis patch
generation system working with real-world patches and er-
rors collected from top 1000 github Java software devel-
opment projects. To the best of our knowledge, Genesis
is the first system to automatically infer patch generation
transforms or candidate patch search spaces from success-
ful patches.

1. Introduction
Automatic patch generation systems [33, 38–41, 45, 54, 61,
64, 65] hold out the promise of significantly reducing the
human effort required to diagnose, debug, and fix software
errors. The standard generate and validate approach starts
with a set of test cases, at least one of which exposes the
error. It deploys a set of transforms to generate a search
space of candidate patches, then runs the resulting patched
programs on the test cases to find plausible patches that
produce correct outputs for all test cases.

All previous generate and validate systems work with a
set of manually crafted transforms [38–41, 54, 61, 64, 65].
This approach limits the system to fixing only those bugs that
fall within the scope of the transforms that the developers
of the patch generation system decided to provide. This
limitation is especially unfortunate given the widespread
availability (in open-source software repositories) of patches
developed by many different human developers. Together,
these patches embody a rich variety of different patching
strategies developed by a wide range of human developers,
and not just the patch generation strategies encoded in a set
of manually crafted transforms from the developers of the
patch generation system.

1.1 Genesis

We present Genesis, a novel system that automatically in-
fers transforms and resulting search spaces for automatic
patch generation systems. Given a set of successful human

patches drawn from available revision histories, Genesis au-
tomatically generalizes subsets of patches to infer transforms
that together generate a productive search space of candidate
patches. Genesis can therefore leverage the combined patch
generation expertise of many different developers to cap-
ture a wide range of productive patch generation strategies.
It can then automatically apply the resulting transforms to
successfully correct errors in multiple previously unseen ap-
plications. To the best of our knowledge, Genesis is the first
system to automatically infer patch generation transforms or
candidate patch search spaces from successful patches.
Transforms: Each Genesis transform has two template ab-
stract syntax trees (ASTs). One template AST matches code
in the original program. The other template AST speci-
fies the replacement code for the generated patch. Tem-
plate ASTs contain template variables, which match sub-
trees or subforests in the original or patched code. Template
variables enable the transforms to abstract away patch- or
application-specific details to capture common patch pat-
terns implemented by multiple patches drawn from different
applications.
Generators: Many useful patches do not simply rearrange
existing code and logic; they also introduce new code and
logic. Genesis transforms therefore implement partial pat-
tern matching in which the template AST for the patch con-
tains free template variables that are not matched in the orig-
inal code. Each of the free template variables is associated
with a generator, which systematically generates new can-
didate code components for the free variable. This new tech-
nique, which enables Genesis to synthesize new code and
logic in the candidate patches, is essential to enabling Gene-
sis to generate correct patches.
Search Space Inference with ILP: A key challenge in
patch search space design is navigating an inherent trade-
off between coverage and tractability [42]. On one hand,
the search space needs to be large enough to contain correct
patches for the target class of errors (coverage). On the other
hand, the search space needs to be small enough so that the
patch generation system can efficiently explore the space to
find the correct patches (tractability) [42].



Genesis navigates this tradeoff by formulating an integer
linear program (ILP) whose solution maximizes the number
of training patches covered by the inferred search space
while acceptably bounding the number of candidate patches
that the search space can generate (Section 3.5).

The ILP operates over a collection of subsets of patches
drawn from a set of training patches. Each subset general-
izes to a Genesis transform, with the final search space gen-
erated by the set of transforms that the solution to the ILP
selects. Genesis uses a sampling algorithm to tractably de-
rive the collection of subsets of patches for the ILP. This
sampling algorithm incrementally builds up larger subsets
of patches from smaller subsets, using a fitness function
to identify promising candidate subsets (Section 3.4). To-
gether, the sampling algorithm and final ILP formulation of
the search space selection problem enable Genesis to scal-
ably infer a set of transforms with both good coverage and
good tractability.

1.2 Experimental Results

We use Genesis to infer patch search spaces and gener-
ate patches for three classes of errors of Java programs:
null pointer errors (NPE), out of bounds errors (OOB), and
class cast errors (CCE). Our training set includes 483 NPE
patches, 199 OOB patches, and 287 CCE patches from 356
open source applications. Our benchmark set includes 20
NPE errors, 13 OOB errors, and 16 CCE errors from 41
open source applications. All of the benchmark applications
are systematically collected from github [9] with up to 235K
lines of code. Genesis generates correct patches for 21 out
of the 49 errors (13 NPE errors, 6 OOB errors, and 5 CCE
errors). Genesis significantly outperforms PAR [36], a pre-
vious patch generation system that works with manually de-
fined mutation templates. For the same benchmark set, PAR
generates correct patches only for 11 errors (7 NPE errors
and 4 OOB errors). The reason is that the Genesis inference
algorithm more successfully navigates the trade-off between
coverage and complexity — it infers a richer but still effec-
tively targeted patch search space (see Section 5.4).

1.3 Contributions

This paper makes the following contributions:

• Transforms with Template ASTs and Generators: We
present novel transforms with template ASTs and gener-
ators for free template variables. These transforms enable
Genesis to abstract away patch- and application-specific
details to capture common patch patterns and strategies
implemented by multiple patches drawn from different
applications. Generators enable Genesis to synthesize the
new code and logic required to obtain correct patches for
errors that occur in large real-world applications.

• Patch Generalization: We present a novel patch gener-
alization algorithm that, given a set of patches, automati-
cally derives a transform that captures the common patch
generation pattern present in the patches. This transform
can generate all of the given patches as well as other
patches with the same pattern in the same or other ap-
plications.

• Search Space Inference: We present a novel search
space inference algorithm. Starting with a set of training
patches, this algorithm infers a collection of transforms
that together generate a search space of candidate patches
with good coverage and tractability. The inference algo-
rithm includes a novel sampling algorithm that identifies
promising subsets of training patches to generalize and
an ILP-based solution to the final search space selection
problem.

• Complete System and Experimental Results: We present
a complete patch generation system, including error lo-
calization and candidate patch evaluation algorithms, that
uses the inferred search spaces to automatically patch
errors in large real-world applications. We also present
experimental results from this complete system.

Automatic patch generation systems have great potential
for automatically eliminating errors in large software sys-
tems. By inferring transforms and search spaces from sets of
previous successful patches, Genesis can automatically de-
rive patch generation strategies that leverage the combined
insight and expertise of developers worldwide. To the best of
our knowledge, Genesis is the first system to automatically
infer patch generation transforms or candidate patch search
spaces from previous successful patches.

2. Example
We next present a motivating example of using Genesis to
generate a correct patch for a null-pointer exception (NPE)
error from DataflowJavaSDK [5] revision c06125 (shown at
the bottom of Figure 1).
Collect and Split Training Set: Genesis works with a
training set of successful human patches to infer a search
space for patch generation. In our example, the training set
consists of 963 human patches collected from 356 github
repositories. The training set contains patches for multiple
kinds of errors. Specifically, 483 out of the 963 patches in the
training set are for NPE errors and the remaining 480 patches
are for out-of-bound (OOB) errors and class-cast exception
(CCE) errors. To control overfitting, Genesis reserves 241
(25%) human patches from the training set as a validation
set (Section 3.4). This leaves 722 human patches remaining
in the training set.
Generalize Patches: The Genesis inference algorithm
works with sampled subsets of patches from the training



return type.isAssignableFrom(subject.getClass());

return subject !=null &&
   type.isAssignableFrom(subject.getClass());

if (Material.getMaterial(getTypeId()).getData() != null) {...}

if (Material.getMaterial(getTypeId()) != null &&
  Material.getMaterial(getTypeId()).getData() != null) {...}

if (MapperPrism.getInstanceof(
  mapperTypeElement) == null) {...}
if (mapperTypeElement == null ||
  MapperPrism.getInstanceof(
  mapperTypeElement) == null) {...}

Inside: { Func, Return } Inside: { Func, If }Inside: { Func, If }

if (unions.isEmpty()) { if (useDefault) return defaultValue; ... } if (unions == null || unions.isEmpty()) { 
  if (useDefault) return defaultValue; ... }Inside: { Func, If }

A: {Expr}     B: {Expr}
Inside: { Func }

unions
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A
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Figure 1. Example inference and application of a Genesis transform. The training patches (original and patched code) are at
the top, the inferred transform is in the middle, and the new patch that Genesis generates is at the bottom.

set. For each subset, it applies a generalization algorithm
to obtain a transform that it can apply to generate candi-
date patches. Figure 1 presents one of the sampled sub-
sets of patches in our example: the first patch disjoins the
clause mapperTypeElement==null to an if condition,
the second patch conjoins the clause subject!=null
to a return value, and the third patch conjoins the clause
Material.getMaterials(getTypeId())!=null
to an if condition. These patches are from three different
applications, specifically mapstruct [20] revision 6d7a4d,
modelmapper [25] revision d85131, and Bukkit [4] revision
f13115. Genesis generalizes these three patches to obtain the
transform P1 in Figure 1. When applied, P1 can generate all
of the three patches in the selected subset as well as other
patches for other applications.

Each transform has an initial template abstract syntax
tree (AST) and a transformed template AST. These tem-
plate ASTs capture the syntactic contexts of the original and
patched code, respectively. In our example, the initial tem-
plate AST T0 matches a boolean expression A that occurs
within a function body (if all of the patches had modified if
conditions, the initial pattern would have reflected that more
specific context). The transformed template AST replaces
the matched boolean expression A with a patch of the form
A op1(B op2 null), where op1 = C ∈ {!=,==} and
op2 = D ∈ {&&,||},A is the original matched boolean ex-
pression, andB is an expression produced by a generator. In
this example, Genesis infers the generator that generates all
expressions that satisfy the constraints in Figure 1, specif-
ically, that B contains method calls and variable accesses,
that the number of variables in B is at most 2, that the num-
ber of calls in B is at most 1, and that any variables or calls
in B must also appear in the original unpatched code.

In general, the generalization algorithm extracts 1) com-
mon AST structures shared by the pre-patch ASTs of the
selected training patches (as the initial template AST T0), 2)

A
.

B
?:

A

C

D

Inside: {Func}
A: {Expr}   B: {Call}
C: {0, null, "null", "?"}
D: {Expr}, it only contains 
one var/call that appears 
in the original code

bin
==

null

C
if

bin

null

B

==A

Inside: {Func}  A: {Stmt} 
B: {Var}, the var appears in 
the original enclosing function.
C: {Return, Continue}, it 
contains up to one constant, 
either null or empty string. A

Transform P2P2

Transform P3P3

Examples of other useful candidate transforms:

BA

Inside: {Func}  A: {Expr} 
B: {Expr}. It can contain binary 
operators, conditional operators, and 
up to six variables and calls from the 
enclosing function.

Transform P4P4

An unproductive transform that generates a lot of patches:

Figure 2. Examples of candidate transforms.

common AST structures shared by the post-patch ASTs of
the selected training patches (as the transformed AST T1), 3)
common AST subtrees that are systematically copied/moved
from the pre-patch ASTs to post-patch ASTs (e.g., the tem-
plate variable A shared by T0 and T1), and 4) synthesis con-
straints of the new code snippets (e.g., the generator con-
straints for B).
Obtain Candidate Transforms: A Genesis search space
contains multiple transforms. To infer the search space, Gen-
esis applies the previous generalization algorithm on many
selected subsets to obtain a set of candidate transforms. It
turns out that, in practice, essentially all useful transforms
can be generated by generalizing relatively small subsets of
training patches (six or fewer training patches). For small
numbers of training patches, it might be feasible to simply
generate all subsets of training patches smaller than a given
bound. Because we work with too many training patches for
this approach to scale, Genesis uses a sampling algorithm



if (loopField.getRangeDurationField().getType() != 
lastType) {...}
if (loopField.getRangeDurationField() == null || 
loopField.getRangeDurationField().getType() != 
lastType) {...}

return indent + getClass().getSimpleName() + ":" + 
getPosition().getLine() + ...;
return indent + getClass().getSimpleName() + ":" + 
(getPosition() == null ? "?" : 
getPosition().getLine()) + ...;

final byte[] content = ser.toStream(iConfig, 
false);
if (ser == null) return;
final byte[] content = ser.toStream(iConfig, 
false);

Transform P1P1 Transform P2P2 Transform P3P3 Transform P4P4

P1 P2 P3 P4

V1 44 264 40 > 105

V2 308 2534 40 > 105

V3 24 80 40 > 105

# of derived candidate patches of applying
each transform to each validation case

Integer Linear 
Programming 

Solver

The result search 
space selects 
P1P1, P2P2, and P3P3.

Constraint: the # of derived 
candidate patches for each coverd 

case is less than 50000.

Maximize: the # of covered 
validation cases

Validation patch pairs:

Figure 3. Example of the search space inference. The validation patches (original and patched code) are in the middle.

that incrementally builds up promising subsets (starting with
subsets of size two, then working up to subsets of size six).
The algorithm uses a fitness function to prune unpromising
subsets (Section 3.4).

In our example, P1 in Figure 1 is one of the obtained can-
didate transforms. Figure 2 presents examples of other ob-
tained candidate transforms. The transform P2 in Figure 2
patches method call expressions on null objects. P2 adds a
guard expression of the formA == null ? C : D that
first checks if A is null and, if so, evaluates to a constant
such as null or 0 instead of throwing NPE. Note that P2

creates a new variable D instead of reusing the original code
— the human patches in the training set often slightly refac-
tor the code instead of directly using the original code as the
else expression. The transform P3 in Figure 2 executes a re-
turn or continue statement C instead of an original statement
A if B == null. P3 eliminates null pointer exceptions by
returning from the enclosing function or skipping the current
loop iteration if subsequent code would throw a null pointer
exception.

Note that not all candidate transforms are equally useful.
For example, the transform P4 in Figure 2 replaces an arbi-
trary expression A with another expressionB, where B may
contains binary operators, conditional operators, up to six
variables from the enclosing function, and up to six method
calls from the enclosing function. Due to the exponential
number of possible expressions that B can take, P4 may
generate a prohibitively large number of candidate patches
when applied to many cases. A search space derived from
P4 would be intractable for patch generation systems to ex-
plore. Genesis therefore prunes such candidate transforms
with its final search space.
Infer Search Space: Genesis selects a subset of candidate
transforms to form its search space. To obtain an effec-
tive search space, Genesis must navigate a tradeoff between
coverage (how many correct patches it can generate) and

tractability (how many candidate patches a patch generation
system can effectively explore within a time budget [42]). In-
creasing the number of selected transforms tends to improve
coverage but degrade tractability; decreasing the number of
selected transforms tends to have the opposite effect.

Figure 3 presents the search space inference process for
the candidate transforms P1, P2, P3, and P4 from previous
steps (see Figure 1 and Figure 2 for transform details). Gene-
sis uses the patches in the validation set to evaluate the candi-
date transforms. Three such validation patches in our exper-
iments are shown at the middle of Figure 3. These validation
patches are from joda-time [17] revision bcb044, dynjs [6]
revision 68df61, and orientdb [22] revision 51706f, respec-
tively.

For each candidate transform and each validation patch,
Genesis determines 1) whether the transform can generate
the validation patch from the corresponding pre-patch code
and 2) the total number of candidate patches that the trans-
form would generate when applied to the pre-patch code.
As shown in Figure 3, P1 can generate the first validation
patch;P2 can generate the second patch;P3 can generate the
third.P4 can generate both the first and the second validation
patches but the numbers of generated candidate patches are
large. The matrix at the left bottom of Figure 3 summarizes
the evaluation results of the four candidate transforms on the
three validation patches. Each number in the matrix denotes
the number of candidate patches that a transform generates
when applied to the pre-patch code of a validation patch. A
green number indicates that a transform can generate a vali-
dation patch if applied to the pre-patch code of the patch.

Genesis formulates the tradeoff between the coverage and
tractability as an integer linear programming (ILP) problem
(Section 3.5). Specifically, given the information from the
matrix, the ILP maximizes the number of validation patches
that the selected transforms can generate, with the constraint
that the total number of generated candidate patches from all



selected transforms for each covered validation case is less
than 5 × 104. In our experiments, Genesis solves the ILP
problem with an off-the-shelf solver and obtains a search
space with 108 selected transforms including P1, P2, and
P3.
Generate Patch for New Error: For the NPE error from
DataflowJavaSDK [5] revision c06125 (shown at the bottom
of Figure 1), Genesis first uses a fault localization technique
(Section 4) to produce a ranked list of potential statements
to modify. The resulting ranked list includes the if condition
shown at the bottom left of Figure 1. Genesis then applies all
transforms in the inferred search space including the trans-
form P1 to the if condition to generate candidate patches.

Figure 1 shows how Genesis applies P1 to the if condi-
tion. Here the patch instantiates B as the variable unions,
C as == and D as || to disjoin the clause unions ==
null to the original if condition. The patch causes the en-
closing function innerGetOnly() to return a predefined
default value when unions is null (instead of incorrectly
throwing a null pointer exception).

Genesis also generates and explores 78301 other can-
didate patches for the error. Genesis uses the Dataflow-
JavaSDK JUnit [19] test suite (which includes 830 test cases)
to filter out these other candidate patches (as well as other
candidate patches from other transforms and other patch
candidate locations in DataflowJavaSDK). For Genesis to
successfully patch the exception, the test suite must contain
an input that exposes the exception, i.e., that causes the ap-
plication to throw the null pointer exception. Genesis finds
validated patches, i.e., patches that produce the correct out-
put for all test cases, by running the patched application on
all of the test cases (including the test case that exposed the
exception) and checking the testing results.

Genesis produces a ranked list of validated patches fol-
lowing the space exploration order (see Section 4). In this
example, the patch in Figure 1 is the only validated patch.
This validated patch is also correct and matches the subse-
quent human developer patch for this exception. Note that
PAR [36], a previous patch generation system based on man-
ual transform templates, is unable to generate this correct
patch. PAR does not contain a template to conjoin or disjoin
a condition with an additional clause. In fact, PAR templates
are unable to generate any correct patch for this error (see
Section 5).

3. Inference System
Given a set of training pairs D, each of which corresponds
to a program before a change and a program after a change,
Genesis infers a set of transforms P which generates the
search space.

Genesis obtains the search space in two steps: 1) it first
runs a sampling algorithm to obtain a set of candidate trans-

forms, each of which is generalized from a subset of changes
in D and 2) it then selects a subset of the candidate trans-
forms, formulating the trade-off between the coverage and
the tractability of the search space as an integer linear pro-
gramming (ILP) problem. It invokes an off-the-shelf ILP
solver [34] to select the final set of transforms.

Sections 3.1 and 3.2 present definitions and notation. Sec-
tion 3.3 presents definitions for the generalization function
which derives candidate transforms from a set of program
changes. Section 3.4 presents the sampling algorithm. Sec-
tion 3.5 presents the search space inference algorithm. We
discuss Genesis implementation details for handling Java
programs in Section 3.6.

3.1 Preliminaries

The Genesis inference algorithm works with abstract syn-
tax trees (ASTs) of programs. In this section, we model the
programming language that Genesis works with as a context
free grammar (CFGs) and we model ASTs as the parse trees
for the CFG. Note that although the current implementation
of Genesis is for Java, it is straightforward to extend the Gen-
esis inference algorithm to other programming languages as
well.

Definition 1 (CFG). A context free grammar (CFG) G is a
tuple 〈N,Σ, R, s〉 where N is the set of non-terminals, Σ is
the set of terminals,R is a set of production rules of the form
a→ b1b2b3 . . . bk where a ∈ N and bi ∈ N ∪Σ, and s ∈ N
is the starting non-terminal of the grammar. The language of
G is the set of strings derivable from the start non-terminal:
L(G) = {w ∈ Σ∗ | s⇒∗ w}.
Definition 2 (AST). An abstract syntax tree (AST) T is a
tuple 〈G,X, r, ξ, σ〉 where G = 〈N,Σ, R, s〉 is a CFG, X is
a finite set of nodes in the tree, r ∈ X is the root node of the
tree, ξ : X → X∗ maps each node to the list of its children
nodes, and σ : X → (N ∪ Σ) attaches a non-terminal or
terminal label to each node in the tree.

Definition 3 (AST Traversal and Valid AST). Given an
AST T = 〈G,X, r, ξ, σ〉 where G = 〈N,Σ, R, s〉, str(T ) =

traverse(r) ∈ Σ∗ ∪ {⊥} is the terminal string obtained via
traversing T where

traverse(x) =


traverse(xc1 ) · · · traverse(xck )

if σ(x) ∈ N, ξ(x) = 〈xc1 · · ·xck 〉, and
σ(x)→ σ(xc1 ) · · ·σ(xck ) ∈ R

σ(x) if σ(x) ∈ Σ
⊥ otherwise.

If the obtained string via traversal belongs to the language
of G, i.e., str(T ) ∈ L(G), then the AST is valid.

We next define AST forests and AST slices, which we
will use in this section for describing our inference algo-
rithm. An AST forest is similar to an AST except it contains
multiple trees and a list of root nodes. An AST slice is a spe-



cial forest inside a large AST which corresponds to a list of
adjacent siblings.

Definition 4 (AST Forest). An AST forest T is a tuple
〈G,X,L, ξ, σ〉 where G is a CFG, X is the set of nodes in
the forest, L = 〈x1, x2, . . . , xk〉 is the list of root nodes of
trees in the forest, ξ maps each node to the list of its chil-
dren nodes, and σ maps each node in X to a non-terminal
or terminal label.

Definition 5 (AST Slice). An AST slice S is a pair 〈T, L〉.
T = 〈G,X, r, ξ, σ〉 is an AST; L = 〈r〉 is a list that
contains only the root node or L = 〈xci , . . . , xcj 〉 is a list
of AST sibling nodes in T such that ∃x′ ∈ X : ξ(x′) =

〈xc1 , . . . , xci , . . . , xcj , . . . , xck〉 (i.e.,L is a sublist of ξ(x′)).

Given two ASTs T and T ′, where T is the AST before
the change and T ′ is the AST after the change, Genesis com-
putes AST difference between T and T ′ to produce an AST
slice pair 〈S, S′〉 such that S and S′ point to the sub-forests
in T and T ′ that subsume the change. For brevity, in this sec-
tion we assume D = {〈S1, S

′
1〉, 〈S2, S

′
2〉, . . . , 〈Sm, S

′
m〉} is

a set of AST slice pairs, i.e., Genesis already converted AST
pairs of changes to AST slices.
Notation and Utility Functions: We next introduce nota-
tion and utility functions that we are going to use in the rest
of this section. For a map M , dom(M) denotes the domain
of M . M [a 7→ b] denotes the new map which maps a to b
and maps other elements in dom(M) to the same values as
M . ∅ denotes an empty set or an empty map.
nodes(ξ, L) denotes the set of nodes in a forest, where ξ
maps each node to a list of its children and L is the list of the
root nodes of the trees in the forest.

nodes(ξ, L) =

k⋃
i=1

({xi} ∪ nodes(ξ, ξ(xi)))

where L = 〈x1, . . . , xk〉
nonterm(L,X, ξ, σ,N) denotes the set of non-terminals in-
side a forest, where L is the root nodes in the forest, X is
a finite set of nodes, ξ maps each node to a list of children
nodes, σ attaches each node to a terminal or non-terminal
label, and N is the set of non-terminals:

nonterm(L,X, ξ, σ,N) =

k⋃
i=1

({σ(xi) | σ(xi) ∈ N} ∪ nonterm(ξ(xi), X, ξ, σ,N))

where L = 〈x1, . . . , xk〉
inside(S) denotes the set of non-terminals of the ancestor
nodes of an AST slice S:

inside(S) = {σ(x′) | σ(x′) ∈ N} ∪ inside(〈T, 〈x′〉〉)
where S = 〈T, L〉, T = 〈G,X, r, ξ, σ〉, G = 〈N,Σ, R, s〉

L = 〈x1, . . . , xk〉, and ∀i ∈ [1, k] : xi ∈ ξ(x′)

diff(A,B) = 0

A ≡ B

C = 〈G,X, ξ, σ〉 L = 〈x1, x2, . . . xk〉
C′ = 〈G,X′, ξ′, σ′〉 L′ = 〈x′1, x′2, . . . , x′k′ 〉
G = 〈N,Σ, R, s〉

diff(〈G,X, r, ξ, σ〉, 〈G,X′, r′, ξ′, σ′〉) = d(〈C, 〈r〉〉, 〈C′, 〈r′〉〉)
diff(〈〈G,X, r, ξ, σ〉, L〉, 〈〈G,X′, r′, ξ′, σ′〉, L′〉) =
diff(〈G,X,L, ξ, σ〉, 〈G,X′, L′, ξ′, σ′〉) =
d(〈C,L〉, 〈C′, L′〉) =

∑k
i=1 d(〈C, 〈xi〉〉, 〈C′, 〈x′i〉〉) k = k′ > 1

d(〈C, ξ(x1)〉, 〈C′, ξ′(x′1)〉) k = k′ = 1, σ(x1) = σ(x′1) ∈ N
0 k = k′ = 1, σ(x1) = σ(x′1) ∈ Σ
1 k = k′ = 1, σ(x1) 6= σ(x′1) ∈ Σ
0 k = k′ = 0
∞ otherwise

Figure 4. Definition of diff() and “≡”

diff(A,B) denotes the number of different terminals in
leaf nodes between two ASTs, AST slices, or AST forests.
If A and B differs in not just terminals in leaf nodes,
diff(A,B) = ∞. A ≡ B denotes that A and B are equiv-
alent, i.e., diff(A,B) = 0. Figure 4 presents the detailed
definitions of diff() and “≡”.

3.2 Template AST Forest, Generator, and Transforms

Template AST Forest: We next introduce the template AST
forest, which can represent a set of concrete AST forest or
AST slice. The key difference between template AST forest
and concrete AST forest is that template AST forest contains
template variables, each of which can match against any
appropriate AST subtrees or AST sub-forests.

Definition 6 (Template AST Forest). A template AST forest
T is a tuple 〈G,V, γ,X,L, ξ, σ〉, where G = 〈N,Σ, R, s〉 is
a CFG, V is a finite set of template variables, γ : V →
{0, 1} × Powerset(N) is a map that assigns each tem-
plate variable to a bit of zero or one and a set of non-
terminals, X is a finite set of nodes in the subtree, L =

〈x1, x2, . . . , xk〉, xi ∈ X is the list of root nodes of the trees
in the forest, ξ : X → X∗ maps each node to the list of its
children nodes, and σ : X → N ∪ Σ ∪ V attaches a non-
terminal, a terminal, or a template variable to each node in
the tree.

For each template variable v ∈ V , γ(v) = 〈b,W 〉 de-
termines the kind of AST subtrees or sub-forests which the
variable can match against. If b = 0, v can match against
only AST subtrees not sub-forests. If b = 1, then v can
match against both subtrees and sub-forests. Additionally,
v can match against an AST subtree or sub-forest only if its
root nodes do not correspond to any non-terminal outside
W .

Intuitively, each non-terminal in the CFG of a program-
ming language typically corresponds to one kind of syntactic
unit in programs at certain granularity. Template AST forests



with template variables enable Genesis to achieve desirable
abstraction over concrete AST trees during the inference.
They also enable Genesis to abstract away program-specific
syntactic details so that Genesis can infer useful transforms
from changes across different programs and different appli-
cations.

Definition 7 (“|=” and “|=slice” Operators for Tem-
plate AST Forest). Figure 5 presents the formal defi-
nition of the operator “|=” for a template AST forest
T = 〈G,V, γ,X,L, ξ, σ〉. “T |= 〈T,M〉” denotes that T
matches the concrete AST forest T with the template variable
bindings specified inM , whereM is a map that assigns each
template variable in V to an AST forest.

Figure 5 also presents the formal definition of the opera-
tor “|=slice”. Similarly, “T |=slice 〈S,M〉” denotes that
T matches the concrete AST slice S with the variable bind-
ings specified in M .

The first rule in Figure 5 corresponds to the simple case
of a single terminal node. The second and the third rules
correspond to the cases of a single non-terminal node or a
list of nodes, respectively. The two rules recursively match
the children nodes and each individual node in the list.

The fourth and the fifth rules correspond to the case of
a single template variable node in the template AST forest.
The fourth rule matches the template variable against a for-
est, while the fifth rule matches the template variable against
a tree. These two rules check that the corresponding forest
or tree of the variable in the binding map M is equivalent to
the forest or tree that the rules are matching against.
Generators: Many productive patches do not just rearrange
existing components and/or logics in the changed slice, but
also introduce useful new components and/or logic. We next
introduce generators, which enable Genesis to synthesize
such patches.

Definition 8 (Generator). A generator G is a tuple
〈G, b, δ,W 〉, where G = 〈N,Σ, R, s〉 is a CFG, b ∈ {0, 1}
indicates the behavior of the generator, δ is an integer bound
for the number of tree nodes, W ⊆ N is the set of allowed
non-terminals during generation.

Currently, generators in Genesis exhibit two kinds of be-
haviors. If b = 0, the generator generates a sub-forest with
less than δ nodes that contains only non-terminals inside the
set W . If b = 1, such a generator copies an existing sub-
forest from the original AST tree with non-terminal labels in
W and then replaces up to δ leaf non-terminal nodes in the
copied sub-forest.

Definition 9 (Generation Operator “=⇒” for Generators).
Figure 6 presents the formal definition of the operator
“=⇒” for a generator G. Given G and an AST slice S =

G = 〈N,Σ, R, s〉
T = 〈G,V, γ,X,L, ξ, σ〉 L = 〈x1, x2, . . . , xk〉
T = 〈G,X′, L′, ξ′, σ′〉 L′ = 〈x′1, x′2, . . . , x′k′ 〉

k = k′ = 1 σ(x1) = σ′(x′1) ∈ Σ

T |= 〈T,M〉

k = k′ = 1 σ(x1) = σ′(x′1) ∈ N
〈G,V, γ,X, ξ(x1), ξ, σ〉 |= 〈〈G,X′, ξ′(x′1), ξ′, σ′〉,M〉

T |= 〈T,M〉

k = k′ > 1
∀i ∈ {1, 2, . . . , k}

(
〈G,V, γ,X, {xi}, ξ, σ〉 |= 〈〈G,X′, {x′i}, ξ′, σ′〉,M〉

)
T |= 〈T,M〉

k = 1 σ(x1) = v ∈ V
M(v) ≡ T γ(v) = 〈1,W 〉 (∪k

′
i=1σ

′(x′i)) ⊆ (W ∪ Σ)

T |= 〈T,M〉

k = k′ = 1 σ(x1) = v ∈ V
M(v) ≡ T γ(v) = 〈0,W 〉 σ′(x′1) ∈ (W ∪ Σ)

T |= 〈T,M〉

T |= 〈〈G,X′, L′, ξ′, σ′〉,M〉
T |=slice 〈〈〈G,X′, r′, ξ′, σ′〉, L′〉,M〉

Figure 5. Definition of the operators “|=” and “|=slice” for
the template AST forest T

G = 〈N,Σ, R, s〉 S = 〈T, L〉
T = 〈G,X, r, ξ, σ〉 T ′ = 〈G,X′, L′, ξ′, σ′〉

|nodes(ξ′, L′)| ≤ δ nonterm(L′, X′, ξ′, σ′, N) ⊆W
〈〈G, 0, δ,W 〉, S〉 =⇒ T ′

∃x′ ∈ X
(
L′′ is a sublist of ξ(x′)

)
diff(〈G,X,L′′, ξ, σ〉, T ′) ≤ δ ∀x′′ ∈ L′

(
σ′(x′′) ∈W

)
〈〈G, 1, δ,W 〉, S〉 =⇒ T ′

Figure 6. Definition of the operator “=⇒” for the Generator
G = 〈G, b, δ,W 〉

〈T, L〉 as the context, 〈G, S〉 =⇒ T ′ denotes that the gener-
ator G generates the AST forest T ′.

The first rule in Figure 6 handles the case where b = 0.
The rule checks that the number of nodes in the result forest
is within the bound δ and the set of non-terminals in the
forest is a subset of W . The second rule handles the case
where b = 1. The rule checks that the difference result forest
and an existing forest in the original AST is within the bound
and the root labels are in W .

Note that, theoretically, generators may generate an infi-
nite number of different AST forests for programming lan-
guages like Java, because the set of terminals (e.g., identi-
fiers and constants) is infinite. Genesis, in practice, places



S = 〈〈G,X, r, ξ, σ〉, L〉 A ⊆ inside(S)
T0 |= 〈S,M〉 B = {v1 7→ G1, v2 7→ G2, . . . , vm 7→ Gm}

∀mi=1

(
〈Gi, S〉 =⇒ T ′′i

)
M ′ = {v1 7→ T ′′1 , v2 7→ T ′′2 , . . . vk 7→ T ′′m}

T1 |= 〈T ′,M ∪M ′〉 〈S, T ′〉 B T str(T ) ∈ L(G)

〈〈A, T0, T1, B〉, S〉 =⇒ T

1 ≤ i ≤ j ≤ k
S = 〈〈G,X, r, ξ, σ〉, L〉 L = 〈xi, . . . , xj〉 ξ(x′) = 〈x1, x2, . . . , xk〉
T ′ = 〈G,X′, L′, ξ′, σ′〉 L′ = 〈x′′1 , x′′2 , . . . , x′′k′ 〉 X ∩X′ = ∅

L′′ = 〈x1, . . . , xi−1, x
′′
1 , x
′′
2 , . . . , x

′′
k′ , xj+1, . . . , xk〉

〈S, T ′〉 B 〈G,X ∪X′, r, (ξ ∪ ξ′)[x′ 7→ L′′], σ ∪ σ′〉

S′ = 〈T ′, L′〉 〈P, S〉 =⇒ T ′

〈P, S〉 =⇒slice S
′

Figure 7. Definition of the operators “=⇒” and “=⇒slice”
for the transform P

additional Java-specific constraints on generators to make
the generated set finite and tractable (See Section 3.6).
Transforms: Finally, we introduce transforms, which gen-
erate the search space inferred by Genesis. Given an AST
slice, a transform generates new AST trees.

Definition 10 (Transform). A transform P is a tuple
〈A, T0, T1, B〉. A : Powerset(N) is a set of non-terminals
to denote the context where this transform can apply; T0 =

〈G,V0, γ0, X0, L0, ξ0, σ0〉 is the template AST forest before
applying the transform; T1 = 〈G,V1, γ1, X1, L1, ξ1, σ1〉
is the template AST forest after applying the transform; B
maps each template variable v that only appears in T1 to a
generator (i.e., ∀v ∈ V1 \ V0, B(v) is a generator).

Definition 11 (“=⇒” and “=⇒slice” Operators for Trans-
forms). Figure 7 presents the formal definition of the “=⇒”
and “=⇒slice” operator for a transform P . “〈P, S〉 =⇒
T ′” denotes that applying P to the AST slice S generates the
new AST T ′. “〈P, S〉 =⇒slice S

′” denotes that applying P
to the AST slice S generates the AST of the slice S′.

Intuitively, in Figure 7 A and T0 determine the context
where the transform P can apply. P can apply to an AST
slice S only if the ancestors of S have all non-terminal labels
inA and T0 can match against S with a variable binding map
M . T1 and B then determine the transformed AST tree. T1
specifies the new arrangement of various components and
B specifies the generators to generate AST sub-forests to
replace free template variables in T1. Note that 〈S, T ′〉 B T

denotes that the obtained AST tree of replacing the AST
slice S with the AST forest T ′ is equivalent to T .

3.3 Transform Generalization

The generalization operation for transforms takes a set of
AST slice pairs D as the input and produces a set of trans-
forms, each of which can at least generate the corresponding

G = (N,Σ, R, s) D = 〈〈S1, S′1〉, 〈S2, S′2〉, . . . , 〈Sm, S′m〉〉
∀i ∈ {1, 2, . . . ,m} :
Si = 〈Ti, Li〉 Ti = 〈G,Xi, ri, ξi, σi〉
S′i = 〈T ′i , L′i〉 T ′i = 〈G,X′i, r′i, ξ′i, σ′i〉
L′i = 〈x′i,1, x′i,2, . . . , x′i,k′

i
〉

ψ(D) =

{
{A,B} ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . , k′i}, σ′(x′i,j) ∈ N
{A} otherwise

where:
A = 〈G, 0,maxm

i=1 |nodes(ξ′i, L′i)|,
⋃m

i=1 nonterm(S′i)〉
B = 〈G, 1,maxm

i=1 Ci,
⋃m

i=1

⋃k′
i

j=1{σ
′(x′i,j)}〉

Ci = minL′′
i

diff(〈Ti, L′′i 〉, S′i), ∃x′′ ∈ Xi, L
′′
i is a sublist of ξi(x′′)

Figure 8. Definition of the generator inference operator ψ

Ψ(〈〈S1, S
′
1〉, 〈S2, S

′
2〉, . . . , 〈Sm, S

′
m〉〉) =

{〈∩mi=1inside(Si), T0, T1, B〉 |
〈T0,M〉 = Ψ′(〈S1, S2, . . . , Sm〉, ∅),
〈T1,M ′〉 = Ψ′(〈S′1, S′2, . . . , S′m〉,M),

B = {vi 7→ Gi |
vi ∈ dom(M ′) \ dom(M),

M ′(vi) = 〈bi,Wi, 〈S′′i,1, S′′i,2, . . . , S′′i,m〉〉,
Pi = {〈S1, S

′′
i,1〉, 〈S2, S

′′
i,2〉, . . . , 〈Sm, S

′′
i,m〉},

Gi ∈ ψ(Pi)}}

Figure 9. Definition of the generalization function Ψ

changes of the pairs in D. We first present the generalization
operator for generators then we present the generalization
operator for transforms.

Definition 12 (Generator Generalization). Figure 8 presents
the definition of generalization function ψ(D). Given a set of
of AST slice pairs D = {〈S1, S

′
1〉, 〈S2, S

′
2〉, . . . , 〈Sm, S

′
m〉}

from the same CFG grammar G, where Si is the generation
context AST slice and S′i is the generated result AST slice,
ψ(D) = {G1,G2, . . .Gk} denotes the set of the generators
generalized from D.

In Figure 8, A is the formula for a generator that generates
from scratch (i.e., b = 0) and B is the formula for a gener-
ator that generates via copying from the existing AST tree
(i.e., b = 1). The formula A produces the generator by com-
puting the bound of the number of nodes and the set of non-
terminals in the supplied slices. The formula B produces the
generator by computing 1) the bound of the minimum diff

distance between each supplied slice and an arbitrary exist-
ing forest in the AST tree and 2) the set of non-terminals of
the root node labels of the supplied slices.

Definition 13 (Transform Generalization). Figure 9 presents
the definition of Ψ(D). Given a set of pairs of AST slices
D = {〈S1, S

′
1〉, 〈S2, S

′
2〉, . . . , 〈Sm, S

′
m〉} where Si is the



S = 〈S1, S2, . . . , Sm〉 G = (N,Σ, R, s) x′ is a fresh node v′ is a fresh template variable
∀i ∈ {1, 2, . . . ,m} : Si = 〈Ti, Li〉 Li = 〈xi,1, xi,2, . . . , xi,ki

〉 Ti = 〈G,Xi, ri, ξi, σi〉 ci = σi(xi,1)

Ψ′(S,M) = Conditions for k and c Other Conditions
〈〈G, ∅, ∅, 〈〉, ∅, ∅〉,M〉 ∀i ∈ {1, . . . ,m} ki = 0

〈〈G, ∅, ∅,
{x′}, 〈x′〉,
{x′ 7→ ∅}, {x′ 7→ d}〉,M〉

∀i ∈ {1, . . . ,m}
ki = 1
ci = d

d ∈ Σ

〈〈G,V, γ,
X′ ∪ {x′}, 〈x′〉,
ξ′[x′ 7→ L′], σ′[x′ 7→ d]〉,M ′〉

∀i ∈ {1, . . . ,m}
ki = 1
ci = d

d ∈ N

S′ = 〈〈T1, ξ1(x1,1)〉, 〈T2, ξ2(x2,1)〉, . . . , 〈Tm, ξm(xm,1)〉〉
Ψ′(S′,M) = 〈T ,M ′〉
T = 〈G,V, γ,X′, L′, ξ′, σ′〉

〈〈G, {v}, {v 7→ 〈0,W 〉},
{x′}, 〈x′〉,
{x′ 7→ ∅}, {x′ 7→ v}〉,M〉

∃i, i′ ∈ {1, . . . ,m}
ci 6= ci′

M(v) = 〈0,W, 〈S′1, S′2, . . . , S′m〉〉
∀i ∈ {1, . . . ,m}

(
Si ≡ S′i

)
〈〈G, {v′}, {v′ 7→ 〈0,W 〉},
{x′}, 〈x′〉,
{x′ 7→ ∅}, {x′ 7→ v′}〉,M ′〉

∀i ∈ {1, . . . ,m}
ki = 1
∃i′, i′′ ∈ {1, . . . ,m}

(ci′ 6= ci′′ )

∀v ∈ dom(M)
M(v) = 〈0,W ′, 〈S′1, S′2, . . . , S′m〉〉 ∃i ∈ {1, 2, . . . ,m}

(
Si 6≡ S′i

)
W = N ∩ (∪mi=1{σi(xi,1)})
M ′ = M [v′ 7→ 〈0,W, S〉]

〈〈G,∪kj=1Vj ,∪kj=1γj ,

∪kj=1Xj , 〈r1, r2, . . . , rk〉,
∪kj=1ξj ,∪kj=1σj〉,M ′k〉

∀i ∈ {1, . . . ,m}
ki = k′

k′ > 1

M ′0 = M
∀j ∈ {1, . . . , k}
S′j = 〈〈T1, 〈x1,j〉〉, 〈T2, 〈x2,j〉〉, . . . , 〈Tm, 〈xm,j〉〉〉
Ψ′(S′j ,M

′
j−1) = 〈〈G,Vj , γj , Xj , 〈rj〉, ξj , σj〉,M ′j〉

〈〈G, {v}, {v 7→ 〈1,W 〉},
{x′}, 〈x′〉,
{x′ 7→ ∅}, {x′ 7→ v}〉,M〉

∃i′, i′′ ∈ {1, . . . ,m}
ki′ 6= ki′′

M(v) = 〈1,W, 〈S′1, S′2, . . . , S′m〉〉
∀i ∈ {1, 2, . . . ,m}

(
Si ≡ S′i

)
〈〈G, {v′}, {v′ 7→ 〈1,W 〉},
{x′}, 〈x′〉,
{x′ 7→ ∅}, {x′ 7→ v′}〉,M ′〉

∃i′, i′′ ∈ {1, . . . ,m}
ki′ 6= ki′′

∀v ∈ dom(M)
M(v) = 〈1,W ′, 〈S′1, S′2, . . . , S′m〉〉 ∃i ∈ {1, 2, . . . ,m}

(
Si 6≡ S′i

)
W = N ∩ (∪mi=1 ∪

ki
j=1 {σi(xi,j)})

M ′ = M [v′ 7→ 〈1,W, S〉]

Figure 10. Definition of Ψ′

AST slice before a change and S′i is the AST slice after
a change, Ψ(D) denotes the set of transforms generalized
from D.

The formula for Ψ in Figure 9 invokes Ψ′ twice to com-
pute the template AST forest before the change T0 and the
template AST forest after the change T1. It then computes B
by invoking ψ to obtain the generalized generators for AST
sub-slices that match against each free template variable in
T1.

Note that Figure 10 presents the definition of Ψ′. Intu-
itively, Ψ′ is the generalization function for template AST
forests. The function Ψ′(S,M) = 〈T ,M ′〉 takes a list of
AST slices S and an initial variable binding mapM and pro-
duces a generalized template AST forest T and an updated
variable binding map M ′.

The first two rows in Figure 10 correspond to the for-
mulas for the cases of empty slices and slices with a single
terminal, respectively. The two formulas simply create an
empty template AST forest or a template AST forest with a
single non-terminal node. The third row corresponds to the
formula for the case of a single non-terminal. The formula
recursively invokes Ψ′ on the list of children nodes of each
slice and creates a new node with the non-terminal label in
the result template AST forest as the root node.

The fourth and fifth rows correspond to the formulas
for the cases where each slice is a single tree and the root
nodes of the slice trees do not match. The fourth formula
handles the case where there is an existing template variable
in M that can match the slice trees. The formula creates a
template AST forest with the matching variable. The fifth
formula handles the case where there is no existing template
variable in M that can match the slice trees. The formula
creates a template AST forest with a new template variable
and updates the variable binding map to include this new
variable accordingly.

The sixth row corresponds to the formula for the case
where each slice is a forest with the same number of trees.
The formula recursively invokes Ψ′ on each individual tree
and combines the obtained template AST forests. The sev-
enth row corresponds to the formula for the case in which
each slice is a forest, the forests do not match, and there
is an existing template variable in M to match these forests.
The formula therefore creates a template AST forest with the
matching variable. The eighth row corresponds to the for-
mula for the case where the forests do not match and there
is no template variable in M to match these forests. The for-
mula creates a template AST forest with a new template vari-
able and updates the variable binding map accordingly.



Input : a training set of pairs of AST slices D and a validation set
of pairs of AST slices E

Output: a set of transforms P′
1 W← {{〈S, S′〉, 〈S′′, S′′′〉} | 〈S, S′〉 ∈ D, 〈S′′, S′′′〉 ∈

D, 〈S, S′〉 6= 〈S′′, S′′′〉}
2 for i = 1 to 5 do
3 f ← {S 7→ fitness(W, S, D,E) | S ∈W}
4 W′ ← {S | S ∈W, f(S) > 0}
5 Sort elements in W′ based on f
6 Select top α elements in W′ with largest f value as a new set

W′′

7 W←W′′

8 if i 6= 5 then
9 for S in W′′ do

10 for 〈S, S′〉 in D do
11 W←W ∪ {S ∪ 〈S, S′〉}

12 P′ ← ∪S∈WΨ(S)

13 return P′

Figure 11. Sampling algorithm sample(D,E)

Theorem 14 (Soundness of Generalization). For any set
of AST slice pairs D, ∀P ∈ Ψ(D), ∀〈S, S′〉 ∈ D,
〈P, S〉 =⇒slice S

′.

The generalization function Ψ is sound so that the trans-
form P is able to generate the corresponding change for
each pair in D, from which it is generalized. Intuitively, as-
sume a transform space that denotes all possible program
changes and the program changes in the training database
D are points in the transform space. Then the generalization
function Ψ produces a set of potentially useful transforms,
each of which covers all of the points for D in the space.

3.4 Sampling Algorithm

Given a training databaseD, we could obtain an exponential
number of transforms with the generalization function Ψ

described in Section 3.3, i.e., we can invoke Ψ on any subset
of D to obtain a different set of transforms.

Not all of the generalized transforms are useful. The goal
of the sampling algorithm is to use the described general-
ization function to systematically obtain a set of productive
candidate transforms for the inference algorithm to consider.

Figure 11 presents the pseudo-code of our sampling al-
gorithm. As a standard approach in other learning and infer-
ence algorithms to avoid overfitting, Genesis splits the train-
ing database into a training set D and a validation set E.
Genesis invokes the generalization functions only on pairs
in the training set D to obtain candidate transforms. Genesis
uses the validation set E to evaluate generalized transforms
only.

W in Figure 11 is a work set that contains the candidate
subset ofD that the sampling algorithm is considering to use
to obtain generalized transforms. The algorithm runs five it-
erations. At each iteration, the algorithm first computes a fit-

Input : a power set of pairs of AST slices W, a set S ∈W, a
training set of AST slice pairs D, and a validation set of
AST slice pairs E

Output: the fitness score for S
1 Initialize C to map each pair in D ∪ E to 0

2 for S′ in W do
3 A← ∅
4 for P in Ψ(S′) do
5 B ← {〈S, S′〉 | 〈S, S′〉 ∈ (D ∪ E), 〈P, S〉 =⇒slice

S′, |{str(T ) | 〈P, S〉 =⇒ T}| < β}
6 A← A ∪B

7 for 〈S, S′〉 in A do
8 C ← C[〈S, S′〉 7→ C(〈S, S′〉) + 1]

9 f ← 0

10 for P in Ψ(S) do
11 B ← {〈S, S′〉 | 〈S, S′〉 ∈ (D ∪ E), 〈P, S〉 =⇒slice S′}
12 f ′ ← 0

13 for 〈S, S′〉 in B do
14 c← |{str(T ) | 〈P, S〉 =⇒ T}|
15 d← β/C(〈S, S′〉)
16 if 〈S, S′〉 in D then
17 d← d× θ

18 f ′ ← f ′ + max{0, d− c}

19 f ← max{f, f ′}

20 return f
Figure 12. Pseudo-code of fitness(W,S, D,E)

ness score for each candidate subset, keep the top α candi-
date subsets (we empirically set α to 500 and 1000 in our
experiments, see Section 5.1), and eliminate the rest from W
(see lines 3-7). The algorithm then attempts to update W by
augmenting each subset in W with one additional pair in D
(see lines 8-10).

Note that it is possible to run more iterations to obtain
better candidate patch sets. In practice, we find that the
work set W always converges after five iterations in our
experiments. We do not observe any useful transforms that
can only be generalized from more than five training AST
slice pairs in our experiments.

Figure 12 presents the pseudo-code for the fitness func-
tion Genesis uses in its sampling algorithm. The function
first computes for each training and validation pair, the num-
ber of candidate subsets that produce a transform that covers
the pair (see lines 1-8). In this function, a transform covers a
AST slice pair if the transform can generate the correspond-
ing change for the slice and the size of the search space de-
rived from this transform is less than a threshold β (see line
5). We empirically set β to 5 × 104 for all experiments we
performed.

The algorithm then computes the score for a transform P
as follows. For each validation pair 〈S, S′〉 in E that P cov-
ers, it gets a bonus score max{β/C(〈S, S′〉)− c, 0}, where
C(〈S, S′〉) is the number of candidate subsets in W that
cover the pair and c is the size of the number of candidate



changes of applying P to S. The intuition here is to obtain
a more diverse set of candidate transforms, i.e., a transform
that covers a pair which is also covered many other trans-
forms should receive much lower score than a transform that
covers a pair which is not covered by any other transform.

For each training pair 〈S, S′〉 in D, the bonus score is
max{β/C(〈S, S′〉) × θ − c, 0} instead. We empirically set
θ = 0.1 in our experiments. The intuition here is that the
pairs in the training data should provide much lower scores
than the pairs in validation set to avoid overfitting.

There are three optimizations in the Genesis implementa-
tion for the above sampling algorithm. Firstly, when Genesis
computes W at lines 10-11, Genesis filters out many unpro-
ductive subsets that may yield intractable search space. For
a new subset A, if another subset B ⊆ A was already dis-
carded because the space sizes of obtained transforms from
B are more than β, then Genesis discards A immediately
without adding it to W at line 11.

Secondly, for the computation of the search space size
of the transform (i.e., the number of candidate changes de-
rived from the transform) at line 5 and line 14 in Figure 12,
Genesis computes an estimated size instead of generating
each AST tree one by one. This estimation assumes that all
generators in the transform generate binary trees. This opti-
mization trades the accuracy of the fitness score computation
for performance. Thirdly, Genesis computes C in Figure 12
at the start of each iteration of the sampling algorithm to
avoid redundant computation during each invocation of the
fitness() function.

3.5 Search Space Inference Algorithm

ILP Formulation: Given a candidate set of transforms P′,
the goal is to select a subset P from P′ to form the result
search space. We formulate the trade-off of the search space
design between the coverage and the tractability as an integer
linear programming (ILP) problem.

Figure 13 presents the ILP formulation of the transform
selection problem.Ci,j corresponds to the space size derived
from the j-th transform when applying to the i-th AST slice
pair in the validation set. Gi,j indicates whether the space
derived from the j-th transform contains the corresponding
change for the i-th AST slice pair.

The variable xi indicates whether the result search space
covers the i-th AST slice pair and the variable yi indicates
whether the ILP solution selects the i-th transform. The ILP
optimization goal is to maximize the sum of x, i.e., the total
number of covered AST pairs in the validation set.

The first group of constraints is for tractability. The i-th
constraint specifies that if the derived final search space size
(i.e. Σk

j=1Ci,jyj), when applied to the i-th AST pair in E,
should be less than β if the space covers the i-th AST pair
(i.e. xi = 1) or less than ζ if the space does not cover the i-th

P′ = {P1,P2, . . . ,Pk}
E = {〈S1, S

′
1〉, . . . , 〈Sn, S

′
n〉}

Ci,j = |{str(T ) | 〈Pj , Si〉 =⇒ T}|

Gi,j =

{
1 〈Pj , Si〉 =⇒slice S

′
i

0 otherwise

Variables: xi, yi
Maximize:

∑n
i=1 xi

Satisfy:
∀i ∈ {1, . . . , n} : ζ − (ζ − β) · xi −

∑k
j=1 Ci,jyj ≥ 0

∀i ∈ {1, . . . , n} :
∑k

j=1Gi,jyj − xi ≥ 0

∀i ∈ {1, . . . , n} : xi ∈ {0, 1}
∀i ∈ {1, . . . , k} : yi ∈ {0, 1}

Result Transform Set: P = {Pi | yi = 1}

Figure 13. Integer linear programming formulas for select-
ing transforms given a set of candidate transforms P′ and a
validation set of AST slice pairs E

Input : a set of training AST slice pairs D
Output: a set of transforms that generate a search space

1 Remove a subset of D from D to form the validation set E
2 P′ ← sample(D,E)

3 Solve ILP in Figure 13 to obtain P
4 return P

Figure 14. Search space inference algorithm

AST pair (i.e. xi = 0). In Genesis, β = 5×104 and ζ = 108.
The second group of constraints is for coverage. The i-th
constraint specifies that if the final search space covers the
i-th AST slice pair in E (i.e. xi = 1), then at least one of the
selected transforms should cover the i-th pair.

Genesis also implements an alternative ILP formulation
which considers also the patches in the training set and
maximizes the number of covered training patches when
two different solutions have the same number of covered
validation patches. We empirically find that this alternative
formulation tends to produce better search spaces when the
validation set is small. See Section 5.
Inference Algorithm: Figure 14 presents the high-level
pseudo-code of the Genesis inference algorithm. Starting
from a training set of AST slice pairs D, Genesis first re-
moves 25% of the AST slice pairs from D to form the vali-
dation set E. It then runs the sampling algorithm to produce
a set of candidate transforms P′. It finally solves the above
ILP with Gurobi [34], an off-the-shelf solver, to obtain the
set of transforms P that forms the result search space.

3.6 Implementation

We have implemented the Genesis inference algorithm for
Java programs. We use the spoon library [51] to parse Java
programs to obtain Java ASTs. We next discuss several ex-



tensions of the above inference algorithm for handling Java
programs.
Semantic Checking: Genesis performs type checking in its
implementation of the generation operators for generators
and transforms. Genesis will discard any AST tree or AST
forest that cannot pass Java type checking. Genesis also per-
forms semantic checking to detect common semantic prob-
lems like undefined variables, uninitialized variables, etc..
Identifiers and Constants: The CFG for Java has an infi-
nite set of terminals, because there are an infinite amount of
possible variables, fields, functions, and constants. For the
kind of generators that enumerate all possible AST forests
(i.e., b = 0), Genesis does not generate changes that import
new packages and or changes that introduce new local vari-
ables (even if a change introduces new local variables, it is
typically possible to find a semantic equivalent change that
does not). Therefore Genesis only considers a finite set of
possible variables, fields, and functions.

Genesis also extends enumeration-based generators so
that each generator has an additional set to track the constant
values that the generator can generate. For the generation
operator of a generator, Genesis will only consider finite
constant values that are 0, 1, null, false, or any value
that is inside the tracked set of the generator.

Many string constants in Java programs are text messages
(e.g., the message in throw statements). These constants may
cause a sparsity problem when Genesis computes the set of
the allowed constants during the generalization process. To
avoid such sparsity problems, Genesis detects such string
constants and convert them to a special constant string — the
specific string values are typically not relevant to the overall
correctness of the programs.
Identifier Scope: Genesis exploits the structure of
Java programs to obtain more accurate generators. Each
enumeration-based generator (i.e., b = 0) tracks separate
bounds for the number of variables and functions it uses
inside the original slice, from the enclosing function, from
the enclosing file, and from all imported files. For exam-
ple, a generator may specify that it will only use up to two
variables from the enclosing function in the generated AST
forests. Similarly, each copy-based generator (i.e., b = 0)
has additional flags to determine whether it copies code from
the original code, the enclosing function, or the entire en-
closing source file.
Code Style Normalization: Genesis has a code style nor-
malization component to rewrite programs in the training set
while preserving semantic equivalence. The code style nor-
malization enables Genesis to find more common structures
among ASTs of training patches and improves the quality of
the inferred transforms and search spaces.

Input : the original program p, the validation test suite V ,
and the set of the transformation patterns of the
search space P

Output: the list of generated patches
1 S← localization(p, V )

2 G← emptylist
3 for S in S do
4 for P in P do
5 for p′ in {str(T ) | 〈P, S〉 =⇒ T} do
6 if validate(p′, V ) then
7 Append p′ to G

8 return G
Figure 15. Patch generation algorithm

4. Patch Generation
Figure 15 presents the Genesis patch generation algorithm.
The Genesis error localization algorithm (line 1) produces
a ranked list of suspicious locations (as AST snippets) in
the original program p. Genesis applies each transform in
P to each suspicious AST snippet S ∈ S to obtain candi-
date patches p′ (lines 3-5). It validates each candidate patch
against the test cases and appends it to the returned patch
list if it passes all test cases (lines 6-7). Our current imple-
mentation supports any Java application that operates with
the Apache maven project management system [2] and JU-
nit [19] testing framework.
Error Localization: Genesis is designed to work with ar-
bitrary error localization algorithms. Our current implemen-
tation starts with stack traces generated from test cases that
trigger the null pointer or out of bounds access error. It ex-
tracts the top ten stack trace entries and discards any entries
that are not from source code files in the project (as opposed
to external libraries or JUnit). For each entry it finds the cor-
responding line of code in a project source code file and col-
lects that line as well as the 50 lines before and after that line
of code.

For each of the collected lines of code, Genesis first com-
putes a suspiciousness score between 0 and 0.5. The line of
code given by the first stack trace entry has a suspiciousness
score of 0.5, with the score linearly decreasing to zero as
the sum of the distance to the closest line of code from the
stack trace and the rank of that line within the stack trace in-
creases. Genesis prioritizes lines containing if, try, while, or
for statements by adding 0.5 to their suspiciousness scores.
The final scores are in the range of 0 to 1. Genesis priori-
tizes lines of code for patch generation according their final
scores.
Space Exploration Order: Genesis applies its search space
in order to each of the suspicious statements in the ranked
list returned by the error localization algorithm. For each



transform, Genesis computes a cost score which equals to
the average number of candidate patches the transform need
to generate to cover a validation case. For each suspicious
statement, Genesis prioritizes candidate patches that are gen-
erated by those transforms with lower cost scores.

5. Experimental Results
We next present experimental results of Genesis.

5.1 Methodology

Collect Training Patches and Errors: We developed a
script that crawled the top 1000 github Java projects (ranked
by number of stars), a list of 50968 github repositories from
the MUSE corpus [21], and the github issue database. The
script crawls the repositories and issues and it collects a
project revision if 1) the project uses the apache maven man-
agement system [2], 2) we can use maven 3.3 to automati-
cally compile both the current revision and the parent revi-
sion of the current revision (in the github revision tree) in
our experimental environment, 3) we can use the spoon li-
brary [51] to parse the source code of both of the two revi-
sions into AST trees, 4) the issue discussion or the commit
message of the current revision contains certain keywords
to indicate that the revision corresponds to a patch for NPE,
OOB, or CCE errors, and 5) the revision changes only one
source file (because revisions that change more than one
source file often correspond to composite changes and not
just patches for NPE, OOB, or CCE errors).

For NPE errors, the scripts search for keywords “null
deref”, “null pointer”, “null exception”, and “npe”. For OOB
errors, the scripts search for keywords “out of bounds”,
“bound check”, “bound fix”, and ”oob”. For CCE errors,
the scripts search for keywords “classcast exception”, “cast
check”, and “cast fix”. We manually inspected the retrieved
revisions to discard revisions that do not correspond to fixing
NPE, OOB, CCE errors. Note that we discard many reposi-
tories and revisions because we are unable to automatically
compile them with maven, i.e., they do not support maven or
they have special dependencies that cannot be automatically
resolved by the maven system.

We focus on NPE, OOB, and CCE errors because we
want to compare the patch generation results of Genesis
with PAR, a previous patch generation system. PAR [36]
contains manual transform templates for NPE, OOB, and
CCE errors. In fact, a review of PAR system finds out that
most reported patches in the PAR paper are generated by its
manual templates for NPE and OOB errors [49].

In total we collected 1012 human patches from 372 dif-
ferent applications. These patches include 503 null pointer
error (NPE) patches, 212 out of bound error (OOB) patches,
and 303 class cast error (CCE) patches. Note that there are
six patches whose revision commit logs contain keywords

for two kinds of errors and we count them as patches for
both of the two kinds.
Benchmark Errors: We then went over each of the col-
lected patches with another script we developed. The script
collects a revision if 1) the revision has a JUnit [19] test suite
in the repository that Genesis can run automatically, 2) the
JUnit test suite contains at least one test case that can expose
and reproduce the error in our experimental environment, 3)
the JUnit test suite contains at least 50 test cases in total, and
4) the test suite does not cause non-deterministic behaviors.
This script collects in total 49 reproducible errors from the
collected 1012 patches. It includes 20 NPE errors, 13 OOB
errors, and 16 CCE errors. These are the benchmark errors.
Partition into Training and Validation: We partition the
collected 1012 patches into training, validation, and bench-
mark patches as follow. We first removed the 49 benchmark
errors, leaving 963 remaining patches. We randomly parti-
tion the remaining patches into 722 training patches and 241
validation patches (the learning algorithm uses validation
patches to evaluate candidate transforms, see Section 3.5).

We also performed experiments to run learning algorithm
on training patches of NPE, OOB, and CCE errors separately
to to infer targeted search spaces for each class of errors. For
such experiments, we first removed all of the benchmark er-
rors from the collected 503 NPE patches, 212 OOB patches,
and 303 CCE patches, respectively. We then randomly par-
titioned the 483, 199, and 287 remaining patches into 362
NPE, 149 OOB, and 215 CCE training patches and 121 NPE,
50 OOB, and 72 CCE validation patches, respectively.
Search Space Inference: We run the inference algorithm on
the partitioned training and validation patches for each class
of errors to infer targeted search spaces. To evaluate the pro-
posed optimization for working with small validation sets
in Section 3.5, for each kind of error we run the ILP solver
twice to produce two targeted search spaces. Genesis pro-
duces the first search space by solving an ILP formulation
that considers the coverage of only the validation patches.
Genesis produces the second space by solving an ILP formu-
lation that considers both the validation and training patches
(see Section 3.5). We set the work list size α of the sampling
algorithm (see Section 3.4) to 1000 for the targeted inference
runs.

We also run the Genesis search space inference algorithm
on the 722 training patches and 241 validation patches to
infer a single composite search space for all NPE, OOB, and
CCE errors. For this run, Genesis uses the ILP formulation
that considers both the training and validation patches. We
run the inference algorithm with 36 threads in parallel on an
Amazon EC2 c4.8xlarge instance with Intel Xeon E5-2666
processors, 36 vCPU, and 60GB memory. We set the work
list size α of the sampling algorithm (see Section 3.4) to 500
for the composite inference run.



PAR Template Implementation: PAR [36] deploys a set
of transform templates to fix bugs in Java programs, with the
templates manually derived by humans examining multiple
real-world patches. The description of PAR templates is
publicly available at the PAR website [23], but despite our
repeated requests to the PAR authors, we are unable to obtain
the original implementation of PAR.

To this end, we implemented PAR templates for NPE,
OOB, and CCE errors under our own patch generation
framework. For NPE error, we implemented the PAR tem-
plate “Null Checker”, which inserts if statements that ei-
ther 1) skip a statement with a null dereference or 2) re-
turns a default value from a function before a null deref-
erence. For OOB errors, we implemented five PAR tem-
plates “Range Checker”, “Collection Size Checker”, “Lower
Bound Setter”, “Upper Bound Setter”, and “Off-by-one Mu-
tator”. “Range Checker” and “Collection Size Checker” in-
sert if statements that either 1) skip a statement with in-
dex out-of-bound access for array or collection or 2) re-
turns a default value from a function before an out-of-bound
access. “Lower Bound Setter” and “Upper Bound Setter”
change the value of an out-of-bound index variable back to
its lower bound or upper bound value. “Off-by-one Muta-
tor” increases or decreases the value of an index variable
by one. For CCE errors, we implemented three templates
“Class Cast Checker”, “Caster Mutator”, and “Castee Mu-
tator”. “Class Cast Checker” insert if statement with in-
stanceof checks that either 1) skip a statement triggering a
class cast exception or 2) returns a default value from a func-
tion before a class cast exception. “Caster Mutator” changes
the cast type that an expression converts to in a cast state-
ment. “Castee Mutator” replaces the castee expression in a
cast statement with a variable in similar name.

Note that the PAR paper [36] and the PAR website [23]
are the only references that we find for PAR templates. Some
PAR template descriptions are ambiguous (e.g., a PAR tem-
plate inserts an if guarded return statement to return a “de-
fault” value from the current function, but there is no clear
definition of “default” in the PAR paper [36] and the PAR
website [23]). We implemented such ambiguous PAR tem-
plates, with our best efforts, in a way that will enable the
templates to generate correct patches for as many benchmark
errors as possible. Also note that there are eight PAR tem-
plates we do not consider in our experiments, because the
eight templates are not for NPE, OOB, and CCE errors. Our
manual analysis indicate that these templates can generate
no additional correct patches for our benchmark errors and
considering those templates only harms the performance of
PAR templates.
Patch Generation: We run Genesis with each of the in-
ferred targeted search spaces on the corresponding kind of
benchmark errors (the NPE search spaces on 20 NPE errors,

the OOB search spaces on 13 OOB errors, and the CCE
search spaces on 16 CCE errors, respectively). We run the
Genesis patch generation system with the inferred compos-
ite search space on all 49 benchmark errors. For compari-
son, we further run the patch generation system with the im-
plemented PAR templates on all benchmark errors. We per-
formed all of the patch generation experiments on Amazon
EC2 m4.xlarge instances with Intel Xeon E5-2676 proces-
sors, 4 vCPU, and 16 GB memory. We set a time limit of
five hours, i.e., we terminate a patch generation process if
it does not finish the exploration of the search space in five
hours.

For each of the benchmark errors, we manually analyze
the root cause of the error and the corresponding developer
patch in the repository. For each patch generation run, Gen-
esis or PAR produces a ranked list of validated patches and
we analyze each validated patch one by one in order until we
identify the first correct patch (i.e., the patch correctly fixes
the error for all possible inputs) in the produced ranked list
if any.

Note that the corresponding developer patches for several
benchmark errors emit text error/log messages if certain con-
ditions are true. Genesis and PAR validated patches do not
attempt to generate the text error messages. In our experi-
ments, we count such a Genesis and PAR patch correct if the
patch semantically differs with the corresponding developer
patch only in such text error/log messages.

In principle, determining patch correctness can be diffi-
cult. We emphasize that this is not the case for the patches
and errors in our experiments. The correct behavior for all
of the errors is clear, as is patch correctness and incorrect-
ness. In fact, all of those generated patches that our analysis
identifies as correct patches are in fact semantically equiva-
lent to the corresponding developer patches or differ only in
error/log messages.

5.2 Inference Results

Table 1 presents the Genesis inference results for the com-
posite search space and the six targeted search spaces for
NPE, OOB, and CCE errors. “VO” denotes the targeted
search spaces that Genesis generates with an ILP formula-
tion that considers validation patches only. “TV” denotes
the targeted search spaces that Genesis generates with an
ILP formulation that considers both training and validation
patches.

The second row presents the number of transforms pro-
duced by the Genesis sampling algorithm (Section 3.4). The
third and fourth rows presents the number of training and
validation patches these post-sampling transforms can gen-
erated if applied to the pre-patch ASTs of the training and
validation patches. The fifth row presents the number of se-
lected transforms in each of the inferred search spaces. The



NPE (VO) NPE (TV) OOB (VO) OOB (TV) CCE (VO) CCE (TV) Composite
Transforms after Sampling 1354 978 769 577

Covered Training after Sampling 248 of 362 101 of 149 87 of 215 443 of 722
Covered Validation after Sampling 58 of 121 14 of 50 14 of 72 87 of 241

Final Inferred Transforms 13 52 9 35 10 28 108
Covered Training in Space 144 of 362 209 of 362 31 of 149 88 of 149 34 of 215 78 of 215 362 of 722

Covered Validation in Space 57 of 121 57 of 121 13 of 50 11 of 50 12 of 72 12 of 72 80 of 241
Total Inference Time 1464m 1181m 861m 2886m

Table 1. Transform and search space inference results

Type Errors
Genesis Genesis (Composite) PAR

Correct Top 3 Top 10 Correct Top 3 Top 10 Correct Top 3VO TV VO TV VO TV
NPE 20 13 11 12 8 12 11 11 10 11 7 7
OOB 13 5 6 3 4 5 5 6 5 5 4 4
CCE 16 3 5 2 3 3 4 4 2 4 0 0
Total 49 24(21/22) 19(17/15) 21(20/20) 21 17 20 11 11

Table 2. The summary of patch generation results.

sixth and seventh rows present the number of training and
validation patches each search space can generate if applied
to the pre-patch ASTs of the patches. The ninth row presents
the running time of inferring each search space. In our ex-
periments, the inference takes less than 50 hours. The time
is dominated by the sampling algorithm and the generaliza-
tion operation over training patches. Solving the ILPs takes
less one minute for all four search spaces.

The results highlight the ability of our ILP formulation
to navigate the search trade-off between the coverage and
tractability. Over 85% of validation patches that are covered
by the candidate transforms are also covered by the result
search space produced by the Genesis ILP solver. The Gen-
esis ILP formulation enables Genesis to select a productive
subset of transforms among candidate transforms to cover
these validation patches while satisfying the tractability con-
straints. The results show that the Genesis inference algo-
rithm achieves higher coverage of validation patches on NPE
errors than it achieves on OOB and CCE errors. One possi-
ble explanation is that human patches for OOB and CCE
errors tend to be more complicated and diverse than patches
for NPE errors. It is therefore more challenging to extract
and infer transforms to summarize human OOB and CCE
patches.

5.3 Patch Generation Results

Table 2 summarizes the patch generation results for Genesis
and PAR. See Appendix A for the detailed results on each
benchmark error. The first column “Type” presents the type
of error (NPE, OOB, or CCE). The second column “Number
of Errors” presents the total number of errors of each type.
The third to eighth columns “Genesis” present the Genesis

results with targeted search spaces (applying a targeted NPE
search space to NPE errors, a targeted OOB space to OOB
errors, and a targeted CCE search space to CCE errors). The
“VO” column presents the results of the search spaces that
Genesis generates with an ILP formulation that considers
validation patches only. The “TV” column presents the re-
sults of the search spaces that Genesis generates with an
ILP formulation that considers both training and validation
patches. Each entry presents the number of benchmark errors
for which the corresponding system generates at least one
correct patch. Each entry in the “Top 3” columns presents
the number of benchmark errors for which a correct patch is
ranked top three in the generated patches. Each entry in the
“Top 10” columns presents the number of errors for which a
correct patch is ranked top ten in the generated patches. The
ninth to eleventh columns “Genesis (Composite)” present
the Genesis results of applying the inferred composite search
space to all benchmark errors. The twelfth and thirteenth
columns “PAR” present the patch generation results of ap-
plying PAR templates.

With the “NPE (VO)”, “OOB (TV)”, and “CCE (TV)”
search spaces, Genesis generates correct patches for 24 out
of 49 benchmark errors, with 19 in the top 3 and 21 in the top
10 generated patches. Compared to the standard ILP formu-
lation that only considers validation patches, the formulation
that considers both training and validation patches enables
Genesis to generate correct patches for two more OOB er-
rors, two more CCE errors, but two fewer NPE errors. One
explanation is that for NPE errors we have a relatively large
number of validation patches. Considering only validation
patches for the ILP formulation helps reduce the overfitting
of the inferred search space. On the other hand, for OOB and



CCE errors we have relatively small number of validation
patches. Considering both training and validation patches
enables Genesis to cover those cases that are present in the
training patches only.

Our results highlight the effectiveness of the Genesis in-
ferred search space in comparison with the PAR manually
defined templates. Genesis generates correct patches for six
more NPE errors, two more OOB errors, and five more CCE
errors than PAR. Also Genesis generates correct patches
ranked as top three among generated patches for five more
NPE errors and three more CCE errors than PAR.

Our results also highlight the ability of Genesis to infer
a single composite search space from training patches for
multiple kinds of errors together. Genesis with the compos-
ite search space is able to generate correct patches for 21 out
of the 49 benchmark errors. One interesting phenomenon is
that for the 21 errors the composite search space generates
correct patches ranked as top three and top ten for more er-
rors than the targeted search spaces do. This is because when
Genesis infers the single composite search space for all three
kinds of errors, Genesis prunes away relatively less efficient
transforms that are selected in the targeted search spaces to
maintain tractability. Pruning these transforms enables Gen-
esis to generate fewer validated but incorrect patches.
NPE Patch Categories: Correct patches for nine NPE cases
insert if statements with a null pointer check. Then if the
check succeeds, the patches either 1) return a synthesized
value or void (for five out of the nine cases), 2) throw a new
synthesized exception (for two cases), or 3) skip a statement
with a null pointer error (for two cases). Correct patches
for two NPE cases modify an existing boolean expression
by conjoining or disjoining a synthesized expression. The
correct patch for one case inserts a call statement that is
copied from an existing statement in the enclosing function.
The correct patch for the remaining one NPE case deletes an
assignment statement that assigns a null value to a variable.
OOB Patch Categories: Correct patches for five OOB cases
insert if statements with a comparison that checks for an out
of bounds access. Then if the check succeeds, the patches
either return a synthesized value or void (for three out of
five cases) or break from the enclosing loop (for two cases).
The correct patch for the remaining one OOB case replaces a
constant zero with a local variable in an conditional expres-
sion.
CCE Patch Categories: The correct patch for one CCE
case changes the class type of a local variable declaration to
the super class of its original type. The correct patch for one
CCE case modifies the target class type of an instanceof
condition to tighten the condition. Correct patches for two
CCE cases insert a try-catch statement to catch and ignore
class cast errors. The correct patch for the remaining CCE

case wraps an expression with a new method call to appro-
priately convert the expression value.
Error Localization Oracle: To isolate the effect of error lo-
calization, we also run Genesis and PAR with an oracle that
identifies, for each error, the correct line of code to patch.
With the oracle, Genesis (“OOB (TV)”) generates correct
patches for two more OOB errors (RoaringBitmap [24] re-
vision 29c6d5 and maven-shared [3] revision 77937e) and
(“CCE (TV)”) one more CCE error (fastjson [8] revision
c88687). PAR is unable to generate any additional correct
patch with the oracle.

5.4 Discussion

The inferred Genesis search spaces generate correct patches
for significantly more benchmark errors than manually de-
fined PAR templates. The reason is that there are many de-
sign choices and parameters for a transform (template) and
it is difficult for human to tune them manually.

For example, consider an inferred transform for NPE er-
rors A → if (B!=null) {A}, which adds an if state-
ment to guard an existing statement A. There are many de-
sign questions for this transform: what is allowed in the
checked expression B? Should we just allow local variables
and constants or do we allow complicated expressions? If we
allow complicated expressions, how we are going to bound
the expressions? If A is already an if statement, should we
consider to change its condition instead of warpping it with
a new if statement? All these questions correspond to de-
sign choices and parameters in the transform. Suboptimal
choices often cause unproductive search spaces that do not
contain enough useful patches or that are too large to ex-
plore. It is difficult for manually defined patch templates to
capture these design choice complexities.

Genesis captures these complexities with its novel def-
inition of code transforms, where different design choices
correspond to structures in template ASTs and parameters in
generators. The sampling algorithm first automatically sam-
ples candidate transforms with productive parameters from
the training set. The ILP formulation then automatically se-
lects a subset of the candidate transforms that deliver pro-
ductive trade-off between coverage and the tractability. On
the other hand, PAR templates are designed to only capture
most common patterns of human patches. The resulting PAR
search space is relatively narrow and misses many important
useful patterns.

Here is how this issue plays out in our experiments.
For NPE errors, PAR manual templates consider only two
kinds of transforms “add an if statement to guard an ex-
isting statement” and “add an if guarded return statement”
with null check boolean conditions. For the 13 NPE errors
for which Genesis generates correct patches, two NPE errors
(spring-data-rest [26] revision aa28ae and error-prone [7] re-



vision 370933) are outside PAR’s space because the correct
patches add “if (...) throw ...” statements; three NPE errors
(DataflowJavaSDK [5] revision c06125, javaslang [15] re-
vision faf9ac, and Activiti [1] revision 3d624a) are outside
PAR’s space because the correct patches change condition
expressions in a non-trivial way that is not equivalent to add
an if-guard; one NPE error (HikariCP [12] revision ce4ff9) is
outside PAR’s space because PAR templates do not generate
patches that directly remove statements.

For OOB errors, PAR manual templates consider “add
an if statement to guard an existing statement” and “add an
if guarded return statement” with range check conditions.
The templates also consider “increases or decreases a vari-
able by one” and “add an if guarded assignment statement
to enforce index lower and upper bounds of a variable”. For
six OOB errors for which Genesis generates correct patches,
two OOB cases (jgit [16] revision 929862 and jPOS [18]
revision df400a) are outside PAR’s space, because correct
patches change conditions in a way different from the stan-
dard range checks.

For CCE errors, PAR manual templates consider “add
an if statement to gaurd an existing statement” and “add
an if guarded return statement” with instanceof type
checks. The PAR templates also include “change the cast-
ing type of a cast operator”. The templates do not generate
correct patches for any CCE erorrs. For the five errors for
which Genesis generates correct patches, the correct patches
for two of the five errors (jade4j [14] revision 114e88 and
HdrHistogram [11] revision 030aac) change existing expres-
sions in a way that is not equivalent to adding a type check
guard. The correct patches for two of the five errors (htm-
lelements [13] revision bf3f27 and hamcrest-bean [10] revi-
sion 84586d) insert try-catch statement to catch and ignore
class cast exceptions (the developers introduced these try-
catch statements in the patched revision and these statements
are still present in the latest revision of these repositories).
The correct patch for the remaining error (jade4j [14] revi-
sion dd4739) modifies the declared type of a local variable
to avoid class cast exceptions.

6. Related Work
Generate And Validate Systems: Generate and validate
patch generation systems apply a set of transforms to gen-
erate a search space of candidate patches that are then eval-
uated against a set of inputs to filter out patches that pro-
duce incorrect outputs for the test inputs. Prophet [40] and
SPR [41] apply a set of predefined parameterized transfor-
mation schemas to generate candidate patches. Prophet pro-
cesses a corpus of successful human patches to learn a model
of correct code to rank plausible patches; SPR uses a set
of hand-code heuristics for this purpose. GenProg [39, 65],
AE [64], and RSRepair [54] use a variety of search al-

gorithms (genetic programming, stochastic search, random
search) in combination with transforms that delete, insert,
and swap existing program statements. Kali [55] applies a
single transform that simply deletes code. All of these sys-
tems were evaluated on the same benchmark set [39]. For
the 69 defects in this set (the set also contains 36 function-
ality changes), Prophet, SPR, Kali, GenProg, RSRepair, and
AE generate correct patches for 15, 11, 2, 1, 2, and 2 de-
fects, respectively. We attribute the relatively poor perfor-
mance of Kali, GenProg, RSRepair, and AE to the fact that
their search spaces do not appear to contain correct patches
for the remaining defects in the set [41, 55]. Like Prophet,
history-driven program repair [38] uses information from
previous human patches to rank candidate patches generated
by human-specified transforms.

PAR [36] deploys a set of patterns to fix bugs in Java pro-
grams, with the patterns manually derived by humans ex-
amining multiple real-world patches. The PAR null pointer
checker pattern inserts if statements that either 1) skip a
statement with a null dereference or 2) returns a default value
before a null dereference. The PAR range checker pattern
inserts bounds checks. Genesis automatically infers a larger
and richer set of transforms that generate all of the patches
generated by the PAR manually-derived patterns and more.
In particular, the generated Genesis patch in Section 2 is out-
side the PAR search space.

Genesis differs from all of these systems in that it does
not work with a fixed set of human-specified transforms. It
instead automatically processes patches from repositories to
automatically infer a set of transforms that together define
its patch search space.
Constraint Solving Systems: Prophet [40], SPR [41],
Qlose [29], NOPOL [33], SemFix [50], and Angelix [45] all
use constraint solving to generate new values for potentially
faulty expressions (often faulty conditions). ClearView [53]
enforces learned invariants to eliminate security vulnerabili-
ties. Angelic Debugging [28] finds new values for potentially
incorrect subexpressions that allow the program to produce
correct outputs for test inputs.

PHPQuickFix and PHPRepair use string constraint-
solving techniques to automatically repair PHP programs
that generate HTML [61]. By formulating the problem as
a string constraint problem, PHPRepair obtains sound, com-
plete, and minimal repairs to ensure the patched php pro-
gram passes a validation test suite. Specification-based data
structure repair [30, 31, 35, 66] takes a data structure consis-
tency specification and an inconsistent data structure, then
synthesizes a repair that produces a modified data structure
that satisfies the consistency specification.

Genesis differs from all of these systems in that it
works with automatically inferred transforms, with gener-
ators playing the role of constraint solvers to generate ex-



pressions that enable parameterized transforms to produce
correct patches.
Repair with Formal Specifications: It is possible to lever-
age formal specifications to generate patches that produce a
patched program that satisfies the specification [37, 52, 60].
One difference is that Genesis works with large real world
applications where formal specifications are typically not
available.
Probabilistic Model for Programs: There is a rich set of
work on applying probabilistic model and machine learn-
ing learning techniques for programs, specifically, for iden-
tifying correct repairs [40], code refactoring [57], and code
completion [27, 56, 58]. These techniques learn a proba-
bilistic model from a training set of patches or programs
and then use the learned model to identify the best repair
or token for a defective or partial program. In contrast, in-
stead of learning individual concrete patches, Genesis has
the high-order goal of inferring transforms that can be ap-
plied to a new bug to generate a set of candidate patches.
Genesis does not use probabilistic models. It instead obtains
candidate transforms with a novel generalization algorithm
and formulates the transform selection problem as an integer
linear programming.
Repair Model Mining: Martinez and Monperrus manu-
ally analyze previous human patches to mine repair mod-
els for program repair systems. They manually define a set
of transforms and then classify the patches into the defined
transforms based on the kind of modification operations of
the patches [44]. In contrast, Genesis does not work with
any predefined transform and automatically infers the set of
transforms from a set of human patches.
Systematic Edit: SYDIT [47] and Lase [48] extract edit
scripts from one (SYDIT) or more (Lase) example edits.
The script is a sequential list of modification operations
that insert statements or update existing statements. SYDIT
and Lase then generate changes to other code snippets in
the same application with the goal of automating repeti-
tive edits. RASE [46] uses Lase edit scripts to refactor code
clones. FixMeUp [63] works with access control templates
that implement policies for sensitive operations. Using these
templates, FixMeUp finds unprotected sensitive operations
and inserts appropriate checks. An analysis of the applica-
tion can extract an application-specific template [62], which
FixMeUp can then apply across the same application. Gene-
sis differs in that it processes multiple patches from multiple
applications to derive generalized application-independent
transforms that it can apply to fix bugs in yet other appli-
cations. The Genesis transforms include generators so that
transforms can generate multiple candidate patches (as op-
posed to a single edit as in SYDIT, Lase, and FixMeUp).
Dynamic Recovery: Failure-oblivious computing [59] dis-
cards out of bounds writes and manufactures values for out

of bounds reads. RCV [43] returns zero as the result of
null pointer dereferences and divide by zero errors. AP-
PEND [32] detects attempted null pointer dereferences and
applies recovery actions such as creating a default object to
replace the null pointer. In all cases the goal is to enable suc-
cessful (but not necessarily correct) continued execution.

Genesis, in contrast, learns transforms and applies these
transforms to derive a patched program without the null
pointer or out of bounds access error — the goal is to obtain
a correct patch, not simply continued execution via run-
time recovery. The automatically inferred Genesis templates
provide a broader and more sophisticated set of techniques
for dealing with null pointer dereferences and out of bounds
accesses.

7. Conclusion
Previous generate and validate patch generation systems
work with a fixed set of transforms defined by their human
developers. By automatically inferring transforms from sets
of successful human patches, Genesis makes it possible to
leverage the combined expertise and patch generation strate-
gies of developers worldwide to automatically patch bugs in
new applications.
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Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 1m 9545 9545 17m 6 <1m 1 51
caelum-stella 2d2dd9c 1m 6597 6597 24m 22 <1m 1 10
caelum-stella e73113f 1m 6642 6642 24m 22 <1m 1 4

HikariCP ce4ff92 3m 20294 20294 215m 39 167m 11 14633
nutz 80e85d0 2m 202795 93904 >5h 0 - - -

spring-data-rest aa28aeb 7m 8439 8439 275m 7 56m 2 1501
checkstyle 8381754 2m 114736 76495 >5h 4 2m 1 359
checkstyle 536bc20 3m 126115 77864 >5h 6 <1m 1 7
checkstyle aaf606e 2m 119541 85059 >5h 0 - - -
checkstyle aa829d4 1m 0 0 <1m 0 - - -

jongo f46f658 1m 64373 32199 >5h 3 - - -
DataflowJavaSDK c06125d 3m 12010 12010 100m 1 4m 1 429

webmagic ff2f588 <1m 26270 26270 99m 1 - - -
javapoet 70b38e5 <1m 22806 22806 72m 0 - - -

closure-compiler 9828574 3m 162227 12394 >5h 5 2m 1 794
truth 99b314e <1m 8509 8509 15m 0 - - -

error-prone 3709338 2m 95533 781 >5h 3 <1m 1 72
javaslang faf9ac2 <1m 191829 153888 >5h 6 <1m 3 407
Activiti 3d624a5 4m 67528 895 >5h 99 1m 2 74

spring-hateoas 48749e7 <1m 6965 6965 14m 8 <1m 1 62

Table 3. Experimental results of the Genesis “NPE (VO)” search space on NPE defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <1m 120682 120682 130m 6 <1m 1 39

RoaringBitmap 29c6d59 4m 246699 34787 >5h 0 - - -
commons-lang 52b46e7 2m 56393 56393 147m 0 - - -
HdrHistogram db18018 <1m 105685 105685 300m 515 - - -
spring-hateoas 29b4334 <1m 67856 67856 124m 0 - - -

wicket b708e2b 6m 88938 68158 >5h 28 136m 8 31573
coveralls-maven-plugin 20490f6 <1m 5533 5533 10m 0 - - -

named-regexp 82bdfeb <1m 0 0 <1m 0 - - -
jgit 929862f 2m 59053 59053 152m 0 - - -

jPOS df400ac 3m 129158 129158 264m 10 19m 1 11172
httpcore dd00a9e 2m 112849 76295 >5h 78 <1m 1 93
vectorz 2291d0d <1m 86488 86488 117m 21 27m 9 24927

maven-shared 77937e1 2m 0 0 <1m 0 - - -

Table 4. Experimental results of the Genesis “OOB (VO)” search space on OOB defects

A. Patch Generation Results per Benchmark
Error

Tables 3, 4, and 5 present the results of Genesis patch gener-
ation, when run with targeted search spaces constructed from
the validation-patch only ILP formulation, on our bench-
mark set of 20 NPE, 13 OOB, and 16 CCE errors, respec-
tively. Tables 6, 7, and 8 similarly present the results of Gen-
esis when run using targeted search spaces constructed from
the ILP formulation which uses both the training and the val-

idation set (see Section 3.5). Tables 9, 10, and 11 show the
results when using the composite search space containing
patches for all types of defects. Finally, Tables 12, 13, 14,
contain the results of running our formulation of the PAR
templates on our benchmark sets.

Each table contains one line for each error of its defect
type. The “Init. Time” column presents the amount of time
required to initialize the search for that error. The “Search
Space Size” column presents the size of the search space for
that error, the “Explored Space Size” column presents the



Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <1m 2442 2442 16m 2 3m 1 442
jade4j 114e886 <1m 4383 4383 26m 0 - - -

HdrHistogram 030aac1 <1m 588 588 1m 0 - - -
pdfbox 93c0b69 1m 2318 2318 4m 0 - - -

tree-root fef0f36 <1m 558 558 <1m 0 - - -
spoon 48d3126 8m 0 0 <1m 0 - - -
pebble 942aa6e 2m 2081 2081 19m 0 - - -
fastjson c886874 1m 9228 9228 17m 0 - - -

htmlelements bf3f275 2m 1659 1659 9m 12 3m 7 284
spring-cloud-connectors 56c6eca <1m 4328 4328 11m 0 - - -

joinmo a5ee885 <1m 22935 22935 71m 5 - - -
buildergenerator d9d73b3 <1m 566 566 1m 0 - - -

mybatis-3 809c35d 7m 6024 6024 39m 0 - - -
antlr4 9e7b131 3m 43 43 <1m 0 - - -

hamcrest-bean 84586d9 <1m 21705 21705 46m 6 <1m 1 37
raml-java-parser 49aab8f <1m 370 370 2m 0 - - -

Table 5. Experimental results of the Genesis “CCE (VO)” search space on CCE Defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 1m 46240 46240 74m 21 <1m 1 40
caelum-stella 2d2dd9c 1m 24089 24089 44m 18 <1m 1 83
caelum-stella e73113f 1m 24445 24445 46m 18 <1m 1 81

HikariCP ce4ff92 3m 253513 66146 >5h 9 - - -
nutz 80e85d0 2m 559462 130027 >5h 0 - - -

spring-data-rest aa28aeb 7m 53974 6651 >5h 0 - - -
checkstyle 8381754 2m 1130045 109538 >5h 17 12m 4 1719
checkstyle 536bc20 2m 1252145 106140 >5h 58 <1m 1 6
checkstyle aaf606e 2m 1191987 118726 >5h 0 - - -
checkstyle aa829d4 1m 0 0 <1m 0 - - -

jongo f46f658 1m 240259 33510 >5h 2 - - -
DataflowJavaSDK c06125d 3m 63391 58135 >5h 30 6m 1 3072

webmagic ff2f588 1m 1166381 92138 >5h 0 - - -
javapoet 70b38e5 <1m 328306 182898 >5h 0 - - -

closure-compiler 9828574 3m > 106 150055 >5h 2 3m 1 4
truth 99b314e <1m 57401 57401 90m 0 - - -

error-prone 3709338 2m 536502 14681 >5h 7 3m 1 448
javaslang faf9ac2 <1m > 106 177886 >5h 146 1m 10 1465
Activiti 3d624a5 4m 866860 1719 >5h 87 5m 4 68

spring-hateoas 48749e7 <1m 18820 18820 45m 47 <1m 1 17

Table 6. Experimental results of the Genesis “NPE (TV)” search space on NPE defects



Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <1m 291493 163821 >5h 3 <1m 1 39

RoaringBitmap 29c6d59 4m 553322 62426 >5h 0 - - -
commons-lang 52b46e7 2m 74203 5226 >5h 0 - - -
HdrHistogram db18018 <1m 193578 181161 >5h 551 - - -
spring-hateoas 29b4334 <1m 66284 66284 50m 1 - - -

wicket b708e2b 6m 119439 108523 >5h 34 112m 8 39486
coveralls-maven-plugin 20490f6 <1m 5252 5252 4m 0 - - -

named-regexp 82bdfeb <1m 0 0 <1m 0 - - -
jgit 929862f 2m 144180 144180 215m 8 90m 3 57712

jPOS df400ac 2m 179730 179730 213m 10 7m 1 12132
httpcore dd00a9e 2m 265367 92815 >5h 151 <1m 1 93
vectorz 2291d0d <1m 241445 241445 263m 49 77m 40 78156

maven-shared 77937e1 2m 0 0 <1m 0 - - -

Table 7. Experimental results of the Genesis “OOB (TV)” search space on OOB Defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <1m 64985 64985 223m 3 87m 1 26997
jade4j 114e886 <1m 115062 72499 >5h 1 229m 1 54148

HdrHistogram 030aac1 <1m 20361 20361 27m 69 4m 33 717
pdfbox 93c0b69 1m 66136 66136 147m 0 - - -

tree-root fef0f36 <1m 22090 22090 17m 0 - - -
spoon 48d3126 9m 0 0 <1m 0 - - -
pebble 942aa6e 2m 183615 142738 >5h 0 - - -
fastjson c886874 1m 1062660 129234 >5h 0 - - -

htmlelements bf3f275 2m 52673 52673 128m 12 13m 7 7553
spring-cloud-connectors 56c6eca <1m 68488 68488 78m 0 - - -

joinmo a5ee885 <1m 1322370 169888 >5h 4 - - -
buildergenerator d9d73b3 <1m 17533 17533 23m 0 - - -

mybatis-3 809c35d 6m 275791 89482 >5h 0 - - -
antlr4 9e7b131 3m 1860 1860 24m 1 - - -

hamcrest-bean 84586d9 <1m 678946 123335 >5h 3 62m 1 29143
raml-java-parser 49aab8f <1m 23770 23770 81m 0 - - -

Table 8. Experimental results of the Genesis “CCE (TV)” search space on CCE Defects

size of the search space that the algorithm explores within
the five hour timeout, the “Search Time” column presents
the amount of time spent exploring the space, and “Vali-
dated Patches” presents the number of candidate patches that
validate (produce correct outputs for all test cases). The last
three columns present statistics for the first generated correct
patch, specifically how long it takes to generate the patch
(“Generation Time”), the rank of the first correct patch in
the sequence of validated patches (“Validated Rank”), and
the rank of the correct patch in the sequence of candidate
patches (“Space Rank”).



Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 2m 62433 62433 76m 25 <1m 1 147
caelum-stella 2d2dd9c 1m 33198 33198 47m 28 <1m 1 553
caelum-stella e73113f <1m 33592 33592 48m 28 <1m 1 528

HikariCP ce4ff92 3m 163998 79985 >5h 33 - - -
nutz 80e85d0 2m 675603 245793 >5h 0 - - -

spring-data-rest aa28aeb 7m 153943 18773 >5h 0 - - -
checkstyle 8381754 3m 592851 110058 >5h 29 12m 3 3261
checkstyle 536bc20 2m 839914 119964 >5h 49 <1m 1 26
checkstyle aaf606e 2m 681420 117819 >5h 0 - - -
checkstyle aa829d4 1m 0 0 <1m 0 - - -

jongo f46f658 1m 325561 41504 >5h 0 - - -
DataflowJavaSDK c06125d 3m 86731 78301 >5h 1 10m 1 4653

webmagic ff2f588 1m 184724 115693 >5h 0 - - -
javapoet 70b38e5 <1m 280469 136400 >5h 0 - - -

closure-compiler 9828574 4m > 106 31940 >5h 5 16m 1 14
truth 99b314e <1m 84076 84076 56m 0 - - -

error-prone 3709338 2m 665832 3350 >5h 9 2m 1 473
javaslang faf9ac2 <1m > 106 392392 >5h 18 2m 2 12242
Activiti 3d624a5 4m 462310 2142 >5h 62 3m 4 31

spring-hateoas 48749e7 <1m 25633 25633 38m 43 <1m 1 268

Table 9. Experimental results of the Genesis composite search space on NPE Defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <1m 430352 118319 >5h 4 2m 1 728

RoaringBitmap 29c6d59 4m 537740 70293 >5h 0 - - -
commons-lang 52b46e7 2m 136402 8347 >5h 0 - - -
HdrHistogram db18018 <1m 344483 134113 >5h 140 - - -
spring-hateoas 29b4334 <1m 37105 37105 41m 0 - - -

wicket b708e2b 7m 233586 102339 >5h 29 160m 12 46506
coveralls-maven-plugin 20490f6 <1m 7298 7298 6m 0 - - -

named-regexp 82bdfeb <1m 0 0 <1m 0 - - -
jgit 929862f 3m 140077 140077 193m 3 84m 1 54732

jPOS df400ac 3m 222560 222560 299m 17 26m 1 18022
httpcore dd00a9e 2m 300612 20984 >5h 166 1m 1 427
vectorz 2291d0d <1m 184636 184636 268m 32 <1m 1 2

maven-shared 77937e1 2m 0 0 <1m 0 - - -

Table 10. Experimental results of the Genesis composite search space on OOB Defects



Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <1m 239966 120217 >5h 1 169m 1 65325
jade4j 114e886 <1m 437323 87192 >5h 0 - - -

HdrHistogram 030aac1 <1m 49997 49997 166m 74 2m 7 2662
pdfbox 93c0b69 1m 208714 142352 >5h 0 - - -

tree-root fef0f36 <1m 43785 43785 39m 0 - - -
spoon 48d3126 9m 0 0 <1m 0 - - -
pebble 942aa6e 2m 255076 103554 >5h 0 - - -
fastjson c886874 1m > 106 258758 >5h 0 - - -

htmlelements bf3f275 1m 164348 144123 >5h 12 36m 7 16270
spring-cloud-connectors 56c6eca 1m 151568 151568 244m 5 - - -

joinmo a5ee885 1m 689426 158816 >5h 4 - - -
buildergenerator d9d73b3 <1m 58520 58520 84m 0 - - -

mybatis-3 809c35d 8m 1184696 136625 >5h 0 - - -
antlr4 9e7b131 3m 5917 5917 48m 1 - - -

hamcrest-bean 84586d9 <1m 1081802 148401 >5h 4 30m 2 12029
raml-java-parser 49aab8f <1m 87054 87054 162m 0 - - -

Table 11. Experimental results of the Genesis composite search space on CCE Defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
caelum-stella 2ec5459 1m 876 876 2m 4 <1m 1 5
caelum-stella 2d2dd9c <1m 606 606 3m 9 <1m 1 18
caelum-stella e73113f <1m 614 614 3m 9 <1m 1 16

HikariCP ce4ff92 3m 2021 2021 12m 1 - - -
nutz 80e85d0 2m 11937 11937 48m 9 - - -

spring-data-rest aa28aeb 7m 1349 1349 59m 0 - - -
checkstyle 8381754 3m 8126 8126 33m 5 <1m 1 41
checkstyle 536bc20 2m 8551 8551 38m 10 <1m 1 6
checkstyle aaf606e 2m 7862 7862 29m 0 - - -
checkstyle aa829d4 <1m 0 0 <1m 0 - - -

jongo f46f658 <1m 6395 6395 86m 3 - - -
DataflowJavaSDK c06125d 3m 1519 1519 7m 0 - - -

webmagic ff2f588 1m 4624 4624 15m 0 - - -
javapoet 70b38e5 <1m 3343 3343 17m 0 - - -

closure-compiler 9828574 3m 3809 3809 25m 2 1m 1 8
truth 99b314e <1m 1128 1128 1m 0 - - -

error-prone 3709338 2m 15905 117 >5h 0 - - -
javaslang faf9ac2 <1m 45225 45225 47m 0 - - -
Activiti 3d624a5 4m 6113 6113 286m 92 - - -

spring-hateoas 48749e7 <1m 357 357 1m 6 <1m 1 6

Table 12. Experimental results of PAR templates on NPE Defects



Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
Bukkit a91c4c6 <1m 543 543 1m 2 <1m 1 9

RoaringBitmap 29c6d59 4m 2054 2054 24m 0 - - -
commons-lang 52b46e7 2m 1460 1460 3m 0 - - -
HdrHistogram db18018 <1m 853 853 2m 0 - - -
spring-hateoas 29b4334 <1m 640 640 <1m 0 - - -

wicket b708e2b 8m 2917 2917 18m 3 3m 1 550
coveralls-maven-plugin 20490f6 <1m 266 266 <1m 0 - - -

named-regexp 82bdfeb <1m 0 0 <1m 0 - - -
jgit 929862f 3m 1234 1234 4m 0 - - -

jPOS df400ac 3m 3171 3171 6m 0 - - -
httpcore dd00a9e 2m 1588 1588 9m 4 2m 1 15
vectorz 2291d0d <1m 2314 2314 5m 2 <1m 1 107

maven-shared 77937e1 2m 0 0 <1m 0 - - -

Table 13. Experimental results of PAR templates on OOB Defects

Repository Revision
Init. Search Explored Search Validated First Correct Patch
Time Space Space Time Patches Generation Validated Space

Size Size Time Rank Rank
jade4j dd47397 <1m 5371 5371 25m 0 - - -
jade4j 114e886 <1m 5313 5313 27m 0 - - -

HdrHistogram 030aac1 <1m 936 936 3m 7 - - -
pdfbox 93c0b69 1m 1375 1375 5m 0 - - -

tree-root fef0f36 <1m 1722 1722 1m 0 - - -
spoon 48d3126 9m 0 0 <1m 0 - - -
pebble 942aa6e 2m 5104 5104 178m 0 - - -
fastjson c886874 1m 35079 35079 131m 0 - - -

htmlelements bf3f275 1m 3609 3609 9m 0 - - -
spring-cloud-connectors 56c6eca <1m 3258 3258 5m 0 - - -

joinmo a5ee885 <1m 15045 15045 33m 0 - - -
buildergenerator d9d73b3 <1m 750 750 2m 0 - - -

mybatis-3 809c35d 7m 28248 28248 119m 0 - - -
antlr4 9e7b131 3m 446 446 2m 0 - - -

hamcrest-bean 84586d9 <1m 25912 25912 69m 0 - - -
raml-java-parser 49aab8f <1m 1003 1003 3m 0 - - -

Table 14. Experimental results of PAR templates on CCE Defects


