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Timestamp System!

a set of timestamps U!

two operations:!
•  GetTS() returns a timestamp!
•  Compare(t,t’) returns a Boolean value,  
" indicating which of the timestamps!
" t or t’ was generated first!



Timestamps have been used to:!

•  solve mutual exclusion!
•  solve randomized consensus!
•  construct multi-writer registers " " 
" from single-writer registers!
•  construct snapshot objects and  ""
" other data structures!



A very simple timestamp system !

counter!
C!

0!
GetTS():!

 t ← Fetch&Increment(C) !

 return (t)!

Compare(t,t’):!

 return (t < t’)!
U = N!



Timestamps can grow without bound 
during an execution.!
This is necessary to describe the 
ordering among an unbounded number of 
non-concurrent events.!
For some applications, Compare is 
restricted to recent events, so old 
timestamps can be reused.!



Bounded Timestamp Systems: !
Dolev and Shavit [1997],                      
Dwork and Waarts [1999],                
Dwork, Herlihy, Plotkin, and Waarts [1999], 
Haldar and Vitanyi [2002],                 
Israeli and Li [1993],                        
Israeli and Pinhasov [1992] !

A timestamp system is:!
unbounded, if U is infinite, and!
bounded, if U is finite.!



Theorem [Israeli and Li] Any bounded 
timestamp system shared by n processes 
must use Ω(n) bits per timestamp.!

Unbounded timestamps can have length 
logarithmic in the number of GetTS 
operations performed.!

If the number GetTS operations is 
reasonable, for example less than 264, 
then timestamps can fit in a single  
memory word.!



A simple timestamp system 
using single-writer registers!

[Lamport, 1974] !

R1 ! R2 ! R3 ! R4 ! Rn !

GetTS() by process pi:!
  t ← 1 + max{R1,...,Rn}!
  Ri ← write(t)!
  return (t)!

U = N !

Compare(t,t’): !
 return (t < t’)!

0! 0!0! 0! 0! 0!



If some GetTS operation returns t and !
another GetTS, which starts after it!
is complete, returns t’,!
then Compare(t,t’) = 1.!

To ensure that timestamps obtained by !
different GetTS operations in an execution!
are different, append the log n bit!
process ID to the result. !



A simple timestamp system 
using single-writer registers!
[Dwork and Waarts, 1999] !

R1 ! R2 ! R3 ! R4 ! Rn !

GetTS() by process pi:!
  Ri ← write(1+Ri)!
  t ← read(R1,...,Rn)!
  return (t)!

U = Nn !0! 0!0! 0! 0! 0!

each timestamp!
is a vector of n !
integers !



Compare(t,t’) can be done!

•  lexicographically or!

•  component-wise!

t < t’ if there exists k such that!
ti = ti’ for i < k and tk < tk’!

t < t’ if ti ≤ ti’ for i = 1,..,k and 
there exists k such that tk < tk’!



Both these timestamp implementations use 
n shared registers.!

Is it possible to implement an unbounded 
timestamp system using fewer registers?!



Model!

n deterministic asynchronous 
processes, p1 ,…, pn!

r shared registers, R1 ,…, Rr!

obstruction free: each GetTS and 
Compare operation must complete if it 
is given sufficiently many consecutive 
steps.!



Theorem Every single-writer timestamp 
implementation for n processes uses at 
least n-1  registers.!

Proof Let αi be the solo execution of 
GetTS by process pi starting from C0. 
To obtain a contradiction, suppose 
there exist pi and pj that perform no 
writes during αi and αj, respectively.!



C0 !
αi!

αi!

αj!

C’!

αj!

GetTS in αi 
returns ti!

Compare(ti,tj)!
by q ≠ pi,pj!



Theorem Every timestamp 
implementation for n processes uses 
more than √n-1 / 2 registers. !



Covering Argument!
A process pi covers a register Rj in a 
configuration if pi will write to Rj when it 
next takes a step.!

A set P of k processes covers a set R of k 
registers if each register in R is covered by 
some process in P.!

If P covers R, a block write by P consists of 
a consecutive sequence of writes, one by 
each process in P.!



Suppose that, in configuration C,          
P1,P2,Q each cover the set of registers R; 
P1,P2,Q are disjoint; S1,S2 are disjoint;  S1,
(P2∪Q) are disjoint; and S2,(P1∪Q) are 
disjoint. !

P1! Q!

S1 !

P2 !

S2 !



Lemma Suppose that, in configuration C, 
P1,P2,Q each cover the set of registers R; 
P1,P2,Q are disjoint; S1,S2 are disjoint;  S1,
(P2∪Q) are disjoint; and S2,(P1∪Q) are 
disjoint. !

Let β1, β2 be block writes by P1,P2.!

Then, for some i ∈ {1,2}, all Si-only 
executions αi starting from Cβi containing a 
complete GetTS  contain a write to a register 
not in R.!



Proof Suppose not. Then αi,βi only write to R.!

C! β1 !

β1 !

α1!

α1!

β2 !β2 !

α2!

C’!

α2!

γ !
γ !

GetTS in αi 
returns ti!

γ block write 
to R by Q!

Compare(t1,t2)!
by q ∉ S1∪ S2!



Theorem Every timestamp implementation 
for n processes uses more than √n-1 / 2 
registers.!

Proof Suppose there is an implementation 
using r ≤ √n-1 / 2 registers. Then, for k=1,
…,r, there is a configuration in which k 
registers are each covered by r-k+3 
processes (by induction, using the lemma). 
When k=r, apply the lemma again.        
This is a CONTRADICTION since no more 
registers exist.!



Base Case: k = 1 !
By the lemma with R = φ, for every 
process pi, except possibly one, !

C0 !
δi! write to Rσ(i)!
solo GetTS by pi! no writes 

in δi !

C0 !
δ1 ! δ2 ! δ3 ! δn !

C!…!

At least n-1 > r(r+1) processes covering 
r registers ⇒ some register is covered 
by at least r+2 = r - k +3 processes. !



Induction Step: !
Consider a configuration C with P1,
…,Pr-k+3 disjoint sets of processes 
each covers R, a set of k registers!

P1 ! P2! P3! Pr-k+3 !

other processes!



Induction Step: !
Consider a configuration C with P1,
…,Pr-k+3 disjoint sets of processes 
each covers R, a set of k registers!

P1 ! P2! P3! Pr-k+3 !

other processes!S1 ! S2!

Q



Cβi !
δ1…δh!

By the lemma, for some i ∈ {1,2}, every 
Si-only execution starting from Cβi 
containing a complete GetTS contains a 
write to a register not in R. !

δ1,…,δh solo executions by h different 
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover 
registers not in R.!



Cβi !
δ1…δh!

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every 
Si-only execution starting from Cβi 
containing a complete GetTS contains a 
write to a register not in R. !

δ1,…,δh solo executions by h different 
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover 
registers not in R.!

α!



Cβi !
δ1…δh! write not to R !

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every 
Si-only execution starting from Cβi 
containing a complete GetTS contains a 
write to a register not in R. !

δ1,…,δh solo executions by h different 
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover 
registers not in R.!



Cβi !
δ1…δh! write not to R !

solo GetTS by another process in Si!

By the lemma, for some i ∈ {1,2}, every 
Si-only execution starting from Cβi 
containing a complete GetTS contains a 
write to a register not in R. !

δ1,…,δh solo executions by h different 
processes in Si that only write to R. !

At Cβiδ1…δh these processes cover 
registers not in R.!

δh+1 !



Cβi !
δ1…δh!

By the lemma, for some i ∈ {1,2}, every 
Si-only execution starting from Cβi 
containing a complete GetTS contains a 
write to a register not in R. !

δ1,…,δh,δh+1 solo executions by h+1 different 
processes in Si that only write to R. !

At Cβiδ1…δhδh+1 these processes cover 
registers not in R.!

δh+1 !



Cβi !
δ !

δ solo executions by all processes in Si that 
only write to R. !

At Cβiδ these processes cover registers not 
in R.!

By a simple counting argument, at Cβiδ some 
register Rj ∉ R is covered by at least r-k+2 
processes.!

All registers in R are covered by r-k+2 =  
r-(k+1) + 3 processes.!



For k=1,…,r, there is a configuration in 
which k registers are each covered by 
r-k+3 processes. !

Theorem Every timestamp implementation 
for n processes uses more than √n-1 / 2 
registers.!



U partially ordered universe under < !

Compare(t1,t2) = 1 if and only if t1 < t2 !

U is nowhere dense if for all x,y ∈ U, 
there are only a finite number of 
elements z ∈ U such that x < z < y.!

Examples!

integers under < !

set of all finite sets of integers under ⊂!



Another Example !
set of length k vectors of integers 
ordered component-wise:!

(u1,…,uk) ≤ (v1,…,vk) if and only if ui ≤ vi 
for i = 1,…,k.!

Between (1,2,1,3) and (1,4,2,3) there are: 
(1,2,2,3), (1,3,1,3), (1,3,2,3), (1,4,1,3) !



Not an Example !
-Rational numbers!

-set of length k vectors of integers 
ordered lexicographically.!

Between (1,0) and (2,0) there are an 
infinite number of elements:             
(1,1), (1,2), (1,3), (1,4),… !



Theorem Every timestamp 
implementation for n processes that 
uses a nowhere dense universe requires 
at least n registers.!

Proof: For k=0,…,n, there is a 
configuration in which k registers 
are covered.!
Base Case: The initial configuration.!



Induction Step: !
Consider a configuration C where a set 
R of k < n registers is covered by a set 
of k processes P. !

C! β! α!

GetTS by p 
returns t !

block 
write 
to R !

q ∉ P ∪ {p}!

GetTS by q 
returns t1 !
GetTS by q 
returns t2 !

: !



C! β! α!

GetTS by p 
returns t !

block 
write 
to R  !

q ∉ P ∪ {p}!

GetTS by q 
returns t1 !
GetTS by q 
returns t2 !

: !
t1 < t2 < … !

There exists tj such that tj < t is false; 
otherwise there are infinitely many 
elements of U between t1 and t.!



C! β! α!

GetTS by p 
returns t !

block 
write 
to R  !

q ∉ P ∪ {p}!

GetTS by q 
returns t1 !

GetTS by q 
returns tj!

: !

tj < t is false!

If q writes only to registers in R !

β! α!



C! β!

block 
write 
to R  !

q ∉ P ∪ {p}!
q writes 
to Rh∉ R !

δ !

In configuration Cδ, a set R ∪ {Rh} of 
k+1 registers is covered by a set of k
+1 processes P ∪ {q}.!



By induction, there is a configuration in 
which all n registers are covered.!

Theorem Every timestamp implementation 
for n processes that uses a nowhere 
dense universe requires at least n 
registers.!



Theorem There is a wait-free timestamp 
implementation that uses n-1 single-writer 
registers.!

GetTS() by process pi, i < n:!
  t ← 1 + max{R1,...,Rn-1}!
  Ri ← write(t)!
  return (t,0)!

U = N × N, ordered lexicographically!



GetTS() by process pi, i < n:!
  t ← 1 + max{R1,...,Rn-1}!
  Ri ← write(t)!
  return (t,0)!

GetTS() by process pn:!
  t ← max{R1,...,Rn-1}!
  if t > oldt then c ← 0!
  c ← c + 1 !
  oldt ← t!
  return (t,c)!



GetTS() by process pi, i < n:!
  t ← 1 + max{R1,...,Rn-1}!
  Ri ← write(t)!
  return (t,0)!

GetTS() by process pn:!
  t ← max{R1,...,Rn-1}!
  if t > oldt then c ← 0!
  c ← c + 1 !
  oldt ← t!
  return (t,c)!

if GetTS returns 
(t,c) and then 
another GetTS 
begins and 
returns (t’,c’), 
then (t,c) < (t’,c’)!



Theorem Every timestamp implementation 
for n processes uses more than √n-1 / 2 
registers.!

Theorem Every timestamp implementation 
for n processes that uses a nowhere 
dense universe requires at least n 
registers.!

Theorem There is a timestamp 
implementation for n processes that uses 
n-1 single-writer registers and no such 
implementation uses fewer registers.!



Open Problem!

What is the minimum number of registers 
needed to implement a timestamp system?!

If there is a system that uses fewer than 
n-1 registers, it must use some multi-writer 
registers and a universe that is NOT 
nowhere dense. !


