
Utilizing Parallelism in Smart Contracts on Decentralized
Blockchains by Taming Application-Inherent Conflicts

Péter Garamvölgyi
peter.garamvolgyi@confluxnetwork.org

Shanghai Tree-Graph Blockchain

Research Institute

Shanghai, China

Yuxi Liu∗

yuxi.liu@duke.edu

Duke University

Durham, North Carolina, USA

Dong Zhou
dongz@mail.tsinghua.edu.cn

Tsinghua University

Beijing, China

Shanghai Qi Zhi Institute

Shanghai, China

Fan Long
fanl@cs.toronto.edu

University of Toronto

Toronto, Canada

Shanghai Tree-Graph Blockchain

Research Institute

Shanghai, China

Ming Wu
ming.wu@confluxnetwork.org

Shanghai Tree-Graph Blockchain

Research Institute

Shanghai, China

ABSTRACT

Traditional public blockchain systems typically had very limited

transaction throughput because of the bottleneck of the consensus

protocol itself. With recent advances in consensus technology, the

performance limit has been greatly lifted, typically to thousands

of transactions per second. With this, transaction execution has

become a new performance bottleneck. Exploiting parallelism in

transaction execution is a clear and direct way to address this and

to further increase transaction throughput. Although some recent

literature introduced concurrency control mechanisms to execute

smart contract transactions in parallel, the reported speedup that

they can achieve is far from ideal. The main reason is that the

proposed parallel execution mechanisms cannot effectively deal

with the conflicts inherent in many blockchain applications.

In this work, we thoroughly study the historical transaction exe-

cution traces in Ethereum. We observe that application-inherent

conflicts are the major factors that limit the exploitable parallelism

during execution. We propose to use partitioned counters and spe-

cial commutative instructions to break up the application conflict

chains in order to maximize the potential speedup. When we eval-

uated the maximum parallel speedup achievable, these techniques

doubled this limit to an 18x overall speedup compared to serial

execution, thus approaching the optimum. We also propose OCC-

DA, an optimistic concurrency control scheduler with deterministic

aborts, which makes it possible to use OCC scheduling in public

blockchain settings.

∗Work done while employed at Shanghai Qi Zhi Institute.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510086

CCS CONCEPTS

• Computing methodologies → Parallel algorithms; Concur-

rent computing methodologies; • Software and its engineer-

ing→ Software performance.

KEYWORDS

blockchain, distributed ledgers, smart contracts, parallel execution,

optimistic concurrency, deterministic concurrency

ACM Reference Format:

Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu. 2022.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by

Taming Application-Inherent Conflicts. In 44th International Conference on

Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510086

1 INTRODUCTION

The technical challenge of scaling permissionless blockchains has

been a hot research topic for the last few years. With various scal-

ing solutions, be it Ethereum 2.0’s sharding [24] or Conflux’s Tree-

Graph ledger structure [19], the consensus mechanism ceases to be

the performance bottleneck. While disk I/O, network bandwidth,

and transaction execution are all possible sources of contention,

transaction execution is arguably the most challenging one to ad-

dress.

Distributed ledgers that follow the account model originally

introduced by Ethereum are designed to reach consensus on a

sequence of transactions, then process them serially. As a result,

current protocols and their implementations are unable to make use

of multiple threads on multi-core processors during this execution

step. Given the dependencies between transactions through their

accesses to a shared data structure called the state tree, the first

challenge is to understand how much speedup we can potentially

achieve by executing them in parallel. Then, the second challenge

is to design a parallel scheduler with sufficient determinism so that

nodes can reach consensus.

2315

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

To understand the degree of parallelism that can be utilized

in existing transaction workloads, this paper empirically studied

a period of historical Ethereum transactions. Taking state access

traces (perfect information), transaction gas costs, and the degree

of parallelism of computing resources (e.g., 32 threads) as inputs,

we constructed an optimal schedule for each block, then compared

its execution time to that of serial execution. Our major findings

include:

(1) The overall speedup achievable is limited at about 4x com-

pared to serial execution.While there are many blocks whose

execution scales with the number of threads, a large portion

of blocks performs significantly worse. These results are

consistent with previous works [23, 25].

(2) Most blocks are bottlenecked on a single chain of depen-

dent transactions that need to be executed serially and thus

dominate the overall execution time.

(3) A manual inspection of the bottleneck transactions shows

that most of them conflict on a single counter or array. From

the application’s perspective, most bottleneck transactions

can be classified into one of three categories: token distribu-

tion, collectibles, and decentralized finance.

The empirical study results suggest that, instead of optimizing

scheduler implementations, our primary focus should be on elimi-

nating these common sources of contention in smart contracts. In

this paper, we present three independent techniques for eliminating

the aforementioned bottlenecks. Orthogonal to these techniques,

we also present a novel scheduling framework called optimistic

concurrency control with deterministic aborts (OCC-DA). Parallel

schedulers that follow this framework can comply with the strin-

gent determinism requirements of distributed consensus.

The first, simplest approach to eliminating bottlenecks is to use

multiple sender addresses. By manually dividing a set of transac-

tions from a single sender to multiple disjoint sets of transactions,

many common bottleneck patterns can be eliminated.

The second approach is to use partitioned counters, similar to

sloppy counters, originally introduced by Boyd-Wickizer et al. [5]

for the Linux kernel. In this approach, we maintain several sub-

counters, the sum of which constitutes the value of the original

counter. Writes are routed to and operate on different sub-counters

based on some attribute, e.g., the sender’s address. This way, parti-

tioned counters reduce the probability that any two writing trans-

actions will conflict.

The third approach to addressing bottlenecks is to bypass avoid-

able conflicts arising from commutative updates on the virtual

machine level. Two transactions that both increment a counter but

do not use its original value are semantically commutative. How-

ever, under the current Ethereum Virtual Machine semantics such

increments are translated into a read (SLOAD) and a write (SSTORE)

instruction which will lead to read-write conflicts. We propose a

new instruction called CADD (commutative add). Two transactions

that only have CADD operations but no other reads and writes on

a given state entry are not considered conflicting. Increments are

applied during transaction commit serially.

Our evaluations suggest that these approaches can raise the

amount of speedup achievable to 18x or more, making it approach

the optimal case where all transaction dependencies are ignored.

We also note that the non-determinism that is characteristic of

parallel execution might prevent blockchain nodes from reaching

consensus. A set of incentives for good behavior (i.e., following the

protocol) and dis-incentives for bad behavior (i.e., attacking or mis-

using the protocol) is an essential part of permissionless blockchains.

Ethereum and similar systems offer no incentive to write smart

contracts or pack blocks in a way that improves transaction par-

allelizability. The number of conflicts and/or transaction aborts is

a metric of parallelizability that the incentive layer could use to

assign financial rewards and penalties. However, under traditional

approaches like optimistic concurrency control (OCC) [17], even if

we enforce a deterministic commit order, the actual execution on

different nodes might still diverge. This would lead to differences

in this metric on different nodes and thus it would prevent nodes

from reaching consensus.

To address this issue, we introduce an optimistic scheduler with

deterministic transaction aborts. To our knowledge, this algorithm

is the first of its kind, mostly because distributed ledgers have

more stringent determinism requirements than most other domains.

Based on our evaluation, this approach allows us to introduce in-

centives for parallelizability in exchange for a performance impact

that is, on average, acceptable.

In summary, the major contributions of this paper are recogniz-

ing that certain common application-inherent transaction conflicts

lead to bottlenecks under parallel execution, providing a set of ef-

fective techniques to deal with these, and offering a deterministic

scheduling algorithm that makes it possible to incentivize better

parallelism.

2 BACKGROUND AND MOTIVATION

Bitcoin [20] introduced blockchains with the goal of supporting

cryptocurrency payment transactions without relying on any cen-

tral authority. Such a public blockchain is a distributed ledger

maintained by a peer-to-peer network in a trustless and permis-

sionless way. The core piece of this technology is its consensus

protocol, Nakamoto consensus, that probabilistically guarantees the

irreversibility of transactions in decentralized public settings, even

under adversarial conditions. The ledger is composed of a chain

of blocks, each of which contains a sequence of transactions, and

replicated among all the participant nodes. Each block is generated

by a miner through some Proof-of-Work mechanism, chained at the

tail of the valid chain in the miner’s view, and broadcast to all the

other validator nodes through a peer-to-peer gossip network. Due

to the latency of block propagation in the network, multiple miners

may generate blocks concurrently without seeing the others, and

hence may introduce forks into the ledger. The Nakamoto consen-

sus employs the longest chain rule to let all the honest nodes agree

on the valid chain and execute the transactions according to the

order of the blocks in the chain and the order of the transactions

in each block. The miner of each block on the valid chain gets a

certain amount of bitcoin as a reward from the system. The security

guarantee is achieved when forks are rare and the ledger basically

forms a single chain. In order to avoid forks, the Bitcoin protocol

dictates a very low block generation rate in the entire network,

which seriously limits its throughput. Specifically, Bitcoin can only

achieve a throughput of 7 transactions per second (tps).

2316

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Ethereum extends Bitcoin with support for a Turing-complete

programming framework, and the Solidity programming language,

which allows developers to implement complex decentralized ap-

plications. This makes it possible to apply blockchain in industries

like financial systems, supply chains, and health care [7, 8, 15]. In

Ethereum, the state resulting from transaction execution is main-

tained in the form of a Merkle tree. Ethereum adopts an account

model in its state. There are two types of accounts: user accounts

and smart contract accounts. A user account is associated with its

ether balance informationwhile each smart contract account further

has an associated executable code and its own storage represented

as a collection of key-value pairs maintained in the Merkle tree.

Each transaction occurs between a sender account and a recipient

account. The majority of transactions are one of two kinds: either

a value transfer, which is a purely monetary transfer of ether from

sender to recipient, or a contract call, where the sender account

triggers execution of the code associated with the recipient account.

During its execution, a contract call transaction can call functions

of other smart contracts. To ensure that transaction execution ter-

minates, each computational step incurs a cost denominated in gas,

paid by the transaction sender. The sender specifies a maximum

amount of gas it is willing to pay (gas limit), and if the charge ex-

ceeds this value, the computation is terminated and rolled back, and

the sender’s gas is not refunded. The smart contract code consists

of a sequence of bytecode instructions that can be interpreted and

executed by the Ethereum Virtual Machine (EVM) to manipulate the

state of the Merkle tree by updating the values of the corresponding

keys. Every bytecode instruction consumes a certain amount of gas.

Smart contracts developed using Solidity are compiled into such

bytecode sequence before they are published into the blockchain.

Like Bitcoin, Ethereum also employs Nakamoto consensus, al-

though with some different system parameters, e.g., block size,

block generation rate, etc. It improves the transaction throughput

to about 30 tps but the consensus still remains the major perfor-

mance bottleneck. In this situation, it makes sense that the EVM is

designed as a single-thread engine without the need to introduce

parallelism into the transaction execution.

To overcome the throughput bottleneck of Nakamoto consen-

sus, many new and more advanced consensus protocols have been

proposed in recent years [3, 12, 13, 18, 19, 22, 27, 28, 32]. These proto-

cols explore alternative structures to organize blocks, e.g., DAG-like

structure, together with some novel deterministic block ordering

schemes to allow faster global block generation rate without com-

promising the decentralization and security of the network, and

hence the consensus mechanism ceases to be the system bottleneck.

For example, both Conflux [19] and OHIE [32] are able to process

simple payment transactions with a throughput of more than 5000

tps, several orders of magnitudes faster than the original Nakamoto

consensus. Further research work like Shrec [14] also studies and

develops a new transaction relay protocol that can more effectively

utilize the network bandwidth to prevent it from becoming the new

system bottleneck under high transaction throughput scenarios.

These techniques shift the throughput bottleneck of blockchain

systems to the transaction and smart contract execution, therefore,

introduce the pressing need for new technologies that can exploit

the parallelism and increase the efficiency of transaction execution.

Some recent research works [2, 4, 9, 10, 21, 23, 25, 33] have ex-

plored the designs of a parallel smart contract virtual machine by

integrating various mechanisms of concurrency control. However,

according to the reported results, the speedup that can be achieved

by these proposed solutions is far from linear when applied to the

real Ethereum workload. We observed that this is mainly because

of the lack of inherent parallelism in the real-world workload itself.

For example, by investigating the historical Ethereum workload,

we found that many critical paths of a series of transactions that

have to be executed sequentially are caused by the use of shared

global counters. We believe that the essential way to further im-

prove significantly the inherent parallelism of the real workload

is to introduce a better programming paradigm that can allow the

developers to express parallelism more easily while keeping the

original semantics. In addition, in the decentralized environment,

driving users to adopt a new paradigm is not that straightforward,

as it may incur extra costs, from either the engineering or the

economics considerations. Therefore, some new design of incen-

tive mechanisms is required to make the paradigm applicable to

real-world applications.

3 EMPIRICAL STUDY

What speedup should we expect when we execute blockchain trans-

actions in parallel? To answer this question, we designed an empir-

ical study using a dataset of historical Ethereum transactions.

3.1 Methodology

We empirically studied the amount of parallelism present in a real-

world dataset using historical Ethereum transactions. To this day,

Ethereum remains the backbone of the decentralized application

ecosystem. As such, this workload represents the most common

smart contract interaction scenarios, and the findings can be gener-

alized to many other systems. Our experiment mainly focuses on

the period between Jan-01-2018 and May-28-2018 (858, 236 blocks
in total), see Sections 3.3 and 7 for a more detailed justification of

the dataset used.

The subject of this experiment is smart contract storage conflicts,

i.e., cases where two transactions within the same block access the

same entry in the state tree, and at least one of these accesses is

a write. To obtain these results, we ran an OpenEthereum node

(formerly Parity) modified so that it tracks and stores all contract

storage accesses. We stored these traces for blocks #1 to #5692235

in a local database. In this experiment, other kinds of conflicting

accesses (e.g., conflicts on the account balance) are not considered.

Given that the execution time of transactions is unknown and

might vary from node to node, we used the transaction gas cost,

obtained from the transaction receipt, as an approximation of this.

This follows the practice of a number of related works [23, 25].

Given the transaction dependencies derived from their state ac-

cess traces and the gas costs of the transactions, we constructed a

dependency graph for each block. Then, simulating non-preemptive

execution on 2, 4, 8, 16, and 32 threads, we constructed an optimal

schedule for each block, i.e., a schedule that ensures that no transac-

tion needs to abort while also maximizing thread utilization. Under

this execution model, the overall execution cost of this schedule

puts an upper bound on the potential speedup that we can achieve;

2317

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

any other schedule might either need to abort and re-execute con-

flicting transactions, or delay execution through locking. Apart

from the overall execution cost (as approximated through the over-

all gas cost), we also inspected the heaviest path in the transaction

dependency graph.

3.2 Results and Findings

Execution Bottlenecks. The experiment shed some light on the

limits of speedupwe can expect to achievewhen executing Ethereum

transactions in parallel. We found that the overall speedup on the

observed period was only 4x compared to the serial execution, an

underwhelming result considering that we had 8, 16, or even more

threads available. A closer look at the per-block results shows that

in fact, many blocks have much higher speedups, but a significant

portion of blocks perform poorly (see Figure 1).

Figure 1: Distribution of parallel speedup bounds

When comparing the execution cost of a block to the execution

cost of the heaviest path in its dependency graph, we found that

these two often coincide. This means that the overall execution is

bottlenecked on the execution of the heaviest path. When we look

at single blocks, this heaviest path is often just a single transaction:

When, for example, a block has many simple payment transac-

tions and one expensive smart contract call that executes hundreds

of token transfers, then this latter transaction will dominate the

execution time.

Under our non-preemptive scheduler model and the inherently

serial execution model of the EVM, there is no easy way to handle

such single-transaction bottlenecks. Our focus, instead, is finding

effective ways to handle bottleneck chains of two or more transac-

tions. To focus on these, we re-ran our experiment with batches of

consecutive blocks as the unit of execution, instead of just a single

block. The idea is that, given thousands of transactions, the relative

weight of a single transaction will be much smaller. The same exper-

iment, executed on batches of 30 blocks, shows an overall speedup

of 9.46x compared to serial execution. In this case, we observed the

same result: Batches are often bottlenecked on a single chain of

tens or sometimes hundreds of dependent transactions.

We further examined the impact of these bottleneck transaction

chains by re-running the experiment, while ignoring conflicts aris-

ing from these smart contracts. The result is an overall speedup of

23.8x compared to serial execution. These results show that bottle-

neck transactions not only have a crucial impact on the parallelism

of our dataset, but also that by breaking up these dependency chains,

we can potentially achieve significantly higher speedups.

Classification of Smart Contract Conflicts. To gain a better under-

standing of smart contract bottlenecks, we collected the primary

bottleneck transaction chains for each 30-block batch, and collected

the batches that have a speedup bound of 10x or less (3242 in total).

Then, we selected a random sample of 200 batches and analyzed

them manually. Table 1 shows selected examples from this sample.

In terms of application types, we identified three broad cate-

gories: ERC20 tokens (token distribution, airdrops) accounted for

60% of the bottlenecks in our sample, Decentralized Finance (DeFi)

applicationsmade up 29%,while games and collectibles (non-fungible

tokens, NFTs [11]) were the cause in 10% of the cases.

In most cases, ERC20 tokens lead to conflicts when there are

several token transfers over multiple transactions that distribute

tokens from the same sender address. Transactions might also have

other dependencies, for instance, the total supply is updated every

time new tokens are minted. While ERC20 token distributions are

heterogeneous in their implementation (e.g., they use various inter-

faces like transfer, multiTransfer, batchTransfer, multisend,

aidrop), these all result in similar conflict patterns.

In DeFi applications like IDEX and Bancor, a common source of

conflict is the fee account whose token balance gets updated for

every trade. In the case of IDEX, the majority of trades involve ETH,

so they all increment the ETH balance of the IDEX fee account.

Examples for games and collectibles (NFTs) include CryptoKit-

ties, Etheremon, and IdleEth. These often involve some globally

shared counters, like the number of kitties in the case of CryptoKit-

ties. Maintaining an array of game items is also common. When a

game involves payments and rewards, the fee recipient and reward

sender account’s balance might also lead to storage conflicts.

In terms of the source of conflicts, we found that in 194 of 200

batches (97%) the root cause is one or more counters that get incre-

mented (or decremented) by different transactions. In our sample,

the other common source of conflicts, arrays, only accounted for

about 2% of the cases.

Bottleneck Code Examples. As an example for counter conflicts

in token distributions, let us discuss the example in Listing 1. When

calling transfer, the sender’s balance (balances[msg.sender])

is debited, while the recipient’s balance is credited. The sender’s

balance corresponds to one specific storage location in the state

tree. The debit operation will compile to a load (SLOAD), an add

(ADD), and a store (SSTORE) operation, among others. When two

transactions trigger this function from the same sender address

concurrently, this will result in a conflict.

1 function transfer(address _to , uint256 _val) /* ... */ {

2 balances[msg.sender] -= _val; // <<<

3 balances[_to] += _val;

4 // ...

5 }

Listing 1: Solidity counters (source: ConsenSys EIP20.sol)

2318

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Examples for bottleneck root causes from our 200-batch random sample

block batch contract contract type method(s) conflict type conflict source

5536219-5536248 Storj ERC20 transfer (STORJ) counter same sender account
5559949-5559978 Free BOB Tokens ERC20 airdrop (BOBx) counter totalSupply
5497669-5497698 IDEX DeFi trade, adminWithdraw counter ETH fee account balance
5493409-5493438 Bancor DeFi quickConvert counter Bancor (BNT) fee recipient
5562289-5562318 CryptoKitties: Core games/NFT breedWithAuto counter pregnantKitties++
5562409-5562438 Mythereum Card games/NFT mintSpecificCards array cards.push(card)

Let us look at another example, this time for arrays and col-

lectibles (Listing 2). In the popular CryptoKitties Ethereum game,

each new collectible is stored in an array. The push operation on

Solidity arrays will modify two storage entries: First, it will store

the new item at a location derived from the array’s length, and

second, it will increment its length. Two concurrent transactions

will both modify the array length and as such, they will conflict.

1 function _createKitty(/* ... */) /* ... */ {

2 uint256 newKittenId = kitties.push(_kitty) - 1; // <<<

3 // ...

4 }

Listing 2: Solidity arrays (source: CryptoKitties)

3.3 Generalizability of the Observations

Our evaluations are based on a relatively narrow period of the

Ethereum transaction history. This is because acquiring the en-

tire transaction dataset and generating storage access traces is

extremely resource-consuming, both in terms of storage and time.

We believe the chosen period is representative of today’s Ethereum

workload and so our findings are generalizable. The application

patterns we observed (DeFi, NFT, token distributions) are even

more dominant today. Contract developers have no incentive to

address common storage bottlenecks. In fact, just by a cursory

glance, we can spot storage conflicts in many recent popular ap-

plications: Uniswap exchanges that involve the same token will

always conflict on the counters that represent token reserves (con-

tract UniswapV2Pair). Similarly, OpenSea trades will transfer to-

kens to the same protocolFeeRecipient. This suggests that the

conflicts we identified are even more common today.

4 AVOIDING APPLICATION INHERENT
CONFLICTS

As we have seen in Section 3, a large portion of storage conflicts

is associated with storage slots that belong to either counters or

arrays. By counter here we mean a variable that one can use to

track a quantity by incrementing or decrementing it, regardless of

its current value. Arrays in Solidity are a simple data structure that

stores a sequence of elements, along with the number of elements.

In theory, a transaction dependency chain could involve multiple

conflicting storage slots. For instance, the chain #a <– #b <– #c

could mean that #a and #b conflict on a counter, while #b and #c

conflict on an unrelated array. In practice, however, this is rarely

the case. Most transactions in a conflict chain will execute similar

operations and will conflict on the same storage entry or entries. In

this case, dependencies are transitive, i.e., #c will conflict with #a.

To alleviate the impact of these transaction bottleneck chains, we

need to break them up into multiple shorter chains by eliminating

dependencies between subsets of the transactions involved (see

Figure 2). We propose three techniques to achieve this. As arrays

only account for a small fraction of storage bottlenecks (Section

3.2), we will focus on counters in this section.

Technique 1: Conflict-Aware Token Distribution. In our eval-

uations, we saw that token distributions (token sales, airdrops) are

by far the most common sources of bottleneck conflicts. In the

majority of cases, the source of conflict is the storage entry that

stores the sender account’s current balance.

The simplest way to address these common bottlenecks is to use

multiple sender addresses. By distributing the initial funds (where

applicable) to a set of sender accounts instead of a single account,

and using different sender addresses for consecutive transactions,

we can divide the set of bottleneck transactions into disjoint sets of

conflicting transactions, each less likely to form a bottleneck.

Of course, the feasibility of this approach depends on the specific

implementation of the token. Some tokens have other dependencies:

for instance, the total supply of tokens might also be incremented

each time new tokens are minted. In the presence of such depen-

dencies, we need a more sophisticated and general approach.

Figure 2: Breaking up a conflict chain into multiple disjoint

conflict chains. On the top of the figure, a long conflict chain

requires transactions #1-#2-#3-#7-#8-#9 to be scheduled seri-

ally on the same thread, dominating the overall execution

time. By breaking up this chain into two (#1-#3-#7-#8 and

#2-#9), each resulting chain will still need to be executed se-

rially, but the two chains can be executed in parallel to each

other. This allows us to achieve a much higher speedup.

2319

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

Technique 2: Partitioned Counters. Using a technique similar

to sloppy counters widely used in the Linux kernel [5], we propose

a way to route multiple writes on the same counter to multiple

distinct storage entries. As writes to different storage entries do

not conflict, this technique can drastically reduce the conflict rate.

The main idea of partitioned counters is shown in Listing 3. Here

we have a single contract that represents a counter instance. The

value of the counter is actually maintained on 3 separate storage

entries called sub-counters. Each time a transaction modifies the

counter’s value, we assign a sub-counter based on the transaction’s

sender address. As addresses are derived using cryptographic hash-

ing, this can be viewed as a pseudorandom sub-counter assignment.

When reading the value of the counter, all sub-counters are accessed

and their values are summed.

1 contract PartitionedCounter { // LEN = 3

2 int256[LEN] public cnt;

3

4 function add(uint32 n) internal {

5 uint8 slot = uint8(tx.origin) % LEN;

6 cnt[slot] += n;

7 }

8

9 function get() internal view returns (int256 sum) {

10 for (uint8 i = 0; i < LEN; ++i) { sum += cnt[i]; }

11 }

12 }

Listing 3: Partitioned counters implemented in Solidity

Partitioned counters have several advantages. First, a given trans-

action’s writes will all operate on a single storage entry, even if it

increments the counter multiple times, as the sender address does

not change throughout the transaction’s execution. Second, two

transactions from two distinct sender addresses that both incre-

ment the counter have a much-reduced chance of operating on

the same sub-counter and thus conflicts are often avoided. Third,

the counter can be adjusted based on the use case, e.g., for coun-

ters used frequently one could use more sub-counters, and one

could use different criteria for routing transactions to different

sub-counters. Our example routes transactions based on the sender

address (tx.origin) as this addresses common token conflicts.

Partitioned counters have two main drawbacks. First, while we

only need to access a single storage entry for writing the counter,

reading it will touch all sub-counters. As a result, any transaction

that reads the counter will conflict with all writing transactions.

As such, this technique is suitable for write-heavy counters. Fortu-

nately, many of the counters we analyzed are never read through

transactions. Second, partitioned counters can be significantly more

expensive than built-in integers, especially when it comes to read-

ing the counter. This drawback is offset by the potential increase in

parallel speedup that partitioned counters offer. Moreover, many

counters are rarely or never read in a transaction context.

Technique 3: Commutative EVM Instructions. We have dis-

cussed two approaches. One operates on the application level, i.e., it

addresses conflicts by introducing specific ways to interact with the

application. The other operates on the smart contract level, by offer-

ing tools to contract developers to avoid conflicts. A third approach

is to tackle conflicts on the virtual machine level by extending the

protocol by new instructions that have better conflict tolerance.

When the Ethereum Virtual Machine (EVM) executes an incre-

ment operation, it first loads the storage entry’s current value into

memory (SLOAD), then modifies this value (ADD), and finally it stores

the end result back into the storage entry (SSTORE). This behav-

ior originates from the Solidity compiler. As discussed before, two

transactions incrementing the same counter will both read and

write the same storage entry, and so they will conflict.

For counter increments, the current value is only used for calcu-

lating the new value, and otherwise it is irrelevant. Put in another

way, unlike other read-write conflicts, increments are commutative.

Two transactions that increment the same counter, but do not use

its value otherwise, could be executed in any order. However, under

the current semantics of the EVM, such transactions will conflict.

We introduce special semantics for executing increments in a

way that does not result in conflicts. Rather than compiling in-

crements into SSLOAD and SSTORE instructions, they instead get

compiled into a single CADD instruction that stands for commutative

add. This instruction takes a storage location and a value as its

parameters. When the VM encounters a CADD instruction, it does

not eagerly execute the addition, but instead, it records this opera-

tion in an in-memory temporary storage. If the VM encounters an

SSTORE operation, it then erases the pending CADD instructions on

the same storage location as they have been overwritten. If the VM

encounters an SLOAD operation, it then first executes all pending

CADD operations on the same storage location, then uses the result

for this SLOAD.

After the transaction has been executed, the scheduler proceeds

to check for conflicts. Concurrent storage reads and writes to the

same storage location constitute conflicts. If, however, two transac-

tions only have CADD operations on a storage location, but no other

reads, then they are not considered conflicting. In this case, these

CADD operations are executed serially during the commit phase.

Introducing a CADD instruction for signaling commutative oper-

ations to the VM allows us to avoid a major class of transaction

conflicts that originate from operations on a single counter.

5 OCCWITH DETERMINISTIC ABORTS

5.1 Incentives in Parallel Scheduling

Permissionless blockchains have no central authority that could

enforce protocol compliance. Instead, protocol designers introduce

incentives that encourage good behavior (creating blocks, avoiding

storage bloat) and penalize bad behavior (attacks). The efficiency of

parallel schedulers depends on various factors, some of which are

under the users’ control. Therefore, parallel execution must also

come with a set of incentives that maximize its effectiveness.

A detailed design of such a system of incentives is beyond the

scope of this paper. We observe, however, that any incentive system

must be able to deal with spam or Denial of Service attacks that

target mispriced operations and resources in the system, as has

happened several times on Ethereum [6]. Parallel execution based

on OCC will inevitably lead to some transaction aborts and re-

executions. If there is a way for users to intentionally trigger aborts

without any penalty, then that opens up the door to a serious

DoS vulnerability of the scheduler. Our goal, then, is to define an

execution framework that would allow schedulers to deal with this

issue by deterministically pricing transaction re-executions.

2320

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: Classic OCC: Transactions

are committed right after execution,

regardless of their order in the block.

This results in different commit orders

(#1-#2-#3-#4 and #3-#2-#1-#4) and end

states might diverge.

Figure 4: OCC with det. commit order:

After execution, commit is delayed un-

til the previous transaction in the block

has committed. The commit/abort de-

cision for a transaction might diverge

on different nodes (#3).

Figure 5: OCC-DA: Transactions can

only see a version of the state decided

prior to execution, even if a more re-

cent version is available. Each execu-

tion of a transaction will either commit

or abort on all nodes.

5.2 Levels of Determinism

Parallel schedulers introduce a level of non-determinism into the

execution, as the precise timing of transactions might differ from

node to node. This is in direct conflict with the requirements of the

consensus mechanism, which relies on strict determinism for the

nodes to converge into a consensus state. In blockchain systems,

therefore, parallel schedulers must maintain higher levels of deter-

minism compared to traditional algorithms.We define the following

three levels of determinism in optimistic transaction execution.

(1) Classic OCC: Classic OCC [17] has no determinism guar-

antees. Generally, transactions start execution on a first-

come-first-served basis. Node-local consistency is typically

ensured by the property of serializability, which dictates that

the observable results of the parallel execution are equivalent

to those of some serial execution. However, execution of the

same transaction set on different nodes might correspond to

different serial executions and yield diverging results.

(2) OCC with deterministic commit order: Instead of dic-

tating that the parallel schedule is equivalent to any serial

schedule, it must correspond to a specific serial schedule.

This means that the final execution result on different nodes

will be equivalent, even though the actual execution might

differ. This requirement can be satisfied by committing trans-

actions strictly according to the block transaction order, or

by scheduling according to a dependency graph [2].

(3) OCC with deterministic aborts: While deterministic seri-

alization order guarantees that the observable outputs (the re-

sulting state) are the same across all nodes, the actual execu-

tion might still differ: Due to different timing of transactions,

a transaction might be committed on one node, and aborted

on another. If the protocol relies on this commit/abort deci-

sion to penalize aborts and avoid DoS attacks (see Section

5.1), this will lead to diverging states. Thus, the highest level

of determinism we aim for is when aborts themselves are

deterministic: if a transaction is aborted once on one node,

it is aborted exactly once on all the other nodes as well.

OCC with deterministic commit order is a topic with considerable

research attention in deterministic database systems [1, 29–31]. On

the other hand, the stringent requirements of OCC with determinis-

tic aborts, to the best of our knowledge, have not been described

elsewhere. While imposing such restrictions on OCC schedulers

might certainly have a negative impact on the parallel speedup,

we argue it is crucial for implementing parallel schedulers under a

distributed consensus setting.

5.3 OCC-DA: OCC with Deterministic Aborts

Our executionmodel is based onOCCwith snapshot isolation. Trans-

actions are scheduled on a set of threads for execution. Executed

transactions are committed according to the block transaction order.

At the start of its execution, each transaction receives a snapshot

corresponding to the version of the storage after some transactions

preceding it have been committed. This snapshot does not change

during the execution of the transaction. The highest transaction

id whose committed writes are part of this snapshot corresponds

to the storage version of the snapshot, or, equivalently, the storage

version of the transaction to-be-scheduled.

As an example, let us assume that transaction #1 has been com-

mitted, transaction #2 is being executed on one thread, and we

are scheduling transaction #3 on another thread. In this case, #3

can see storage version #1 (i.e., the contents of storage up to and

including #1’s writes). If, during the execution of #3, #2 modifies

some storage values, these updates are not visible to #3. If, during

the commit of #3, the scheduler detects that some values read by #3

were concurrently modified by #2 and thus #3 operated on outdated

values, then #3 is aborted and scheduled for re-execution.

In distributed consensus, transaction execution is deterministic:

The same code triggered with the same inputs (its parameters and

2321

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

the current state) will produce the same outputs. From this, it is easy

to see that a transaction executed over a specific storage version

(i.e., the same state) on two different nodes will either commit on

both or abort on both.

We then define OCC-DA as follows. We assign a storage version

to each execution of each transaction prior to execution: (𝑡𝑥𝑛, 𝑖) →
𝑠𝑣𝑛,𝑖 . (𝑡𝑥𝑛, 𝑖) stands for the 𝑖’s execution of transaction #n, where
𝑖 = 0, 1, 2, Note that, depending on the scheduler implementation,
a transaction can be executed two or more times. The last execution

must commit, while all preceding executions will be aborted. For all

potential executions 𝑖 of all transactions #n in an execution unit (e.g.,
in a block), 𝑠𝑣𝑛,𝑖 is defined uniformly on all nodes, and it is defined
prior to execution so that it does not rely on non-deterministic

execution details. Then, for any (𝑡𝑥𝑛, 𝑖), transaction #n will either
abort or commit on all nodes.

Throughout the execution of (𝑡𝑥𝑛, 𝑖), the scheduler must allow
the transaction to access storage entries written by transactions up

to and including transaction 𝑠𝑣𝑛,𝑖 . The scheduler must not allow
the transaction to access storage entries written by a transaction

with an id higher than 𝑠𝑣𝑛,𝑖 , even if it is committed. If 𝑠𝑣𝑛,𝑖 has
not committed and therefore the storage version specified prior

to execution is not available when (𝑡𝑥𝑛, 𝑖) is being scheduled for
execution, the transaction cannot start execution and must wait.

5.4 Example

We have 4 transactions, labeled #1-#4. Transactions #1 and #3 have

a storage conflict: #1 writes a storage entry read by #3. Let us then

walk through scheduling these four transactions on two different

nodes with 2 threads each, under different determinism guarantees.

Figure 3 depicts an example schedule using classic OCC. This

approach has no determinism guarantees. In particular, we can see

that the commit order on node A is #1-#2-#3-#4, while it is #3-#2-

#1-#4 on node B. The diverging relative order of the two conflicting

transactions (#1-#3, #3-#1) might lead to diverging states on the

two nodes. While #1 and #3 conflict, in this example they are not

executed concurrently and therefore neither needs to be aborted.

In Figure 4, we see an example of OCC with deterministic commit

order. On node B, #3 finishes execution before #1. However, it is

is not committed until after #1 has, at which point the conflict is

detected and #3 is aborted. The final commit order on both nodes A

and B is #1-#2-#3-#4. However, due to the different relative order

of the execution of #1 and #3 on the two nodes, the first execution

of #3 commits on node A while it aborts on node B. In distributed

consensus, such non-determinism is not acceptable (Section 5.2).

Note that #4 on node B cannot read uncommitted results from

#2 or #3, even though both finish execution before #4. This kind of

snapshot isolation allows us to avoid cascading aborts. An investiga-

tion of whether allowing transactions to read uncommitted results

is beneficial is beyond the scope of this paper.

Finally, Figure 5 shows how OCC-DA works. Prior to execution,

all nodes decide that the first execution of #3 can only read the

state prior to #1’s execution (𝑠𝑣3,0 := 0), while the second execution

can see the state after #2 (𝑠𝑣3,1 := 2). (The rationale for these values

is discussed in Section 5.5.) As a result, even though #3 is scheduled

after #1 on nodeA, it is not allowed to see #1’s writes and thus it will

abort. This yields a result consistent with the other case where #3 is

executed concurrently with #1, as on node B. The second execution

will see the latest state on both nodes A and B and consequently it

will commit on both nodes.

5.5 Assigning Storage Versions

Let us make some remarks about the assignment of storage versions.

The simplest approach is to set 𝑠𝑣𝑛,0 := −1. This approach does

not rely on any information about the transaction set. While this

simple first approximation works, setting 𝑠𝑣𝑛,0 to −1 (the state prior
to transaction #0’s execution) will lead to aborts if the transaction

set contains any dependencies.

For a more sophisticated heuristic for storage version assign-

ment, we can rely on two kinds of information. First, we can use the

expected execution time of transactions to find the latest storage

version a transaction is expected to see. If, based on this estimation,

#3 will start execution after #1 but before #2, then we set 𝑠𝑣3,0 := 1.

Second, an estimation of the transaction dependency graph might

allow us to prevent aborts. For instance, if we guess that #3 is likely

to conflict with #1, then we can set 𝑠𝑣3,0 >= 1. We do not have per-

fect information about execution times or transaction dependencies.

For the former, the transaction gas limit can serve as a reasonable

first estimation. For the latter, static analysis and various heuristics

might provide us with an approximate dependency graph.

The accuracy of the storage version assignment has a direct effect

on the performance of the parallel scheduler: If we use a storage

version that is too low, then we risk introducing more aborts. If, on

the other hand, we use a storage version that is too high, then the

transaction might need to be delayed while it waits for the storage

version to become available, leading to thread under-utilization.

Finally, another aspect to consider is the overhead of the sched-

uler. Maintaining multiple storage versions might introduce a sig-

nificant storage overhead in case there are many writes. Limiting

the lowest storage version each transaction can see might help us

put a limit on this overhead.

5.6 The Algorithm

A detailed algorithm for OCC-DA is presented in Algorithm 1. This

algorithm takes a set of transactions and their dependencies as

inputs. The dependency graph can be constructed through an esti-

mation of the read-write set of each transaction. It is not necessary

for the estimation to be perfect but it needs to be deterministic and

consistent on all the blockchain nodes. The more precise it is, the

fewer unnecessary aborts we may encounter.

In the beginning, the storage version of each transaction is ini-

tialized as the maximum id of the transactions that it depends on

according to the dependency graph, or −1 if it has no dependency

(lines 2-11). The transactions are pushed into a min-heap 𝐻𝑡𝑥𝑠 in-

dexed by the storage version. There are three other min-heaps.

𝐻𝑟𝑒𝑎𝑑𝑦 maintains transactions ready to be scheduled, 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 is

exactly the thread pool for executing transactions, and 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 is

for the transactions that have already finished the execution and

wait to be committed. The global variable 𝑛𝑒𝑥𝑡 maintains the id of
the next to-be-committed transaction. Note that the algorithm de-

scribes the transaction execution mechanism used in our simulation

which results in deterministic execution completion order accord-

ing to the given gas consumption of each transaction. However, in

2322

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 1: OCC-DA

Input: Transactions𝑇 , gas𝐺𝑎𝑠 , number of threads 𝑡 , none or a
dependency graph 𝐷

1 𝐻𝑡𝑥𝑠 ← an empty minheap of (𝑠𝑣, 𝑖𝑑) ;

2 for 𝑖𝑑 ∈ [0, |𝑇 |) do

3 if 𝐷 exists then

4 𝑖𝑑𝑚𝑎𝑥 ← −1 ;

5 for edge (𝑖𝑑, 𝑖𝑑𝑝𝑟𝑒𝑣) ∈ 𝐷 do

6 //tx_𝑖𝑑 depends on tx_𝑖𝑑𝑝𝑟𝑒𝑣
7 //tx_𝑖𝑑 reads what tx_𝑖𝑑𝑝𝑟𝑒𝑣 writes

8 𝑖𝑑𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑖𝑑𝑚𝑎𝑥 , 𝑖𝑑𝑝𝑟𝑒𝑣) ;

9 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑖𝑑𝑚𝑎𝑥 , 𝑖𝑑)) ;

10 else

11 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((−1, 𝑖𝑑)) ;

12 𝐻𝑟𝑒𝑎𝑑𝑦 ← an empty minheap of (𝑖𝑑, 𝑠𝑣) ;

13 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ← an empty minheap of (𝑔𝑎𝑠, 𝑖𝑑, 𝑠𝑣) ;

14 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 ← an empty minheap of (𝑖𝑑, 𝑠𝑣) ;

15 𝑛𝑒𝑥𝑡 ← 0 ;

16 while 𝑛𝑒𝑥𝑡 < |𝑇 | do

17 //Stage 1 : Schedule

18 for (𝑠𝑣, 𝑖𝑑) ← 𝐻𝑡𝑥𝑠 .𝑝𝑜𝑝 () do
19 if 𝑠𝑣 > 𝑛𝑒𝑥𝑡 − 1 then

20 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑠𝑣, 𝑖𝑑)) ;

21 break

22 else

23 𝐻𝑟𝑒𝑎𝑑𝑦 .𝑝𝑢𝑠ℎ ((𝑖𝑑, 𝑠𝑣)) ;

24 while |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 | < 𝑝𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 and |𝐻𝑟𝑒𝑎𝑑𝑦 | > 0 do

25 (𝑖𝑑, 𝑠𝑣) ← 𝐻𝑟𝑒𝑎𝑑𝑦 .𝑝𝑜𝑝 () ;

26 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 .𝑝𝑢𝑠ℎ ((𝐺𝑎𝑠 [𝑖𝑑], 𝑖𝑑, 𝑠𝑣)) ;

27 //Stage 2 : Execution

28 if |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 | > 0 then

29 (𝑔𝑎𝑠, 𝑖𝑑, 𝑠𝑣) ← 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 .𝑝𝑜𝑝 () ;

30 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 ← (𝑖𝑑, 𝑠𝑣) ;

31 for 𝑖 ∈ [0, |𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 |) do

32 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 [𝑖] .𝑔𝑎𝑠 ← 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 [𝑖] .𝑔𝑎𝑠 − 𝑔𝑎𝑠 ;

33 //Stage 3 : Commit/Abort

34 while |𝐻𝑐𝑜𝑚𝑚𝑖𝑡 | > 0 do

35 (𝑖𝑑, 𝑠𝑣) ← 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 .𝑝𝑜𝑝 () ;

36 if 𝑖𝑑 ≠ 𝑛𝑒𝑥𝑡 then
37 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 .𝑝𝑢𝑠ℎ ((𝑖𝑑, 𝑠𝑣)) ;

38 break

39 for 𝑖𝑑𝑝𝑟𝑒𝑣 ∈ [𝑠𝑣 + 1, 𝑖𝑑 − 1] do

40 if tx_𝑖𝑑𝑝𝑟𝑒𝑣 ’s write set ∩ tx_𝑖𝑑 ’s read set ≠ ∅ then

41 get Aborted ;

42 break

43 if Aborted then

44 𝐻𝑡𝑥𝑠 .𝑝𝑢𝑠ℎ ((𝑖𝑑 − 1, 𝑖𝑑)) ;

45 else

46 //Commit successfully

47 𝑛𝑒𝑥𝑡 ← 𝑛𝑒𝑥𝑡 + 1 ;

48 return

a real system, the correctness and effectiveness of our scheduling

strategy do not rely on this execution determinism.

Lines 16-47 show the stages that transactions experience. Stage 1

is scheduling transactions into the thread pool (17-26). We consider

a transaction ready to execute when the transaction corresponding

to its storage version has been committed. Ready transactions are

pushed into the thread pool, if it has empty slots (24-26).

Stage 2 is the execution of transactions in the thread pool. We

simply choose the transaction with the minimal remaining gas,

which is exactly the top of 𝐻𝑡ℎ𝑟𝑒𝑎𝑑𝑠 , push it into 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 , and

maintain the gas accordingly.

The last stage is trying to commit the transactions one by one

in 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 (lines 33-47). Transactions in 𝐻𝑐𝑜𝑚𝑚𝑖𝑡 are maintained

in the order of id, since we always commit transactions in order

without skips. For each to-be-committed transaction, the algorithm

checkswhether it should be aborted or committed through checking

whether there exist any read-write conflicts between the current

transaction and those transactions committed since it starts to

execute (lines 39-42). If aborted, the transaction is pushed back

into 𝐻𝑡𝑥𝑠 with its new storage version set as 𝑖𝑑 − 1, otherwise, the

commit succeeds.

6 EVALUATION

6.1 Experimental Setup

The experimental evaluation of the techniques presented in this

paper builds on the empirical study discussed previously. All simu-

lations discussed here operate on the storage access traces collected

from the Ethereum transaction dataset, as outlined in Section 3.

For evaluating the proposed bottleneck-elimination techniques,

we analyzed the best-case parallel execution time using the transac-

tion dependency graph, with andwithout applying these techniques.

In this experiment, we rely on perfect knowledge of transaction

dependencies. We start by constructing a dependency graph of

transactions, where vertices (that correspond to the transactions)

are weighted by the transaction gas costs. Then, we simulate sched-

uling the transactions on a set of threads (2, 4, 8, 16, 32). In each

scheduling step, out of all transactions with no unexecuted depen-

dencies, we select the one that has the heaviest path starting from

it. The gas cost of this schedule serves as the baseline. For this

experiment, we use 10-block batches as the unit of execution, to

reduce the effect of single-transaction bottlenecks (see Section 3.2).

For evaluating the potential effect of using partitioned counters,

we prune the transaction dependencies in a pseudorandom fashion,

in a way that is consistent with this technique. For instance, for

a counter of length 3, for each dependency, we remove it with a

probability of 8/9.

For seeing the impact of deterministic scheduling, we simulated

an OCC scheduler with deterministic commit order as our baseline.

The scheduler has zero upfront information about the transaction

dependencies. When scheduling a transaction for execution, the

scheduler uses the highest committed transaction id as its storage

version. To make the transaction commit order deterministic, the

scheduler commits transactions according to their block order. For

deterministic aborts, instead of using the highest executed transac-

tion id as the transaction’s storage version, we use a storage version

defined prior to execution: We use -1 (i.e., the storage prior to the

block’s execution) as the storage version for the transaction’s first

execution, and use (𝑡𝑥_𝑖𝑑 − 1) for its second execution. We then

compare the overall gas costs of these two OCC simulations.

2323

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

Figure 6: Distribution of speedup bounds (10-block batches)

6.2 Assumptions and Limitations

Our evaluations are based on simulations using real-world data, not

on implementation in a real-world blockchain system. We chose

to simulate scheduling because currently there is no parallel EVM

available. The potential overhead of the parallel VM is not consid-

ered as it depends heavily on the actual implementation. We aim to

compare different techniques in a controlled and deterministic way

without speculating about the VM implementation. For the two

experiments, our focus is on the change in the maximum speedup

achievable and the difference between the two OCC methods. We

believe these relative measures also apply in a real-world system.

The evaluation assumes that partitioned counters can be applied

to all storage conflicts. This is a reasonable approximation based on

the results presented in Section 3.2, where we found that almost all

conflicts can be traced back to counters used in token distribution

scenarios. The information available to our simulated scheduler

(storage read/write traces) is insufficient to decide whether a storage

location corresponds to a counter; for this, one would need to rely

on the contract’s source code, which is often not publicly available.

The other two proposed techniques are not evaluated. The effect

of "Conflict-Aware Token Distribution" is equivalent to that of parti-

tioned counters. As for commutative EVM instructions, our storage

traces do not provide information about the series of instructions

executed that would be necessary to evaluate commutative opera-

tions. We expect the effect of the three techniques to be similar, as

they all remove edges from the transaction dependency graph in a

similar way. In fact, "Commutative EVM Instructions" might be more

effective: The first two techniques will still result in some conflicts,

while this third one could serialize all updates without conflict.

6.3 Evaluation Results

Overall Results. For each 10-block batch, we look at its optimal

execution cost on 32 threads (based on the transaction dependency

graph), and compare this to its serial execution cost. For the baseline

(with no modification), the average speedup over all batches is

11.93x, while the overall speedup on the whole period is 9.25x, due

to the bottlenecks discussed in Section 3. Using a counter of length

2, the average speedup becomes 21.23x, while the overall speedup

is 17.96x. The highest speedup we can hope to achieve, when we

remove all transaction dependencies, is 23.63x on average, while

the overall speedup is 20.61x in this experiment.

As for OCC-DA, over single blocks with 32 threads, the baseline

OCC scheduler has a 3.287x overall speedup (min: 0.52x, max: 32x,

Figure 7: OCC-DA performance impact

avg: 5.89x), while the deterministic scheduler results in 3.275x over-

all speedup (min: 0.52x, max: 32x, avg: 5.84x). We observed similar

results over batches of 30 blocks.

Discussion. These results show that the parallelism inherent in

the dataset (9.25x) is much lower than what the transactions would

allow for (23.63x). This is due to the fact that transactions depending

on each other need to be scheduled serially (or get aborted). By

eliminating some dependencies using techniques like partitioned

counters, we can approach this limit, achieving up to 17.96x speedup

with just a counter size of 2. Figure 6 shows overlayed histograms for

the distribution of speedup bounds for each block-batch. From this

figure, we can clearly see how partitioned counters let us converge

to the optimum, in terms of the parallel speedup achievable.

Figure 7 shows the performance degradation caused by OCC-

DA (blue), compared to OCC with det. commit order (red) on sin-

gle blocks. For this figure, blocks were ordered by their baseline

speedup (red). We can see that extending the scheduler with deter-

ministic aborts did cause performance degradation, however, the

speedups generally still do not diverge much from the baseline,

except for a few outliers. In fact, in this dataset, 92.47% of the blocks

produced exactly the same result using the two schedulers, while

only 0.22% resulted in 80% of the baseline speedup or lower.

Implications. These results suggest that partitioned counters can

have a significant impact on the highest parallel speedup that we

can achieve. Even with just a counter of length 2, when applied

to all conflicts, the parallel speedup bound doubled, approaching

the optimum. Raising the counter length, we keep approaching the

optimum. Based on these results, we believe that the techniques

proposed in this paper, when applied to some contracts responsible

for some major bottlenecks, can significantly increase the parallel

speedup that any real-world parallel scheduler can achieve.

The results about OCC-DA suggest that raising the level of deter-

minism only has a minor performance impact, decreasing the over-

all speedup from 3.287x to 3.275x. As shown in Figure 7, while there

are occasional outliers with significant performance degradation

under this scheduling mechanism, they are rare. While it is possi-

ble that a more performant scheduler, and a workload with more

parallelism, will result in a larger discrepancy between these two

numbers, based on these initial evaluations, our expectation is that

OCC-DA is suitable for implementation in real-world blockchain

protocols.

2324

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

Utilizing Parallelism in Smart Contracts on Decentralized Blockchains by Taming Application-Inherent Conflicts ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

7 THREATS TO VALIDITY

The most significant threat to the validity of our study is that trans-

action and contract interaction patterns have changed since the

observed period in 2018 and so our conclusions do not hold for more

recent periods. We believe that this is unlikely. The issues pointed

out in this paper have not been addressed, and so there has been

neither awareness nor incentive to avoid these conflict-inducing

patterns. If anything, the problem has likely become more severe,

with several new hotspot contracts emerging, many of which have

obvious storage conflicts. An example for this is Uniswap, as pointed

out in Section 3.3. Saraph et al. [25] also observes that the paral-

lelizability of blocks seems to decrease over time.

There is a chance that the gas cost of transactions does not

accurately capture their running time, which would reduce the

accuracy of our evaluations. Given that the most time-consuming

operations (namely, SLOAD and SSTORE) have very high gas costs,

large deviation seems unlikely.

In this study, we only considered storage conflicts. Other conflict

types include conflicts on an account’s balance and nonce, and

conflicts on contract creation/destruction. Balance conflicts can

be handled using partitioned counters. Nonce conflicts require

adjusting the nonce management mechanism. As contract existence

conflicts are rare, they are unlikely to have distorted our results.

8 RELEVANCE AND FUTUREWORK

Scope. Our work focuses on Ethereum but our findings and solu-

tions are applicable to other chains as well. This claim is supported

by two trends. First, many significant blockchains adopt Ethereum’s

execution logic (Ethereum Classic, BSC), while others are in the

process of adding an EVM compatibility layer (Near, Solana). Sec-

ond, different chains share common use cases (DeFi swap platforms,

NFT marketplaces), and popular Ethereum applications are often

forked and redeployed on other chains (Uniswap and PancakeSwap).

This results in similar transaction workloads on these chains. This

similarity is supported by previous research as well [23].

Feasibility. Implementing parallel execution of blockchain trans-

actions requires further research and engineering effort. We need

further research on parallel execution incentives, and the EVM

needs to be extended with a parallel scheduler. OCC-DA provides

a foundation for these by offering a parallel scheduling frame-

work suitable for distributed consensus protocols. We also need

techniques for increasing the parallelizability of the transaction

workload. The proposed bottleneck-elimination techniques address

this requirement. Of these techniques, only "Commutative EVM

Instructions" requires a protocol upgrade. Finally, further work is

required to design an optimized deterministic parallel scheduler,

building on existing techniques from traditional database systems.

9 RELATEDWORK

Parallel execution of blockchain transactions has been the focus of

considerable research attention in recent years. Perhaps the first

such work is by Sergey et al. [26], in which the authors propose

to treat smart contracts as concurrent objects to prevent common

bugs. In 2019, Saraph et al. [25] published an exploratory work to

estimate the potential benefit of executing Ethereum transactions

in parallel by simulating a 2-phase parallel-then-serial optimistic

scheduler. They observe a 2-fold speedup for the period in 2018

using 64 threads, and identify CryptoKitties as a hotspot contract.

They briefly remark on incentives and commutative operations. Rei-

jsbergen et al. [23] evaluate the potential speedup on seven public

blockchains using dependency graphs, working on the granularity

of contracts instead of storage entries. They report that up to 6x

speedup is achievable using 8 or more cores, and observe that larger

blocks are easier to parallelize. Our empirical study is inspired by

these two works, and we reinforce or expand on some of their con-

clusions. However, these works do not analyze conflicts in-depth

and so they fail to explain the poor parallel speedups they predict.

Their models also do not fulfill the determinism requirements that

would make them practical in public blockchains.

Numerous previous works have proposed to use various concur-

rency control techniques to parallelize blockchain transactions. In

the approach proposed by Anjana et al. [2], miners use optimistic

STM to execute transactions and produce a dependency graph that

validators can use to re-execute transactions. Zhang et al. [33],

instead of using a dependency graph, propose to include each trans-

action’s write set in the block, and let validators use these to detect

conflicts. Pang et al. [21] also consider the granularity of the addi-

tional information included in the block. Dickerson et al. [9] propose

to use abstract locks to detect conflicts during speculative parallel

execution. Dozier et al. [10], on the other hand, use a Pessimistic

Concurrency Control technique by locking the accounts accessed

during transaction execution. Finally, Bartoletti et al. [4] offer a

formal model of concurrent blockchain transactions. Most of the

proposed techniques are protocol-breaking, in the sense that they

modify the block structure and the execution semantics, while our

approach remains compatible with serial implementations. These

works show modest speedup on parallel miners but they do not

address the root cause of the speedup limit. An overview of this

area can be found in the survey piece by Kemmoe et al. [16].

Optimistic concurrency control [17] has been widely used in

databases and wide-area distributed systems. Deterministic OCC

was pioneered by Abadi et al. In Calvin [31], they use a determinis-

tic locking protocol to let nodes arrive on a consistent transaction

order, eliminating the need for distributed commit protocols. Their

approach is further outlined in several other papers [1, 29, 30]. Our

discussion of the determinism of blockchain transaction execution

was inspired by these works. In addition to using a predefined seri-

alization order, we introduced an even higher level of determinism,

where the effects of transactions that are normally not observable

are also deterministic, and can be used for incentive assignment.

10 CONCLUSION

With the evolution of consensus protocol technology in public

blockchain, the execution efficiency is becoming the new bottleneck

of the entire system, which drives the need of parallelizing the trans-

action execution. This work observes that the application inherent

conflicts are the fundamental obstacle to achieving ideal speedup

in existing parallelization techniques. To address this issue, the

proposed solution introduces the convenient improvement on the

smart contract programming paradigm with consideration of the

support of incentives, therefore opens the possibility of maximizing

the parallelism of transaction execution in public blockchains.

2325

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Péter Garamvölgyi, Yuxi Liu, Dong Zhou, Fan Long, and Ming Wu

REFERENCES
[1] Daniel J Abadi and Jose M Faleiro. 2018. An Overview of Deterministic Database

Systems. Commun. ACM 61, 9 (2018), 78–88.
[2] Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit

Somani. 2019. An Efficient Framework for Optimistic Concurrent Execution
of Smart Contracts. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). IEEE, 83–92.

[3] Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
2019. Prism: Deconstructing the Blockchain to Approach Physical Limits. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 585–602. https://doi.org/10.1145/3319535.3363213

[4] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. 2020. A True Con-
current Model of Smart Contracts Executions. In International Conference on
Coordination Languages and Models. Springer, 243–260.

[5] Silas Boyd-Wickizer, Austin T Clements, YandongMao, Aleksey Pesterev, M Frans
Kaashoek, Robert Tappan Morris, Nickolai Zeldovich, et al. 2010. An Analysis of
Linux Scalability to Many Cores. In OSDI, Vol. 10. 86–93.

[6] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo, Man Ho Au,
and Xiaosong Zhang. 2017. An adaptive gas cost mechanism for ethereum to
defend against under-priced dos attacks. In International conference on information
security practice and experience. Springer, 3–24.

[7] Deloitte. 2017. 5 Blockchain Technology Use Cases in Financial Services. http:
//blog.deloitte.com.ng/5-blockchain-use-cases-in-financial-services/.

[8] Deloitte. 2018. Blockchain: Opportunities for Health Care. https:
//www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-
opportunities-for-health-care.html.

[9] Thomas Dickerson, Paul Gazzillo, Maurice Herlihy, and Eric Koskinen. 2019.
Adding Concurrency to Smart Contracts. Distributed Computing (2019), 1–17.

[10] Ryan Dozier, Sam Ervolino, Zach Newsom, Faye Strawn, and Ross Wagner. [n.d.].
A Correctness Tool to Verify Concurrent Ethereum Transactions. ([n. d.]).

[11] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. 2018. EIP-721:
Non-Fungible Token Standard. https://eips.ethereum.org/EIPS/eip-721.

[12] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI. 45–59.

[13] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 51–68.

[14] Yilin Han, Chenxing Li, Peilun Li, Ming Wu, Dong Zhou, and Fan Long. 2020.
Shrec: Bandwidth-Efficient Transaction Relay in High-Throughput Blockchain
Systems. In Proceedings of the 11th ACM Symposium on Cloud Computing (Virtual
Event, USA) (SoCC ’20). Association for Computing Machinery, New York, NY,
USA, 238–252. https://doi.org/10.1145/3419111.3421283

[15] IBM. 2020. Blockchain for Supply Chain. https://www.ibm.com/blockchain/
supply-chain/.

[16] Victor Youdom Kemmoe, William Stone, Jeehyeong Kim, Daeyoung Kim, and
Junggab Son. 2020. Recent Advances in Smart Contracts: A Technical Overview
and State of the Art. IEEE Access 8 (2020), 117782–117801.

[17] Hsiang-Tsung Kung and John T Robinson. 1981. On Optimistic Methods for
Concurrency Control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213–226.

[18] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block
Chain Protocols. In International Conference on Financial Cryptography and Data
Security. Springer, 528–547.

[19] Chenxing Li, Peilun Li, Dong Zhou, Zhe Yang, Ming Wu, Guang Yang, Wei
Xu, Fan Long, and Andrew Chi-Chih Yao. 2020. A Decentralized Blockchain
with High Throughput and Fast Confirmation. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, 515–528. https://www.usenix.
org/conference/atc20/presentation/li-chenxing

[20] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Decen-
tralized Business Review (2008), 21260.

[21] Shuaifeng Pang, Xiaodong Qi, Zhao Zhang, Cheqing Jin, and Aoying Zhou. 2019.
Concurrency Protocol Aiming at High Performance of Execution and Replay for
Smart Contracts. arXiv preprint arXiv:1905.07169 (2019).

[22] Rafael Pass and Elaine Shi. 2017. Fruitchains: A Fair Blockchain. In Proceedings
of the ACM Symposium on Principles of Distributed Computing. ACM, 315–324.

[23] Daniël Reijsbergen and Tien Tuan Anh Dinh. 2020. On Exploiting Transaction
Concurrency to Speed Up Blockchains. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 1044–1054.

[24] Danny Ryan and Vitalik Buterin. 2020. EIP-2982: Serenity Phase 0 [DRAFT].
https://eips.ethereum.org/EIPS/eip-2982.

[25] Vikram Saraph and Maurice Herlihy. 2019. An Empirical Study of Speculative
Concurrency in Ethereum Smart Contracts. arXiv preprint arXiv:1901.01376
(2019).

[26] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart Con-
tracts. In International Conference on Financial Cryptography and Data Security.
Springer, 478–493.

[27] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. 2020. PHANTOM
and GHOSTDAG, A Scalable Generalization of Nakamoto Consensus. (2020).
https://eprint.iacr.org/2018/104.pdf.

[28] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure High-Rate Transaction
Processing in Bitcoin. In International Conference on Financial Cryptography and
Data Security. Springer, 507–527.

[29] Alexander Thomson and Daniel J Abadi. 2010. The Case for Determinism in
Database Systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 70–80.

[30] Alexander Thomson and Daniel J Abadi. 2011. Building Deterministic Transaction
Processing Systems without Deterministic Thread Scheduling. In Proceedings
of the 2nd Workshop on Determinism and Correctness in Parallel Programming,
Vol. 5.

[31] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Transactions for Parti-
tioned Database Systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 1–12.

[32] Haifeng Yu, Ivica Nikolic, Ruomu Hou, and Prateek Saxena. 2020. OHIE:
Blockchain ScalingMade Simple. In Proceedings of the IEEE Symposium on Security
and Privacy. IEEE.

[33] An Zhang and Kunlong Zhang. 2018. Enabling Concurrency on Smart Contracts
Using Multiversion Ordering. In Asia-Pacific Web (APWeb) and Web-Age Infor-
mation Management (WAIM) Joint International Conference on Web and Big Data.
Springer, 425–439.

2326

Authorized licensed use limited to: The University of Toronto. Downloaded on August 06,2022 at 03:52:59 UTC from IEEE Xplore. Restrictions apply.

