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ABSTRACT
We present CodeCarbonCopy (CCC), a system for transferring code
from a donor application into a recipient application. CCC starts
with functionality identified by the developer to transfer into an
insertion point (again identified by the developer) in the recipient.
CCC uses paired executions of the donor and recipient on the same
input file to obtain a translation between the data representation and
name space of the recipient and the data representation and name
space of the donor. It also implements a static analysis that identifies
and removes irrelevant functionality useful in the donor but not
in the recipient. We evaluate CCC on eight transfers between six
applications. Our results show that CCC can successfully transfer
donor functionality into recipient applications.
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1 INTRODUCTION
Software developers often transfer functionality between applica-
tions by copying code originally developed for one application (the
donor application) into another application (the recipient applica-
tion). Current practice involves manually adapting the copied code
to operate within the environment of the recipient. The software
development overhead associated with this manual adaptation can
complicate the ability of developers to rapidly and easily transfer
functionality between applications. One particularly challenging
aspect of transferring code between applications is translating the
data representation from the donor representation to the recipient
representation.
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1.1 CodeCarbonCopy (CCC)
We present CodeCarbonCopy (CCC):
Functionality Identification: The developer identifies the donor
function that implements the functionality to transfer. The code that
implements this functionality is the transferred code.
Insertion Point: The developer identifies a program point in the
recipient as the insertion point of the transferred code.
Donor and Recipient Executions: CCC executes both the donor
and the recipient on the same seed input file (CCC is designed to
support code transfer between applications that can process the
same input file format). The executions are instrumented to record
symbolic expressions for every value that the applications compute.
These expressions record the complete computation of the value as
a function of the constants and input file bytes that contribute to its
value. CCC uses the symbolic expressions to compute a mapping
from the recipient data representation to the donor data representa-
tion.
Input and Output Adapters: The transferred code accesses data
in the original donor data representation. To enable the transferred
code to execute in the recipient environment, CCC uses themapping
to automatically generate input and output data adapters. The input
data adapter reads the recipient data structures to build and populate
the donor data structures that the transferred code will access when
it executes. The output adapter writes the computed values back
from the donor data structures into the recipient data structures.

The CCC adapters work with forests of structures, where the
leaves can be arrays of primitive types such as integers or characters.
The arrays can be dynamically allocated and the sizes of the arrays
can depend on the input. The CCC data structure mappings are
based onmatched arithmetic sequences, which map data indexed by
one arithmetic sequence in the recipient to data indexed by another
arithmetic sequence in the donor. For example, CCCcanusematched
arithmetic sequences to translatedata stored in separatearrays inone
application into data stored interleaved in a single array in another
application and vice-versa (Section 3).
Irrelevant FunctionalityRemoval:CCCdeploys a static analysis
that identifies and removes irrelevant code (e.g., GUI code) that ac-
cesses irrelevant values derived from developer-identified irrelevant
parameters to the transferred code.
CodeExtractionandTransfer:CCCextracts the transferred code
from the donor into the insertion point in the recipient. To facilitate
the extraction, CCC transforms global variable references in the
transferred code into parameter references. The generated code
at the insertion point 1) executes the input adapter to build and
populate the donor data structures, 2) invokes the donor function
(which executes on the donor data structures), and 3) executes the
output adapter to write the computed values from the donor data
structures back into the recipient data structures.
Experimental Results: We evaluate CCC on eight transfers be-
tween six applications: VLC 2.0.8, MPlayer svn34540, cwebp 0.3.1,
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bmp2tiff 4.0.3, ViewNior-1.4 and mtPaint 3.40. CCC was able to suc-
cessfully transfer functionality for seven out eight transfers. The
transfers ranged in functionality from image manipulation transfor-
mations to supporting an entirelynew image format (CCCretrofitted
mtpaint with the ability to read Google’s WebP format).
1.2 Contributions
• DataRepresentation Translation: It presents a novel data rep-

resentation translation technique that automatically translates
source-level recipient naming and data representation into source-
level donor naming and data representation. The translation is
drivenby instrumentationthatcomputesapplication-independent
representations of values that the applications compute. The data
representation translation for dynamic arrays is driven by in-
ferredmatched arithmetic sequences, which implement a variety
of mappings from recipient to donor arrays.

• Code Extractor: It presents a novel code extractor that tran-
sitively identifies and extracts all code required to implement
the transferred functionality. The extractor also lifts all accessed
global variables into parameters of the transferred code.

• Irrelevant Functionality Removal: It presents a novel static
analysis that automatically identifies and removes code that im-
plements irrelevant functionality.

• Code Transfer: It shows how to leverage data representation
translation and irrelevant functionality removal to obtain an ef-
fective source-level code transfer mechanism.

2 EXAMPLE
We next present an example that illustrates how CCC automatically
transfers image rotation functionality frommtpaint, an image pro-
cessing application [4], to cwebp, an image converter for Google’s
WebP format [2].
Functionality Identification: The developer identifies the func-
tionality to transfer by specifying the donor function that implements
that functionality. Here the developer specifies the mem_sel_rot func-
tion, which rotates the image stored in the mem_clip.img[0-1] global
data structure by a direction specified by the single parameter dir:
1 int mem_sel_rot(int dir) {// Rotate clipboard 90 degrees

2 unsigned char *buf = NULL;

3 int i, j = mem_clip_w * mem_clip_h , bpp = mem_clip_bpp;

4 for (i = 0; i < NUM_CHANNELS; i++ , bpp = 1) {

5 if (! mem_clip.img[i]) continue;
6 buf = malloc(j * bpp);

7 if (!buf) break; // Not enough memory

8 mem_rotate(buf , mem_clip.img[i], mem_clip_w ,

mem_clip_h , dir , bpp);

9 free(mem_clip.img[i]);

10 mem_clip.img[i] = buf;

11 }

12 /* Don't leave mix of rotated and unrotated channels */

13 if (!buf && i) mem_free_image (&mem_clip , FREE_ALL);

14 if (!buf) return (1);

15 i = mem_clip_w;

16 mem_clip_w = mem_clip_h; // Flip geometry

17 mem_clip_h = i;

18 return (0);}

Listing 1: Donor Functionality: mem_sel_rot

The mem_sel_rot function calls the mem_rotate function (Listing 2)
once for each channel (i.e., BGR, alpha), with with bpp values of 3
(for the BGR channel) and 1 (for the alpha channel). For each call

to mem_rotate, mem_sel_rot allocates a buffer buf of size mem_clip_w
* mem_clip_h * bpp to hold the rotated data for that channel (note that
mem_clip_w, mem_clip_h, and mem_clip_bpp are macros for mem_clip.
width, mem_clip.height, and mem_clip.bpp). mem_rotate invokes GUI
code to reflect progress in the application title bar (lines 4 and 6).
This GUI code is irrelevant functionality that CCCwill eventually
delete before the transfer.
1 void mem_rotate( char *new , char *old , int old_w , int

old_h , int dir , int bpp )

2 {

3 ...

4 if (flag) progress_init(_("Rotating"), 1);

5 ...

6 if (flag) progress_end ();

7 }

Listing 2: Donor Functionality: mem_rotate

Insertion Point Identification: The developer next identifies the
insertion point in cwebp. This insertion point is located after cwebp
has decoded the PNG input file into an intermediate ARGB format
buffer and before the ARGB buffer is used to output aWebP image.
Donor and Recipient Executions: CCC executes instrumented
versions of the donor and recipient on the same input file (a PNG
file). The instrumentation dynamically tracks the flow of input bytes
through the program to obtain symbolic expressions, in terms of
constants and input bytes, for every value that the applications
compute.

When execution reaches the donor function or the recipient inser-
tion point, the instrumentation uses the debugging information in
the executable to identify the parameters, local variables, and global
variables available at that point. Startingwith thesevariables as roots,
it traverses the data structures to find source-level expressions (in
the name space of the donor or recipient) for accessible values. This
traversal generates a log file that contains a symbolic representation
of the accessible (via parameters, local variables, or global variables)
state in the donor or recipient at that point. Each entry in the log file
records a source-level expression (in the donor or recipient name
space), the value towhich the expression evaluates, and the recorded
symbolic expression for the value.

CCC turns off recipient instrumentation after execution reaches
the insertion point. During the execution of the donor function, the
instrumentation generates log file entries that record each executed
instruction and the source-level expression, concrete value, and sym-
bolic expression for every value that the instruction accesses. CCC
turns off donor instrumentationwhen the donor function completes.

In our example, the donor log file contains entries for mem_clip.
width,mem_clip.height,mem_clip.bpp, andmem_clip.img[0-1].These
variables store thewidth, height, image bits per pixel, and image data
in the donor. The recipient logfile contains entries for picture.width,
picture.height, andpicture.argb (whichholds the imagedata in the
recipient). The symbolic expression for both mem_clip.width at the
start of the donor function and picture.width at the insertion point
is ToSize(32,BvAnd(16,OffsetVar('0',26,27),Constant(16383))).
InAnd InOut State Identification:CCC uses the log file from the
execution of the donor function to identify In state (which the donor
reads but does not write), InOut state (which the donor reads be-
fore writing), and Out state (which the donor writes before reading).
CCC identifies dir and mem_clip.bpp as In state and mem_clip.width,
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mem_clip.height, and mem_clip.img[0-1] as InOut state (there is
no Out state in the example). CCC identifies mem_clip.width and
mem_clip.height as InOut state because they are flipped to imple-
ment the changes in the image geometry (Listing 1, lines 20-22).
Data Representation Translation: CCC uses the symbolic infor-
mation in the log file to drive the mapping between the In and InOut
donor state and the recipient state. For scalar variables and static
arrays, CCC uses the CodePhage rewrite algorithm ([18], Figure 7)
to map the symbolic expressions from the recipient into the name
space of the donor. This algorithm uses an SMT solver (Z3) to find
equivalent expressions that evaluate to the same value. In our ex-
ample, CCC determines that picture.width and picture.height in
cwebp (recipient) map to mem_clip.width and mem_clip.height in
mtpaint (donor). Because bpp is not computed from input file bytes,
it is not mapped.

The mapping from picture.argb to mem_clip.img[0-1] is more
complex. cwebp (the recipient) stores image data in a single data
structure in the form (B0,G0,R0,A0, B1,G1,R1,A1, B2,G2,R2,A2,...). mt-
paint (the donor), on the other hand, stores image data as channel
separatedBGR (mem_clip.img[0]) and alpha (mem_clip.img[1]) chan-
nels. In other words, mtpaint stores the image RGB channel in the
following form: (R0, G0, B0, R1, G1, B1, R2, G2, B2,...) and the alpha
channel separately: (A0, A1, A2,...).

We note that the recipient and donor data structures do not typi-
cally store data in the same format as the input file — the data arrives
at these data structures only after traveling through multiple layers
of both libraryandapplication inputprocessing code.Typical applied
transformations include endian conversions and application-level
data reorganization and reformatting. This is the case in our example.

B0  G0 R0 A0 B1 G1 R1 A1 B2 G2 R2 A2 B3 G3 R3 A3 …

R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 …

A0 A1 A2 A3 …

mtpaint BGR

cwebp ARGB

mtpaint alpha

Figure 1: Mapping From cwebp Tomtpaint Data Structures

Figure 1 presents the mapping from the cwebp to the mtpaint
data structures. CCC infers this mapping as matched arithmetic se-
quences. The first is ⟨mem_clip.img[0] : 3k,picture.argb : 4k + 2⟩,
which specifies that every fourthelementof cwebppicture.argb start-
ingatoffset2maps toevery thirdelementofmtpaintmem_clip.img[0].
Two similar matched sequences complete the RGB mapping. The
matched arithmetic sequence ⟨mem_clip.img[1] : k ,picture.argb :
4k + 3⟩ specifies the mapping for the alpha channel. Because these
data structures are dynamically allocated arrays, CCC computes
these sequences by walking the donor data structures to find corre-
sponding values in the recipient data structures.
Global Variable Lifting: In general (and in our example), donor
function may access global variables. To facilitate the insertion of
the donor into the recipient name space, CCC replaces each global
variable in the donor function with a pointer passed as a parameter
into the transferred code.CCCgenerates appropriate values for these
pointers at the insertion point before the transferred code is invoked.

1 int mem_sel_rot(int dir , image_info *mem_clip__cc_ ,

2 int* prog_stop__cc_ , GtkWidget ** progress_window__cc_ ,

3 GtkWidget ** progress_bar__cc_ ,

4 undo_data ** undo_freelist__cc_)

Listing 3: Lifting Globals

Listing 3 presents the updated mem_sel_rot interface in our ex-
ample.All globals liftedbyCCCareappendedwith the__cc_ suffix. In
Listing3prog_stop__cc_,progress_window__cc_,progress_bar__cc_,
and undo_freelist__cc_ are lifted globals accessed by GUI code
progress_init and progress_update invoked by mem_rotate.
Irrelevant FunctionalityRemoval: In some cases the transferred
code may implement irrelevant functionality. The developer can
enable CCC to remove irrelevant functionality by identifying pa-
rameters that relate to this functionality. To help the developer iden-
tify these parameters, CCC presents parameters with no transla-
tion to the name space of the recipient. In our example (Listing 3),
the developer identifies undo_freelist__cc_, progress_window__cc_,
progress_bar__cc_, and prog_stop__cc_ as irrelevant parameters.
These are parameters that were included as part of the mem_rotate
GUI update code (Listing 2).

Startingwith thedeveloper identificationof irrelevantparameters,
CCCusesan interprocedural static analysis to identifyand removeall
transferred code that accesses irrelevant values (values derived from
the irrelevant parameters). In our example, the analysis effectively
excises the GUI code that was invoked by mtpaint. The irrelevant
parameters are also removed from the mem_sel_rot interface.
CodeTransfer:Wenext present the code (the input adapter, the call
to the transferred code, and the output adapter) that CCC generates
at the insertion point in the recipient. The input adapter starts by
declaring and initializing the parameters to the transferred version
of mem_sel_rot (Listing 4). These declarations include declarations of
the original parameters and lifted global variables. These variables
are declared as local variables in the recipient and passed into the
transferred codeasparameters.Here mem_clip__cc_c is a liftedglobal
variable and __cc_dir is the original parameter to mem_sel_rot.
1 int __cc_dir = 0;

2 image_info * __cc_mem_clip;

3 image_info __cc_mem_clip_init = {0};

4 __cc_mem_clip = &__cc_mem_clip_init;

5 unsigned int k;

Listing 4: Generated Parameter Declarations

Input Adapter: The transferred version of mem_sel_rot accesses
data stored in the donor data representation. The input adapter
allocates and populates the data structures that store the data in this
representation.Specifically, the inputadapterallocatesandpopulates
the mem_clip.img[0] BGR array that mem_sel_rot will access. The
generated code uses the inferred matched arithmetic sequences to
copy in the BGR data in loops that iterate over the allocated data
structure (Listing 5).

Allocateddatastructurescan includedynamicallyallocatedarrays
whose size depends on the input. In the generated code above, CCC
derives a symbolic representation of the size of the data allocated
in the donor as a function of the constants and input bytes that
determine the size. It then translates this symbolic representation
into the recipient name space to obtain the size of the allocated
data. In this case the sizes are a function of the picture.width and
picture.height variables in the recipient (Listing 5).
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1 __cc_mem_clip ->img[0] = malloc (( picture.width * picture.

height) * 3);

2 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

3 (( unsigned char *) __cc_mem_clip ->img [0]) [3*k+(0)] =

(( unsigned char *) picture.argb)[4*k+(2)];

4 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

5 (( unsigned char *) __cc_mem_clip ->img [0]) [3*k+(1)] =

(( unsigned char *) picture.argb)[4*k+(1)];

6 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

7 (( unsigned char *) __cc_mem_clip ->img [0]) [3*k+(2)] =

(( unsigned char *) picture.argb)[4*k+(0)];

Listing 5: Allocating and Populating BGRData Structure

The next step is to allocate and populate the alpha channel data
structure. Once again, CCC uses an inferred arithmetic sequence to
generate code that populates the allocated data structure (Listing 6).
1 __cc_mem_clip ->img[1] = malloc(picture.width*picture.

height);

2 for (k = 0; 1*k < picture.width * picture.height; ++k)

3 (( unsigned char *) __cc_mem_clip ->img [1]) [1*k+(0)] =

(( unsigned char *) picture.argb)[4*k+(3)];

Listing 6: Allocating and Populating the alpha Channel

The generated code next sets the remaining scalar parameters
and invokes mem_sel_rot (Listing 7). mem_clip.width and mem_clip.

height are derived from input bytes and translate to picture.width

and picture.height in the recipient. dir and mem_clip.bpp, on the
other hand, do not depend on input bytes. CCC therefore assigns
these variables to the values (1 and 3) observed in the instrumented
execution. In some transfers these values are the appropriate values
and are untouched by the developer. In others the developer may
wish to adjust the values to properly reconfigure the transferred
functionality.
1 __cc_dir = 1;

2 __cc_mem_clip ->bpp = 3;

3 __cc_mem_clip ->width = picture.width;

4 __cc_mem_clip ->height = picture.height;

5 mem_sel_rot(__cc_dir , __cc_mem_clip);

Listing 7: Scalar Parameters and Call to mem_sel_rot

Output Adapter: The output adapter copies the mem_sel_rot out-
puts into the corresponding data structures in the recipient (List-
ing 8). Once the copy is complete, the generated code deallocates
any allocated donor data structures:
1 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

2 (( unsigned char *) picture.argb)[4*k+(2)] = ((

unsigned char *) __cc_mem_clip ->img [0]) [3*k+(0)];

3 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

4 (( unsigned char *) picture.argb)[4*k+(1)] = ((

unsigned char *) __cc_mem_clip ->img [0]) [3*k+(1)];

5 for (k = 0; 3*k < (picture.width*picture.height)*3; ++k)

6 (( unsigned char *) picture.argb)[4*k+(0)] = ((

unsigned char *) __cc_mem_clip ->img [0]) [3*k+(2)];

7 free(__cc_mem_clip ->img [0]);

8 for (k = 0; 1*k < picture.width*picture.height; ++k)

9 (( unsigned char *) picture.argb)[4*k+(3)] = ((

unsigned char *) __cc_mem_clip ->img [1]) [1*k+(0)];

10 free(__cc_mem_clip ->img [1]);

11 picture.width = __cc_mem_clip ->width;

12 picture.argb_stride = __cc_mem_clip ->width;

13 picture.height = __cc_mem_clip ->height;

Listing 8: Copying Outputs Into Recipient Data Structures

In our example all of the outputs are stored in InOut variables, so
the generated code uses the inferred mapping to copy the outputs
back out from the donor data structures into the corresponding
recipient data structures.

Other transfers (see Section 4) may write their outputs into (un-
mapped) Out parameters. In such cases CCC generates code that
allocates the Out parameters and passes them into the transferred
code, which writes its outputs into these parameters. The developer
may then insert code that appropriately integrates the outputs into
the recipient computation or find bridge functions in the donor and
recipient that enableCCC tomapand translateOut state (Section 3.2).

3 DESIGNAND IMPLEMENTATION
We next present the CCC design and implementation.
3.1 Instrumentation
We implement the CCC instrumentation using Valgrind [13]. The
instrumentation augments the execution to record, for eachValgrind
register, temp, or memory address, a symbolic expression for the
value stored in the register, temp, or memory address. The symbolic
expression records the complete computation of the value from
constants and input file bytes. The instrumentation also records,
for each pointer to a dynamically allocated block of memory, the
symbolic expression for the size of the allocated memory block.

s := ℓ:x = irrel | ℓ:x = c | ℓ:p = &y.f | ℓ:x =y ⊕ z |
ℓ:x = *p | ℓ:*p = x | ℓ:p = malloc(x ) | ℓ:x = read() |
ℓ:s ′; s ′′ | ℓ:if (x) s ′ s ′′ | ℓ:while (x) { s ′ }

s,s ′,s ′′ ∈ Statement f ∈ Field
x ,y,z,p ∈ Var c ∈ Int ℓ ∈ Label
Figure 2: The Core Programming Language

We use the core language in Figure 2 to present the instrumen-
tation algorithm. Following the Valgrind IR (as well as standard
lowered program representations), the language is based on a load-
/store model in which all computation takes place on named local
variables x ,y,z,p ∈ Var (here local variables correspond to Valgrind
registers and temps). Note that ⊕ represents an arbitrary binary
operator. We also use the core language to present the irrelevant
functionality removal algorithm (Section 3.3). The labels ℓ and state-
ment ℓ:x = irrel are used only in the static analysis in Section 3.3.

e,e ′,e ′′ ∈ Exp e := c | byte(c ) | cons(⊕,e ′,e ′′)
µ : Var ∪ Addr→ Exp ψ : Addr→ Exp

⟨µ,ψ ⟩ ℓ:x = c ⟨µ[x 7→ c],ψ ⟩
⟨µ,ψ ⟩ ℓ:p = &y. f ⟨µ,ψ ⟩
⟨µ,ψ ⟩ ℓ:x = y ⊕ z ⟨µ[x 7→ cons(⊕,µ[y],µ[z])],ψ ⟩
⟨µ,ψ ⟩ ℓ:x = *p ⟨µ[x 7→ µ[val(p)]],ψ ⟩
⟨µ,ψ ⟩ ℓ:*p = x ⟨µ[val(p) 7→ µ[x]],ψ ⟩
⟨µ,ψ ⟩ ℓ:p = malloc(x ) ⟨µ,ψ [val(p) 7→ µ[x]]⟩
⟨µ,ψ ⟩ ℓ:x = read() ⟨µ[x 7→ byte(fp)],ψ ⟩

Figure 3: The CCC Instrumentation

Figure 3 presents the instrumentation algorithm. The instrumen-
tation works with symbolic expressions e,e ′,e ′′ ∈ Exp. Each leaf
is either a constant c or byte(c ), the input file byte at offset c . The
symbolic expression constructor cons(⊕,e ′,e ′′) creates a symbolic
expression that represents e ′ ⊕ e ′′.
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The instrumentation maintains maps µ, which stores the sym-
bolic expression for each variable andmemory address, andψ , which
stores thesizesofallocatedmemoryblocks.Thenotation ⟨µ,ψ ⟩s⟨µ ′,ψ ′⟩
specifies how the instrumentation updates the twomapswhen s exe-
cutes. Consider, for example, a store statement of the form ℓ:*p = x .
The instrumentation for this statement, ⟨µ,ψ ⟩ℓ:*p = x⟨µ[val(p) 7→
µ[x]],ψ ⟩, updates µ to map the address in p (val(p)) to the symbolic
expression for the value in x (µ[x]) and leavesψ unchanged. Note
that read() reads and returns a single byte from the input file; fp
denotes the input file offset of the last read byte.

When donor execution reaches the donor function or recipient
execution reaches the insertion point, the instrumentation uses the
debugging information in the executable and the two maps µ andψ
to generate log entries that identify the source-level expression, the
value in the execution, and the symbolic expression for each piece
of reachable state. During the execution of the donor function the
instrumentation generates a log entry for each executed statement.
Each entry identifies the computation that the statement performs
as well as the source-level expressions, values, and symbolic expres-
sions of all accessed state.

3.2 Input and Output Adapter Generation
Algorithm 1 presents the top-level CCC input adapter generation al-
gorithm. Herep1, ...,pn are the parameters passed to the transferred
code. For each parameter p the algorithm emits the declaration for
p, then invokes populate(p) to allocate and populate the donor data
structure rooted at p.

1 inputAdapter(p1, ...,pn )
2 foreach p ∈ {p1, ...,pn } do
3 emit type(p) p = {0};

4 populate(p)
Algorithm 1: Input Adapter Generation Algorithm

DataStructureAllocationandPopulation:Algorithm2presents
the CCC populate(v) algorithm for allocating and populating the
donor data structure rooted atv . Herev is a source-level expression,
in the name space of the donor, that identifies the root of the tree to
allocate and populate. Ifv is a primitive C data type (int, char, ...),
a C structure, or a statically allocated array, the algorithm assumes
thatv has already been declared. The algorithm therefore emits only
the code that populatesv , either by translatingv’s symbolic expres-
sion into the recipient name space (ifv is a primitive C data type) or
by populating its elements (ifv is a structure or statically allocated
array). Ifv is a pointer to a structure, the algorithm emits code that
declares the structure, setsv to point to the declared structure, and
populates the fields of the structure.

Finally, ifv is a pointer to an array, the algorithm first translates
the allocated size of the array into the recipient name space. If v
is an Out array, the algorithm emits code that allocates an array
of the appropriate size and assigns the resulting pointer tov . The
transferred code will then write the results into the newly allocated
array.

Ifv is an In or InOut array, the algorithmfindsmatched arithmetic
sequencesm that capture the mapping from the recipient arrays to
v . Herem is a set of tuples of the form ⟨v,s,o,a,t ,p⟩, where s is the
step and o is the offset for the donor arrayv and t and p are the step

1 populate(v)
2 if (isPrimitive(v) emitv = translate(expr(v))
3 if (isStruct(v)) foreach f ∈ fields(v) do populate(v . f )
4 if (isArray(v)) foreach i ∈ [0.. size(v)−1] do populate(v[i])
5 if (isPointerToStruct(v))
6 freshu

7 emit type(*v)u = {0};v = &u;
8 foreach f in fields(*v) do populate(v->f )
9 if (isPointerToArray(v))

10 l = translate(size(v))
11 if (isOut(v)) emitv = (type(v)) malloc(l);

12 else
13 m =match(v)
14 if (m = ∅) abort
15 else if (m = {⟨v,1,0,a,1,0⟩}) emitv = a;

16 else
17 emit { unsigned int k = 0;

18 emitv = (type(v)) malloc(l);

19 foreach ⟨v,s,o,a,t ,p⟩ ∈m do
20 emit for (k = o; k*s+o < l ; k+=s )

21 emit v[k*s+o] = a[k*t+p];

22 emit }
Algorithm 2: Allocating and Populating Donor Data Struc-
tures

and offset for the recipient array a (so thatv[k ∗ s + o] = a[k ∗ t +p]
whenever 0 ≤ k ∗ s + o < l , where l is the number of elements in
v). If there is no match (i.e.,m = ∅), the algorithm aborts and the
transfer fails. If there is a direct match (i.e.,m = {⟨v,1,0,a,1,0⟩} for
some array a in the name space of the donor), the algorithm simply
setsv = a. Otherwise the algorithm translates the allocated size of
v into the name space of the recipient, emits code that allocates a
new array of the appropriate size and assigns the resulting pointer
tov , and emits the for loops that iterate over the recipient arrays to
populate the newly allocated donor array.
Constructs and Functions: The algorithm uses the following con-
structs and functions. Unless otherwise specified,v is a source-level
expression in the name space of the donor and e is an application-
independent expression over constants and input bytes.

• expr(v): the symbolic expression for thevalueofv . This expression
is a function of program constants and input bytes, is generated
by the instrumented execution of the donor, and is available in
the log file from the donor execution.

• size(v): the number of elements in the arrayv . Ifv is a statically
allocated array, size(v) is the (constant) declared size. If v is a
dynamically allocated array, size(v) is the symbolic expression
for the value passed to the call to malloc that allocated the array.
The CCC instrumentation maintains this size information for all
pointers to dynamically allocated memory blocks.

• type(v): theC type of the expressionv , available via the debugging
information in the donor executable.

• fields(v): the set of fields f in a structurev , available via the de-
bugging information in the donor executable.
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• translate(e): the CodePhage algorithm ([18], Figure 7) that trans-
lates the symbolic expression e (over constants and input bytes)
into the name space of the recipient.

• eval(e): the concrete valueof the symbolic expressione for the seed
input file from the instrumented donor and recipient executions.

• value(v): the value ofv in the donor or recipient execution, avail-
able in the log file from the instrumented donor or recipient exe-
cution. Herev is a source-level expression in either the donor or
recipient name space.

• fresh u: a new, unused C variable name u that can be used to
declare a new C structure with nameu.

• emit s: emits a string s into the input adapter with variables and
constructs from the algorithm appropriately substituted. So, for
example, ifp =__cc_dir and type(p) =int, emit type(p)p = {0};
emits the string int __cc_dir = {0}; into the input adapter.

1 Variables
2 a1, ...,an : arrays available in recipient name space
3 match(v)
4 l = eval(size(v))
5 foreach k ∈ [0..l − 1] domatched[k] = false
6 m = ∅

7 for (o = 0; o < l ; o + +) do
8 if (notmatched[s])
9 if (findmin ⟨s,p,t⟩ over 1 ≤ i ≤ n such that

10 value(v[k ∗ s + o]) = value(ai [k ∗ t + p])
11 whenever 0 ≤ k ∗ s + o < l )

12 matched[k ∗ s + o] = true for 0 ≤ k ∗ s + o < l

13 m =m ∪ {⟨v,s,o,ai ,t ,p⟩}

14 else return ∅
15 returnm

Algorithm 3: Donor and Recipient ArrayMatching

Array Matching Algorithm: Algorithm 3 presents the CCC al-
gorithm that computes the data representation mapping between
donor and recipient arrays. Given a donor array v and recipient
arrays a1, ...,an , it computes a set of matched arithmetic sequences
⟨v,s,o,a,t ,p⟩ that translate the recipient arrays into the donor ar-
ray. The algorithm traverses the unmatched elements ofv . At each
unmatched element (at offset o in v), it finds a tuple ⟨s,p,t⟩ and
array ai that implement a matched arithmetic sequence of corre-
sponding equal elements ofv and ai . These equal elements occur at
step s and offset o withinv and step t and offset p within ai so that
v[k ∗ s + o] = ai [k ∗ t + p] whenever 0 ≤ k ∗ s + o < l .

At each unmatched offset o, the algorithm searches for the dens-
est mapping into v by minimizing ⟨s,p,t⟩ over all of the possible
matching arrays ai . Here the minimum is taken with respect to the
lexicographic ordering over ⟨s,p,t⟩ (so that ⟨s1,p1,t1⟩ ≤ ⟨s2,p2,t2⟩
when s1 ≤ s2, s1 = s2 and p1 ≤ p2, or s1 = s2, p1 = p2, and t1 ≤ t2).
The algorithm accumulates all of the matched arithmetic sequences
intom and returnsm if it matches all of the elements ofv (and ∅ if it
is unable to find a successful mapping).

Note that, unlike the data structure mapping for scalars, the pre-
sented algorithm finds matching array elements by comparing the
concrete values that occur in the actual instrumented executions.
CCC also implements a version that uses the symbolic expressions.

OutputAdapterGeneration:TheCCCoutput adapter generation
algorithm emits code that is essentially the inverse of the input
adapter code — it traverses the donor data structures and applies the
inverseof the inputadapterdatastructuremappingtocopythevalues
of InOut variables, fields, and arrays back into the corresponding
recipient data structures. It also deallocates any In or InOut arrays
that the input adapter allocated.

The output adapter leaves all Out state intact. It is the resposi-
bility of the developer to write code to integrate the values stored
in Out state into the recipient computation and to deallocate any
dynamically allocated Out state.
Pointers Into the Middle of Allocated Data: As presented, the
algorithms work with pointers that always point to the start of
allocated data. We have implemented an extension for pointers that
point into themiddle of allocated data. The key is to change the range
of array elements to match (as determined by l from Algorithm 3,
line 4). Instead of using the allocated array size, CCC uses the log file
information to find the range of elements accessed via the pointer
during theexecutionof thedonor function.ThemodifiedAlgorithm3
then checks that all elements in the accessed range match.
Out State Translations:We have also implemented an extension
that uses pairs of bridge functions, one from each application, to
translate Out state from the donor into the recipient data representa-
tion. Both bridge functions create internal data structures (these are
Out state) that store common data derived from the seed input file.
CCC,working as a general data representation translation algorithm,
generates an output adapter that translates from the donor into the
recipient data representation. The developer can then direct CCC
to generate code that applies this output adapter to the Out data
structures of the transferred code. This extension can be particularly
useful when the primary data representation translation challenge
involves Out state.

3.3 Irrelevant Functionality Removal
Language: Figure 2 (Section 3.1) presents the core language that
we use to present our static analysis for removing irrelevant func-
tionality. The language models a standard lowered intermediate
program representation in which 1) nested expressions are lowered
into sequences of statements of the form ℓ:x =y ⊕ z (wherex ,y, and
z are non-aliased local variables or temporaries and ⊕ is an arbitrary
binary operator) and 2) all memory accesses are lowered into loads
(ℓ: x = *p) and stores (ℓ: *p = x ). Each statement contains a unique
label ℓ ∈ Label.

One deviation from standard program representations is the state-
ment ℓ:x = irrel, which sets the variable x to an irrelevant value.
Such statements identify variables that contain irrelevant values. At
the start of the analysis all irrelevant donor function parameters (as
identified by the developer) are set to irrel.
Goal andAnnotations: The goal of our analysis is to find all state-
ments that may manipulate irrelevant values. The analysis works
with a transfer function F (s,⟨σ , I ⟩) = ⟨σ ′, I ′⟩. F takes a statement s ,
an abstract environment σ , and a set of labels I , which correspond
to the set of statements that may manipulate irrelevant values. F
produces a pair ⟨σ ′, I ′⟩, where σ ′ and I ′ are the new abstract envi-
ronment and new set of labels after executing s .
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Statement s Transfer Function F (s, ⟨σ , I ⟩)

ℓ : x=irrel ⟨σ [x 7→ {irrel}] , I ∪ {ℓ }⟩
ℓ : x=c , ℓ : x=read() ⟨σ [x 7→ {rel} , I ⟩

ℓ : p=malloc(x) ⟨σ [p 7→ {rel}] , I ⟩ if irrel < σ (x )
⟨σ [p 7→ {rel, irrel}] , I ∪ {ℓ }⟩ otherwise

ℓ : x=y ⊕ z ⟨σ [x 7→ {rel}] , I ⟩ if irrel < σ (y ) ∪ σ (z )
⟨σ [x 7→ {rel, irrel}] , I ∪ {ℓ }⟩ otherwise

ℓ : p=&y.f ⟨σ [p 7→
(
∪⟨ℓ,entry⟩∈σ (y ) {⟨ℓ, f ⟩}

)
] , I ⟩ if irrel < σ (y )

⟨σ [p 7→
(
∪⟨ℓ,entry⟩∈σ (y ) {⟨ℓ, f ⟩}

)
∪ {irrel}] , I ∪ {ℓ }⟩ otherwise

ℓ : x=*p
⟨σ [x 7→ ∪⟨ℓ,f ⟩∈σ (p )σ (⟨ℓ, f ⟩)] , I ⟩ if irrel <

((∪⟨ℓ,f ⟩∈σ (p )σ (⟨ℓ, f ⟩)) ∪ σ (p ))
⟨σ [x 7→ (∪⟨ℓ,f ⟩∈σ (p )σ (⟨ℓ, f ⟩)) ∪ {irrel}] , I ∪ {ℓ }⟩ otherwise

ℓ : *p=x

⟨σ [⟨ℓ, f ⟩ 7→ σ (x )] , I ⟩
if Loc ∩ σ (p ) = {⟨ℓ, f ⟩} and
irrel < σ (p ) ∪ σ (x )

⟨σ [⟨ℓ, f ⟩ 7→ σ (x )] , I ∪ {ℓ }⟩
else if Loc ∩ σ (p ) = {⟨ℓ, f ⟩} and
irrel ∈ σ (p ) ∪ σ (x )

⟨σ [⟨ℓi , fi ⟩ 7→ (σ (⟨ℓi , fi ⟩) ∪ σ (x ))]⟨ℓi ,fi ⟩∈σ (p ) , I ⟩ else if irrel < σ (p ) ∪ σ (x )
⟨σ [⟨ℓi , fi ⟩ 7→ (σ (⟨ℓi , fi ⟩) ∪ σ (x ))]⟨ℓi ,fi ⟩∈σ (p ) , I ∪ {ℓ }⟩ otherwise

s′;s′′ F (s′′, F (s′, ⟨σ , I ⟩))

ℓ : if (x ) s′ s′′
⟨Merge(F1 (s′, ⟨σ , I ⟩), F1 (s′′, ⟨σ , I ⟩)) , F2 (s′, ⟨σ , I ⟩) ∪ F2 (s′′, ⟨σ , I ⟩)⟩ if irrel < σ (x )
⟨Merge(F1 (s′, ⟨σ , I ⟩), F1 (s′′, ⟨σ , I ⟩)) , F2 (s′, ⟨σ , I ⟩) ∪ F2 (s′′, ⟨σ , I ⟩) ∪ {ℓ }⟩ if irrel ∈ σ (x )

ℓ : while (x ){s′}
⟨Merge(σfix, σ ) , Ifix ∪ I ⟩ if irrel < σ (x )
⟨Merge(σfix, σ ) , Ifix ∪ I ∪ {ℓ }⟩ otherwise
where ⟨σfix, Ifix⟩ = F (s′, ⟨Merge(σfix, σ ), Ifix ∪ I ⟩)

Merge(σ , σ ′) = σ [x 7→ σ (x ) ∪ σ ′(x )]x∈Var[⟨ℓ, f ⟩ 7→ σ (⟨ℓ, f ⟩) ∪ σ ′(⟨ℓ, f ⟩)]⟨ℓ,f ⟩∈Loc

Figure 4: Transfer Function for Irrelevant Code Removal. F1 and F2 are the first and second canonical projection functions of F .

F ∈ TransFunc = Statement × AbstEnv × IrrelStmts→
AbstEnv × IrrelStmts

I ∈ IrrelStmts = 𝒫 (Label)
σ ∈ AbstEnv = (Var ∪ Loc) → AbstValue
v ∈ AbstValue = 𝒫 (Loc ∪ {rel, irrel})

⟨ℓ, f ⟩ ∈ Loc = Label × Field

Figure 5: Analysis Annotations

1 F (ℓ:y = call func x1, . . . , xk , ⟨σ , I ⟩)
2 where definition(func) = func(a1, a2, . . . , ak ) { s; return b }

3 σ ′ = ∅
4 foreach ⟨ℓ, f ⟩ ∈ Loc do σ ′ = σ ′[⟨ℓ, f ⟩ 7→ σ (⟨ℓ, f ⟩)]
5 foreach i ∈ {1, 2, . . . , k } do σ ′ = σ ′[ai 7→ σ (xi )]
6 ⟨σ ′′, I ′⟩ = F (s, ⟨σ ′, I ⟩)
7 σ ′′′ = σ
8 foreach ⟨ℓ, f ⟩ ∈ Loc do σ ′′′ = σ ′′′[⟨ℓ, f ⟩ 7→ σ ′′(⟨ℓ, f ⟩)]
9 σ ′′′ = σ ′′′[y 7→ σ ′′(b )]
10 return ⟨σ ′′′, I ′⟩

Algorithm 4: Function Call Analysis Algorithm.

An abstract environment σ maps each of the variables and mem-
ory locations to an abstract value. An abstract valuev is a set that
contains abstract memory locations rel and/or irrel. Intuitively,
v denotes the set of possible values that a variable or a memory
location may take during the execution. The value may correspond
to an address of a memory location, a relevant value (rel), or an
irrelevant value (irrel).

Our analysis is field sensitive. Each abstract memory location is a
pair ⟨ℓ, f ⟩, where ℓ is the label of the malloc statement that allocates
the memory block that contains the location and f is the field of the
memory location inside the allocated memory block. Each memory

block contains a special field entry ∈ Fieldwhich corresponds to
the memory location in a memory block with no explicit field access.

Given a program s , CCC computes F (s,⟨σ0,∅⟩) = ⟨σ , I ⟩, where σ0
is an initial environment thatmaps each of the variables andmemory
locations to an empty set. CCC then prunes away all statements
whose labels are inside I . Note that if the label of an if statement or
a while statement is inside I , CCC will recursively prune away all
sub-statements of the statement as well.
Transfer Function: Figures 4 and 5 present the transfer function F
and analysis annotations. The first column presents the statement s ,
the second column presents ⟨σ ′, I ′⟩ = F (s,⟨σ , I ⟩). Hereσ [x 7→ v] de-
notes the abstract environment obtained via changing the mapping
of x tov in σ .
Interprocedural Analysis:Algorithm 4 presents the pseudo code
for computing the transfer function F for a call statement ℓ: y =
call func x1, . . . ,xk , where x1, . . . ,xk are the supplied parameters
for the call and func is the called function with formal parameters
a1, . . . ,ak . The body statement of func is s and the return statement
in func returns the local variable b.

At lines 4-5 in Figure 4, the analysis transforms the initial abstract
environment σ into the name space of called function func, and
stores the transformed environment as σ ′. Specifically, the analysis
maps each formal argument ai to the abstract value of the supplied
argument xi at line 5.

The analysis then performs the intraprocedural analysis on the
body statement s with the transformed environmentσ ′ and obtains a
result pair ⟨σ ′′, I ′⟩ at line 6. The analysis computes the final abstract
environmentσ ′′′ by incorporating the effect of thememory accesses
and the return value of func at lines 7-9. The analysis finally returns
⟨σ ′′′, I ′⟩ as the result.
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Functionality Removal:Given the set of irrelevant statements I ′
produced by the interprocedular analysis, CCC applies a removal
pass that deletes all statements s with labels ℓ ∈ I ′.

3.4 Code Extractor
The CCC code extractor identifies all code required to compile and
execute the donor function and emits a single source code file that
contains all of this code. This file can then be compiled and linked
into the recipient. To preserve the source-level structure and pro-
mote readability, CCC transfers all code verbatim (i.e., it does not
preprocess the transferred code).

Startingwith the identified function to transfer, the code extractor
(transitively) traces out compile- and run-time dependences to build
a compile-time dependence graph. The nodes in this graph are code
elements (type declarations, function declarations, and potentially
invoked functions). The edges model compile-time dependences —
there is an edge between two code elements if the compiler must
process the first code element before the second for the second to
compile successfully.Theextractor topologically sorts thisgraphand,
with the exception of system code elements from standard include
files or system libraries, emits the code elements in the topological
sort order. Instead of emitting code elements from standard include
files, it emits code that includes the include file. It expects code from
system libraries to be linked into the final executable.

To facilitate themapping of program state between the donor and
the recipient, the code extractor lifts all accessed global variables
into the signature of the transferred code. The extractor walks the
call graph to transitively identify and lift global variable accesses
and update function declarations, definitions, and call sites.

4 EXPERIMENTALRESULTS
We evaluate CCC on eight transfers between six applications: VLC
2.0.8 [6], MPlayer svn34540 [3], cwebp 0.3.1 [2], bmp2tiff 4.0.3 [1],
ViewNior-1.4 [5] and mtPaint 3.40 [4]. We were familiar with VLC,
cwebp, bmp2tiff (as part our prior work on automatic integer over-
flow discovery (DIODE [16]) and horizontal code transfer of security
checks (CodePhage [18]). These applicationsworkwith standard im-
age and video input files but provide distinct functionality. This fact,
in combinationwith our previous success automatically transferring
security checks [18], inspired the goal of automatically transferring
useful functionality across applications that process the same input
file. We identified MPlayer as a useful source of donor functionality
as part of the research presented in this paper.

Figure 6 summarizes the results. There is a row in the table for
each transfer. The first two columns identify the recipient and donor.
The next column describes the transferred functionality, while the
fourth column (Successful?) identifies if the transfer was successful.
Here we count a transfer as successful if our manual analysis of the
generated transfer indicates that the transfer will produce correct
results for all input files (modulo any required developer integration
code). The fifth column (CCC Time) specifies the wall clock time
spent by CCC in automatically 1) finding a mapping between the
donor and recipient data structures, 2) extracting the transferred
code into a C source file, and 3) generating the adapters and inserting
the donor code into the recipient.

The sixth column (Developer Code) specifies the code that the
developer writes as part of the transfer. The In subcolumn identifies
the number of unmapped In parameters (in Section 2, mem_clip.bpp
and dir). CCC sets such parameters to the values observed during
the instrumented execution, so there is no need to involve the devel-
oper to obtain working code, but in some cases the developer may
wish to reconfigure the transferred functionality by changing these
parameters. The Out subcolumn identifies the number of unmapped
Out parameters. To incorporate the result into the computation, the
developer assigns a recipient variable to each unmapped Out pa-
rameter (all such assignments comprise a single line of code). For
all of the transfers except cwebp into mtpaint, which requires some
additional scaffolding code (see Section 4), these lines of code are the
only lines of code that the developer needs to write.

The seventh column (Transferred Lines of Code) presents the
total lines of code transferred from the donor into the recipient,
both the core lines of code (the lines of code in the top-level donor
function) and the total lines of code — these include invoked code
and declarations required for the transferred code to compile.
MPlayer→VLC:MPlayer andVLC are popular open-sourcemedia
players written in C. These applications can post-process videos
with filters so as to alter the video’s (usually aesthetic) appearance.

We next discuss the rotate, mirror, EQ and Hue video filter func-
tionality transfers from MPlayer into the Filter module in VLC.
First, the developer identifies the donor function (rotate, mirror,
process_C in the vf_eq.c file, or process_C in the vf_hue.c file). Sec-
ond, the developer identifies the insertion point in the Filter func-
tion in VLC.

The CCC transfer times vary between 16minutes, 28 seconds and
3 minutes, 3 seconds (Figure 6). All transfers involve two unmapped
In parameters and a few (automatically generated) lines of code
in addition to the core functionality. For the rotate transfer, the
additional line of code is an include of stddef.h; the two unmapped
In parameters are bpp (the bytes per pixel) and dir (the direction
to rotate the frame). For the mirror transfer, the additional code
comprises a #define and an include of stddef.h; the two unmapped
In parameters are bpp and fmt (the pixel format of the video frame).
For the EQ transfer, the additional line of code is an include of stddef.
h; the unmapped In parameters are brightness and contrast, which
control the brightness and contrast of the pixel transform. For the
hue transfer, the additional code includes three files; the unmapped
In parameters are hue and sat, which control the color shift and
intensity of the pixel transform.

In each case, the developer writes code to assign Out parameters
from the donor to appropriate recipient variables. For example, in
the vf_hue transfer, the developer writes code that assigns dst->p
[1].p_pixels and dst->p[2].p_pixels to the out array parameters
udst and vdst. For all transfers, the transferred functionality does
not require any lifted globals and there is a direct match between
corresponding data structures (RGB to RGB). Both MPlayer and
VLC build data structures with pointers into the middle of allocated
blocks. The transfers therefore require the extension (Section 3.2)
that enables CCC to generate such transfers.
mtPaint rotate image→ cwebp:We describe this transfer in Sec-
tion 2. The majority of the additional transferred code is code (tran-
sitively) invoked by the top-level rotate image function.
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Developer Code Transferred Lines of Code
Recipient Donor Functionality Successful? CCC Time In Out Core Total
VLC MPlayer Rotate video filter ✓ 6m12s 2 3 32 33
VLC MPlayer Horizontal mirror video filter ✓ 6m20s 2 3 51 55
VLC MPlayer Horizontal EQ video filter ✓ 16m28s 2 1 20 21
VLC MPlayer Hue/Saturation video filter ✓ 3m37 2 2 24 27
cwebp mtPaint Rotate image ✓ 4m24s 2 0 21 147
bmp2tiff mtPaint Rotate image — — — — — —
ViewNior mtPaint Horizontal Flip ✓ 23m9s 0 0 38 39
mtpaint cwebp WebP format Reader ✓ 4m35s 4 2 38 9965

Figure 6: Summary of CCC experimental results

mtPaint rotate image→ bmp2tiff:We next discuss CCC’s inabil-
ity to transfer the mem_flip_h function frommtPaint into bmp2tiff.
The bmp2tiff data structures store the image pixels in reverse row-
majororder—the last rowofpixels appearsfirst in thearray, followed
by the next row, and so on, with the first row of pixels appearing at
the end of the array. mtPaint, on the other hand, stores the pixels in
row-major order — the first row of pixels appears first in the array,
then the second row, with the last row of pixels appearing last in the
array. CCC does not support the data structure translation required
to implement this transfer.
mtPaint horizontal flip→ ViewNior:We next discuss the hori-
zontal flip functionality transfer frommtPaint (an open source paint-
ing program) to the ViewNior image viewer. The developer first
identifies the mem_flip_h function in mtpaint, which takes an image
buffer and flips it horizontally. The developer then identifies an in-
sertion point in the ViewNior gdk_pixbuf_animation_new_from_file
function after the generic image loader.

In addition to the core functionality, CCC transfers an extra in-
clude of stddef.h. The transferred functionality does not require any
lifted globals and there is a direct match between the recipient and
donor data representations. There is a single unmapped In parameter
(bpp).
cwebp→mtpaint: cwebp is the Google conversion program for
theWebP image format. mtpaint is a popular image manipulation
application. Mtpaint supports several formats (PNG, GIF, etc.) but
notWebP.

The developer first identifies a bridge function from each appli-
cation, specifically read_png fromwebp and load_png frommtpaint.
Both functions read a PNG file and decode the file into the internal
data representation of their respective application (used for all file
formats). CCC executes cwebp and mtpaint on the same PNG file
to create an output adapter that translates the cwebp internal rep-
resentation (a BGR and alpha channel-separated format) into the
mtpaint internal representation (an ARGB format). The translation
is the inverse of the translation presented in Section 2).

The developer next identifies the ReadWebP function in cwebp,
which reads in aWebP image and decodes it into the cwebp internal
data representation. The developer also adds the necessary scaffold-
ing to support loading a new format in mtpaint. Specifically, the
developer adds an enum type for the WebP format, registers the
WebP format with the file format handlers, and adds the magic num-
ber checking code for detecting image formats. Finally, the developer
adds a load_webp function to handle theWebP image loading and cre-
ates an insertion point inside load_webp. In summary, the developer

added 44 lines as scaffolding for the new format. It took the authors,
who were familiar with the mtpaint code, 1 hour to add this code.

The developer finally identifies the cwebp ReadWebP function as
the transferred code and directs CCC to apply the output adapter
from the bridge functions as part of the transfer.

CCC successfully completes the cwebp transfer in 4 minutes and
9 seconds. The core functionality consists of 38 lines of code. The
total transfer consists of 9965 lines of code. This transfer includes
all of the transitively invoked code that reads in theWebP file and
decodes it into the cwebp internal data structures. This is the largest
transfer — implementing a new file format involves significantly
more code than the image processing functionality from the other
transfers. The transferred functionality does not require any lifted
globals.
PublicAvailability: Source code for all of the transfers evaluated in
this paper is publicly available at https://people.csail.mit.edu/rinard/
paper/fse17.codecarboncopy.zip.

5 THREATS TOVALIDITY
Weworked with all but one of our benchmark applications in previ-
ous research projects [16, 18]. All of these applications read standard
image or video input files but provide different functionality. These
characteristics inspired the goal of functionality transfer with a data
structure mapping driven by data derived from a common input file
and stored in application data structures. Our focus on arrays (as
opposed to other data structures) was motivated by the fact that
these applications store much of their relevant data in arrays. We
anticipate that other applications may present different code trans-
fer challenges that inspire the development of new code transfer
techniques.

Our current data structure mapping algorithm supports linear
gather/scatter relationships across multiple arrays. It does not sup-
portotherdatastructuressuchashashtables, lists, trees,ordeveloper-
defined recursive data structures more generally. It is an open ques-
tion whether the approach will generalize to handle functionality
transfers that involve data structures other than arrays (or evenmore
complex array mappings).

CCC requires both applications to 1) read the same input file, 2)
store the relevant input data in accessible application data structures,
and 3) execute both the donor function and the recipient insertion
point.We anticipate that many desirable functionality transfers may
involve applications that work with different inputs. Supporting
such transfers will require new techniques that can operate without
shared data to drive the mapping. CCC also derives the mapping

https://people.csail.mit.edu/rinard/paper/fse17.codecarboncopy.zip
https://people.csail.mit.edu/rinard/paper/fse17.codecarboncopy.zip
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froma single execution. If other executions (either ondifferent inputs
or nondeterministic reexecutions on the same input) store data in
different data structures or data formats, the transferred code may
access the wrong data and produce a wrong result.

CCC uses a static analysis to identify and transfer all code that
the transferred code may execute on any execution, including code
not executed by the input file used to drive the data transfer. While
this strategy promotes transfer of the full functionality, including
functionality not exercised by the input file used to drive the data
mapping, it is also possible that unexecuted but transferred code
may not execute properly in the new recipient context.

Our approach requires the developer to 1) identify the transferred
functionality in the source code of the donor, 2) identify the insertion
point in the source code of the recipient, and 3) identify irrelevant
data to drive the irrelevant functionality removal. The approach
therefore requires at least some familiarity with both the donor and
recipient source code bases.

Our current instrumentation does not attempt to bound the size
of the derived symbolic expressions. Long-running applicationsmay
therefore build up very large symbolic expressions over time. Our
current implementation mitigates this issue by turning off donor
instrumentation at the endof the donor function and recipient instru-
mentation when execution reaches the insertion point. If either of
these points occurs deep in the execution, large symbolic expression
sizes may limit scalability.

6 RELATEDWORK
We discuss related work in code transfer and program repair.
µScalpel: µScalpel [8] uses test-driven genetic programming to
adapt code for transfer from a donor to a recipient program. Like
CCC, µScalpel requires the developer to identify the code to transfer
and the code insertion point. µScalpel uses genetic programming to
search for a variable mapping from the name space of the donor to
the parameters of the inserted code that enables the inserted code
to produce correct outputs for test input files. It also uses genetic
programming to automatically find and prune undesirable or irrele-
vant functionality (CCC, in contrast, uses a static analysis). µScalpel
therefore requires a full test suite with correct input/output pairs
that specify the desired behavior of the augmented recipient.

CCC, in contrast, uses a single instrumented execution to directly
compute amapping between the recipient and donor data structures.
It therefore requires a single input, no outputs, and does not perform
multiple validation runs. This usage scenario reduces developer
overhead and worked well for the transfers evaluated in this paper.
But (as expected for a dynamic technique that does not explore all
executions on all inputs) it has the potential to produce transfers that
may not work for executions or inputs not used to drive the transfer.

Unlike CCC, µScalpel does not support data representation trans-
lations. Severalofour transfers requirenontrivialdata representation
translations and thus lie inherently outside the reach of µScalpel.
CodePhage: CodePhage [18] implements a fully automated tech-
nique that finds and transfers checks between applications to elimi-
nate security vulnerabilities. CodePhage is driven by an input that
exposes the vulnerability and leverages that input to automatically
identify the transferred check and the insertion point in the recipient.
CCC incorporates a more sophisticated data structure translation

algorithm that can automatically infermatched arithmetic sequences
that translate data stored in dynamically allocated arrays whose size
depends on the input. CCC can therefore successfully transfer com-
plete computations over dynamically allocated arrays (as opposed
to checks as in CodePhage).
ProgramRepair: Several program repair projects leverage infor-
mation available within the same or other programs to repair defects
in a given program [7, 9–12, 14, 15, 17, 19]. Prophet learns character-
istics of correct code from human patches, obtaining these patches
from the revision history repositories of multiple applications [12].
It uses these patches to learn a universal probabilistic model of patch
correctness, which it then applies to identify and prioritize correct
patches that repair defects in newprograms.History driven program
repair ranks candidate patches based on howwell they match past
correct patches [9]. Genesis learns patch transforms from previous
successful patches, then uses the inferred transforms to generate
new patches [10, 11].

FixMeUpautomaticallycomputesan interproceduralaccess-control
template (ACT) and uses the ACT to find and correct faulty access-
control logic [19]. FixMeUp then presents the transformed program
to the developer, who decides whether to accept the proposed cor-
rection. FixMeUp works only within a single program, not across
multiple programs.

Researchers have developed a technique that is provided with
input validation and sanitization PHP functions and uses these func-
tions to obtain new PHP validation and sanitization functions [7].
The technique is based on semantic analysis and synthesis of string
operations. Its scope is therefore limited to string validation and
sanitization functions with input/output relationships that it can
accurately analyze and represent with finite state automata.

ClearView is an automatic patch generation system that observes
normal executions to learn invariants that characterize safe behav-
ior [14]. It deploys monitors that detect crashes, illegal control trans-
fers and out of bounds write defects. In response, it selects a nearby
invariant that the input that triggered the defect violates, and gener-
ates patches that take a repair action to enforce the invariant.

CCC differs from program repair that it does not aspire to correct
defects — it instead transfers new functionality from a donor appli-
cation into a recipient application to enhance the functionality that
the recipient application implements.

7 CONCLUSION
Code copying and sharing between applications is a productive
softwaredevelopment strategy that is currentlyhinderedby theneed
for manual reworking to adapt the donor code into its new context
in the recipient. To support this process, CCC implements automatic
data representation and naming translation between recipient and
donor and a static analysis that automatically identifies and removes
code that is irrelevant in the recipient. This functionality enables
CCC to eliminate much of the manual rework otherwise required to
successfully transfer code at the source level between applications.
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