
The Space Complexity
of Unbounded
Timestamps !

Faith Ellen, University of Toronto!
Panagiota Fatourou, University of Ioannina!

Eric Ruppert, York University!

Timestamp System!

a set of timestamps U!

two operations:!
•  GetTS() returns a timestamp!
•  Compare(t,t’) returns a Boolean value,
" indicating which of the timestamps!
" t or t’ was generated first!

Timestamps have been used to:!

•  solve mutual exclusion!
•  solve randomized consensus!
•  construct multi-writer registers " "
" from single-writer registers!
•  construct snapshot objects and ""
" other data structures!

A very simple timestamp system !

counter!
C!

0!
GetTS():!

 t ← Fetch&Increment(C) !

 return (t)!

Compare(t,t’):!

 return (t < t’)!
U = N!

Timestamps can grow without bound
during an execution.!
This is necessary to describe the
ordering among an unbounded number of
non-concurrent events.!
For some applications, Compare is
restricted to recent events, so old
timestamps can be reused.!

Bounded Timestamp Systems: !
Dolev and Shavit [1997],
Dwork and Waarts [1999],
Dwork, Herlihy, Plotkin, and Waarts [1999],
Haldar and Vitanyi [2002],
Israeli and Li [1993],
Israeli and Pinhasov [1992] !

A timestamp system is:!
unbounded, if U is infinite, and!
bounded, if U is finite.!

Theorem [Israeli and Li] Any bounded
timestamp system shared by n processes
must use Ω(n) bits per timestamp.!

Unbounded timestamps can have length
logarithmic in the number of GetTS
operations performed.!

If the number GetTS operations is
reasonable, for example less than 264,
then timestamps can fit in a single
memory word.!

A simple timestamp system
using single-writer registers!

[Lamport, 1974] !

R1 ! R2 ! R3 ! R4 ! Rn !

GetTS() by process pi:!
 t ← 1 + max{R1,...,Rn}!
 Ri ← write(t)!
 return (t)!

U = N !

Compare(t,t’): !
 return (t < t’)!

0! 0!0! 0! 0! 0!

If some GetTS operation returns t and !
another GetTS, which starts after it!
is complete, returns t’,!
then Compare(t,t’) = 1.!

To ensure that timestamps obtained by !
different GetTS operations in an execution!
are different, append the log n bit!
process ID to the result. !

A simple timestamp system
using single-writer registers!
[Dwork and Waarts, 1999] !

R1 ! R2 ! R3 ! R4 ! Rn !

GetTS() by process pi:!
 Ri ← write(1+Ri)!
 t ← read(R1,...,Rn)!
 return (t)!

U = Nn !0! 0!0! 0! 0! 0!

each timestamp!
is a vector of n !
integers !

Compare(t,t’) can be done!

•  lexicographically or!

•  component-wise!

t < t’ if there exists k such that!
ti = ti’ for i < k and tk < tk’!

t < t’ if ti ≤ ti’ for i = 1,..,k and
there exists k such that tk < tk’!

Both these timestamp implementations use
n shared registers.!

Is it possible to implement an unbounded
timestamp system using fewer registers?!

Model!

n deterministic asynchronous
processes, p1 ,…, pn!

r shared registers, R1 ,…, Rr!

obstruction free: each GetTS and
Compare operation must complete if it
is given sufficiently many consecutive
steps.!

Theorem Every single-writer timestamp
implementation for n processes uses at
least n-1 registers.!

Proof Let αi be the solo execution of
GetTS by process pi starting from C0.
To obtain a contradiction, suppose
there exist pi and pj that perform no
writes during αi and αj, respectively.!

C0 !
αi!

αi!

αj!

C’!

αj!

GetTS in αi
returns ti!

Compare(ti,tj)!
by q ≠ pi,pj!

Theorem Every timestamp
implementation for n processes uses
more than √n-1 / 2 registers. !

Covering Argument!
A process pi covers a register Rj in a
configuration if pi will write to Rj when it
next takes a step.!

A set P of k processes covers a set R of k
registers if each register in R is covered by
some process in P.!

If P covers R, a block write by P consists of
a consecutive sequence of writes, one by
each process in P.!

Suppose that, in configuration C,
P1,P2,Q each cover the set of registers R;
P1,P2,Q are disjoint; S1,S2 are disjoint; S1,
(P2∪Q) are disjoint; and S2,(P1∪Q) are
disjoint. !

P1! Q!

S1 !

P2 !

S2 !

Lemma Suppose that, in configuration C,
P1,P2,Q each cover the set of registers R;
P1,P2,Q are disjoint; S1,S2 are disjoint; S1,
(P2∪Q) are disjoint; and S2,(P1∪Q) are
disjoint. !

Let β1, β2 be block writes by P1,P2.!

Then, for some i ∈ {1,2}, all Si-only
executions αi starting from Cβi containing a
complete GetTS contain a write to a register
not in R.!

Proof Suppose not. Then αi,βi only write to R.!

C! β1 !

β1 !

α1!

α1!

β2 !β2 !

α2!

C’!

α2!

γ !
γ !

GetTS in αi
returns ti!

γ block write
to R by Q!

Compare(t1,t2)!
by q ∉ S1∪ S2!

Theorem Every timestamp implementation
for n processes uses more than √n-1 / 2
registers.!

Proof Suppose there is an implementation
using r ≤ √n-1 / 2 registers. Then, for k=1,
…,r, there is a configuration in which k
registers are each covered by r-k+3
processes (by induction, using the lemma).
When k=r, apply the lemma again.
This is a CONTRADICTION since no more
registers exist.!

Base Case: k = 1 !
By the lemma with R = φ, for every
process pi, except possibly one, !

C0 !
δi! write to Rσ(i)!
solo GetTS by pi! no writes

in δi !

C0 !
δ1 ! δ2 ! δ3 ! δn !

C!…!

At least n-1 > r(r+1) processes covering
r registers ⇒ some register is covered
by at least r+2 = r - k +3 processes. !

Induction Step: !
Consider a configuration C with P1,
…,Pr-k+3 disjoint sets of processes
each covers R, a set of k registers!

P1 ! P2! P3! Pr-k+3 !

other processes!

Induction Step: !
Consider a configuration C with P1,
…,Pr-k+3 disjoint sets of processes
each covers R, a set of k registers!

P1 ! P2! P3! Pr-k+3 !

other processes!S1 ! S2!

Q

Cβi !
δ1…δh!

By the lemma, for some i ∈ {1,2}, every
Si-only execution starting from Cβi
containing a complete GetTS contains a
write to a register not in R. !

δ1,…,δh solo executions by h different
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover
registers not in R.!

Cβi !
δ1…δh!

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every
Si-only execution starting from Cβi
containing a complete GetTS contains a
write to a register not in R. !

δ1,…,δh solo executions by h different
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover
registers not in R.!

α!

Cβi !
δ1…δh! write not to R !

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every
Si-only execution starting from Cβi
containing a complete GetTS contains a
write to a register not in R. !

δ1,…,δh solo executions by h different
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover
registers not in R.!

Cβi !
δ1…δh! write not to R !

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every
Si-only execution starting from Cβi
containing a complete GetTS contains a
write to a register not in R. !

δ1,…,δh solo executions by h different
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover
registers not in R.!

δh+1 !

Cβi !
δ1…δh!

By the lemma, for some i ∈ {1,2}, every
Si-only execution starting from Cβi
containing a complete GetTS contains a
write to a register not in R. !

δ1,…,δh,δh+1 solo executions by h+1 different
processes in Si that only write to R. !

At Cβiδ1…δhδh+1 these processes cover
registers not in R.!

δh+1 !

Cβi !
δ !

δ solo executions by all processes in Si that
only write to R. !

At Cβiδ these processes cover registers not
in R.!

By a simple counting argument, at Cβiδ some
register Rj ∉ R is covered by at least r-k+2
processes.!

All registers in R are covered by r-k+2 =
r-(k+1) + 3 processes.!

For k=1,…,r, there is a configuration in
which k registers are each covered by
r-k+3 processes. !

Theorem Every timestamp implementation
for n processes uses more than √n-1 / 2
registers.!

U partially ordered universe under < !

Compare(t1,t2) = 1 if and only if t1 < t2 !

U is nowhere dense if for all x,y ∈ U,
there are only a finite number of
elements z ∈ U such that x < z < y.!

Examples!

integers under < !

set of all finite sets of integers under ⊂!

Another Example !
set of length k vectors of integers
ordered component-wise:!

(u1,…,uk) ≤ (v1,…,vk) if and only if ui ≤ vi
for i = 1,…,k.!

Between (1,2,1,3) and (1,4,2,3) there are:
(1,2,2,3), (1,3,1,3), (1,3,2,3), (1,4,1,3) !

Not an Example !
-Rational numbers!

-set of length k vectors of integers
ordered lexicographically.!

Between (1,0) and (2,0) there are an
infinite number of elements:
(1,1), (1,2), (1,3), (1,4),… !

Theorem Every timestamp
implementation for n processes that
uses a nowhere dense universe requires
at least n registers.!

Proof: For k=0,…,n, there is a
configuration in which k registers
are covered.!
Base Case: The initial configuration.!

Induction Step: !
Consider a configuration C where a set
R of k < n registers is covered by a set
of k processes P. !

C! β! α!

GetTS by p
returns t !

block
write
to R !

q ∉ P ∪ {p}!

GetTS by q
returns t1 !
GetTS by q
returns t2 !

: !

C! β! α!

GetTS by p
returns t !

block
write
to R !

q ∉ P ∪ {p}!

GetTS by q
returns t1 !
GetTS by q
returns t2 !

: !
t1 < t2 < … !

There exists tj such that tj < t is false;
otherwise there are infinitely many
elements of U between t1 and t.!

C! β! α!

GetTS by p
returns t !

block
write
to R !

q ∉ P ∪ {p}!

GetTS by q
returns t1 !

GetTS by q
returns tj!

: !

tj < t is false!

If q writes only to registers in R !

β! α!

C! β!

block
write
to R !

q ∉ P ∪ {p}!
q writes
to Rh∉ R !

δ !

In configuration Cδ, a set R ∪ {Rh} of
k+1 registers is covered by a set of k
+1 processes P ∪ {q}.!

By induction, there is a configuration in
which all n registers are covered.!

Theorem Every timestamp implementation
for n processes that uses a nowhere
dense universe requires at least n
registers.!

Theorem There is a wait-free timestamp
implementation that uses n-1 single-writer
registers.!

GetTS() by process pi, i < n:!
 t ← 1 + max{R1,...,Rn-1}!
 Ri ← write(t)!
 return (t,0)!

U = N × N, ordered lexicographically!

GetTS() by process pi, i < n:!
 t ← 1 + max{R1,...,Rn-1}!
 Ri ← write(t)!
 return (t,0)!

GetTS() by process pn:!
 t ← max{R1,...,Rn-1}!
 if t > oldt then c ← 0!
 c ← c + 1 !
 oldt ← t!
 return (t,c)!

GetTS() by process pi, i < n:!
 t ← 1 + max{R1,...,Rn-1}!
 Ri ← write(t)!
 return (t,0)!

GetTS() by process pn:!
 t ← max{R1,...,Rn-1}!
 if t > oldt then c ← 0!
 c ← c + 1 !
 oldt ← t!
 return (t,c)!

if GetTS returns
(t,c) and then
another GetTS
begins and
returns (t’,c’),
then (t,c) < (t’,c’)!

Theorem Every timestamp implementation
for n processes uses more than √n-1 / 2
registers.!

Theorem Every timestamp implementation
for n processes that uses a nowhere
dense universe requires at least n
registers.!

Theorem There is a timestamp
implementation for n processes that uses
n-1 single-writer registers and no such
implementation uses fewer registers.!

Open Problem!

What is the minimum number of registers
needed to implement a timestamp system?!

If there is a system that uses fewer than
n-1 registers, it must use some multi-writer
registers and a universe that is NOT
nowhere dense. !

