
Model Management For Automotive Software
Michalis Famelis, Marsha Chechik, Robert Baillargeon*, Rick Salay, Qiyu Zhu

University of Toronto, *Panasonic Corporation

Automotive Software and
 Model Driven Development

• Importance of software rapidly increasing in the automotive industry. But
 Automotive Software faces unique issues.

• Fragile balance between demands for high quality and safety and issues
 arising from rapid, industrialized mass production.

• MDD is an approach that enables high-level design and code generation
 for rapidly changing embedded software systems in cars, while allowing
 for more formal approaches to evaluating and ensuring software
 quality.

• General Motors has used the approach with particular characteristics such
 as highly stylized models and custom code generators.

Model Management Tool Framework

 • Based on the idea of Model Interconnection Diagrams.

 • Support for different types of models and relationships

 between them.

 • Support for consistency checking and operations on Model

 Interconnection Diagrams.

Eclipse-based tool framework for model management.

 • Support for types of models with their own GMF editors.

 • OCL constrained sub-types (light types) of models.

 • Relations as models using concrete syntax in Ecore.

 • Support for validation of models.

We are currently formalizing the identified relations and implementing support for validating them in MMTF for

couples of models that are so created.

In the future we aim to:

• Formalize the relations using the QVT framework.

• Identify and formalize other interesting relations...

• ...with additional focus on reasoning for Software Product Lines in the context of Automotive Software.

Status and Future Work

Inheritance Relationship

Our Goal
Create support for MDD tasks such as:

• Model building and development

• Validation and consistency checking

• Traceability and model evolution

Our Approach
• Make the relations between models

 first class items.

• Formalize and check them automatically.

Model Relationships
We are exploring some types of relations in particular:

 • Inheritance relationship

 • Representing model evolution

 • Other

We aim to provide semantic definitions, as well as create OCL

constraints to represent them in our framework.

Evolution Relationship

context i:InheritanceLink inv:
 i.genericLinkEnd.isAbstract and
 not i.particularLinkEnd.isAbstract

context e:EvolutionLink inv:
 e.newVersionEnd.versionNumber >
 e.oldVersionEnd.versionNumber

Poster available online at http://www.cs.toronto.edu/~famelis/ria09.pdf

