The Space Complexity
of Unbounded
Timestamps

Faith Ellen, University of Toronto
Panagiota Fatourou, University of Ioannina
Eric Ruppert, York University

Timestamp System

a set of timestamps U

two operations:

® GetTS() returns a timestamp

e Compare(t,t’) returns a Boolean value,
indicating which of the timestamps
t or ' was generated first

Timestamps have been used fo:

* solve mutual exclusion

* solve randomized consensus

* construct multi-writer registers
from single-writer registers

* construct snapshot objects and
other data structures

A very simple fimestamp system

. GetTS():
t < Fetch&Increment(C)
coug’rer return (1)

U =N Compare(t,t’):

return (t < t')

Timestamps can grow without bound
during an execution.

This is necessary to describe the
ordering among an unbounded number of
non-concurrent events.

For some applications, Compare is
restricted to recent events, so old
timestamps can be reused.

A timestamp system is:
unbounded, if U is infinite, and
bounded, if U is finite.

Bounded Timestamp Systems:

Dolev and Shavit [1997],

Dwork and Waarts [1999],

Dwork, Herlihy, Plotkin, and Waarts [1999],
Haldar and Vitanyi [2002],

Israeli and Li [1993],

Israeli and Pinhasov [1992]

Theorem [Israeli and Li] Any bounded
timestamp system shared by n processes
must use ¢2(n) bits per timestamp.

Unbounded timestamps can have length
logarithmic in the number of GetTS
operations performed.

If the number GetTS operations is
reasonable, for example less than 2%,
then timestamps can fit in a single
memory word.

A simple timestamp system
using single-writer registers
[Lamport, 1974]

"
Z

O O 0 O O 0 U

R, R, R, R, R

GetTS() by process p;: Compare(t,t'):
t < 1 + max{R,,..,R} return (t < t')
R, < write(t)
return (1)

If some GetTS operation returns t and
another GetTS, which starts after it

is complete, returns t’,

then Compare(t,t’) = 1.

To ensure that timestamps obtained by
different GetTS operations in an execution
are different, append the log n bit

process ID to the result.

A simple timestamp system
using single-writer registers
[Dwork and Waarts, 1999]

0 0 0 0 0 0 U=N"

R, R, R; R, R,
GQTTS() by PrOCQSS Pi: each .I.imes.l.amp
R; < write(1+R;) is a vector of n
t < read(R,,...R,) Integers

return (1)

Compare(t,t’) can be done
* lexicographically or
t < t' if there exists k such that

* component-wise

t<tift <t fori=1,.,k and
there exists k such that t, < 1’

Both these timestamp implementations use
n shared registers.

Is it possible to implement an unbounded
timestamp system using fewer registers?

Model

n deterministic asynchronous
processes, p, ,..., P,

r shared registers, R, ..., R,

obstruction free: each GetTS and
Compare operation must complete if it
IS given sufficiently many consecutive
steps

Theorem Every single-writer timestamp
implementation for n processes uses at
least n-1 registers.

Proof Let o, be the solo execution of

GetTS by process p, starting from C,.
To obtain a contradiction, suppose

there exist p; and p; that perform no
writes during o; and o, respectively.

0) > GetTS in o,
returns T,
A
v
v AN R
MY

Compare(t; 1))
by q # p;,p;

Theorem Every timestamp
implementation for n processes uses
more than Vn-1 / 2 registers.

Covering Argument

A process p; covers a register R; in a
configuration if p; will write to R; when it
next takes a step.

A set P of Kk processes covers a set R of k
registers if each register in R is covered by
some process in P.

If P covers R, a block write by P consists of
a consecutive sequence of writes, one by
each process in P.

Suppose that, in configuration C,
P,.,P,,Q each cover the set of registers R;

P,P,Q are disjoint; S,,S, are disjoint; S,,
(P UQ) are disjoint; and S,,(P,UQ) are
disjoint.

S, S,

Lemma Suppose that, in configuration C,
P,.,P,,Q each cover the set of registers R;
P, P,,Q are disjoint; S,,S, are disjoint; S,,
(P,UQ) are disjoint; and S.,(P,UQ) are
disjoint.

Let [3,, 3, be block writes by P,,P..

Then, for some i € {1,2;, all S-only
executions o, starting from Cf3;, containing a
complete GetTS contain a write to a register
not in R.

Proof Suppose not. Then o[, only write to R.

Py o .
@ g | GefTS In o,
returns .
B2 B2
| v v block write
to R by Q
o7 o7
! Compare(t, t,)
v i oy

’\\Y by q & S\U S,

Theorem Every timestamp implementation
for n processes uses more than vn-1 / 2
registers.

Proof Suppose there is an implementation
using r < Vn-1 / 2 registers. Then, for k=1,
..,I, there is a configuration in which k
registers are each covered by r-k+3
processes (by induction, using the lemma).
When k=r, apply the lemma again.

This is a CONTRADICTION since no more
registers exist.

Base Case: k =1

By the lemma with R = ¢, for every
process p;, except possibly one,

@ solo)Ge’r'I;S by p, _ no writes
° 5 write fo R, n o

- (C
Co 5 8, O 5 ©

At least n-1 > r(r+l) processes covering
r registers = some register is covered
by at least r+2 = r - kK +3 processes.

v

n

Induction Step:

Consider a configuration C with P,,
...P._.; disjoint sets of processes
each covers R, a set of k registers

p1 |:)2 p3 |:)r-k+3

other processes

Induction Step:

Consider a configuration C with P,,
...P._.; disjoint sets of processes
each covers R, a set of k registers

3 r-k+3

N e e e oy

e

other processes

By the lemma, for some i € {1,2}, every
S;-only execution starting from Cp,
containing a complete GetTS contains a
write to a register not in R.

Cp;

8.0,

d,,...,0,, Solo executions by h different
processes in S, that only write to R.

At C[3,0,..0,, These processes cover
registers not in R.

By the lemma, for some i € {1,2}, every
S;-only execution starting from Cp,
containing a complete GetTS contains a
write to a register not in R.

solo GetTS by another process in S,

CBI >
61...6h (94

S
P

d,,...,0,, Solo executions by h different
processes in S, that only write to R.

At C[3,0,..0,, These processes cover
registers not in R.

By the lemma, for some i € {1,2}, every
S;-only execution starting from Cp,
containing a complete GetTS contains a
write to a register not in R.

solo GetTS by another process in S,

Cp;

S N S

61...6; write not fo R

d,,...,0,, Solo executions by h different
processes in S, that only write to R.

At C[3,0,..0,, These processes cover
registers not in R.

By the lemma, for some i € {1,2}, every
S;-only execution starting from Cp,
containing a complete GetTS contains a
write to a register not in R.

solo GetTS by another process in S,

8.0, d,,, write not to R

Cp;

S
T

d,,...,0,, Solo executions by h different
processes in S, that only write to R.

At C[3,0,..0,, These processes cover
registers not in R.

By the lemma, for some i € {1,2}, every
S;-only execution starting from Cp,
containing a complete GetTS contains a
write to a register not in R.

CBi > >
8By, Oy

dy,...,0,,0,,; Solo executions by h+l different
processes in S, that only write to R.

At C[3,0,..0,0,,; These processes cover
registers not in R.

v

CP;
0

0 solo executions by all processes in S; that
only write to R.

At CP,0 these processes cover registers not
in R.

By a simple counting argument, at Cp3,0 some
register R; ¢ R is covered by at least r-k+2
processes.

All registers in R are covered by r-k+2 =
r-(k+1) + 3 processes.

For k=l1,...,r, there is a configuration in
which Kk registers are each covered by
r-k+3 processes.

Theorem Every timestamp implementation
for n processes uses more than vn-1 / 2
registers.

U partially ordered universe under <
Compare(t,,t,) =1 if and only if t;< t,

U is nowhere dense if for all x,y € U,
there are only a finite number of
elements z € U such that x <z < v.

Examples
infegers under <

set of all finite sets of integers under C

Another Example

set of length k vectors of integers
ordered component-wise:

(U, by) € (vy,en,vy) if and only if u < v
fori=1,..Kk.

Between (1,2,1,3) and (1,4,2,3) there are:
(1121213)1 (1131113)1 (1131213)1 (1141113)

Not an Example

-Rational numbers

-set of length k vectors of integers
ordered lexicographically.

Between (1,0) and (2,0) there are an
infinite number of elements:

(1,1), (1,2), (1,3), (1,4),...

Theorem Every timestamp
implementation for n processes that
uses a nowhere dense universe requires
at least n registers.

Proof: For k=0,...,n, there is a

configuration in which k registers
are covered.

Base Case: The initial configuration.

Induction Step:

Consider a configuration C where a set
R of k < n registers is covered by a set
of k processes P.

O B

GetTS by q block GetTS by P
returns f, | write returns f
GetTS by g fo R

returns t, .

q & P U {ps

O

by block GetTS by p
returns write returns t
by to R
returns

There exists t. such that t < t is false;
otherwise there are infinitely many
elements of U between f, and .

O

GetTS by g block GetTS by p

returns f, write returns t
to R
q & P U {pt
GefTS by g f < tis false
returns f, | : X i
§ o

If g writes only to registers in R

block
0 write
q writes / to R

to R,& R | q &P U {p}

v

In configuration Co, a set R U {R,; of
k+1 registers is covered by a set of k
+1 processes P U {q;.

By induction, there is a configuration in
which all n registers are covered.

Theorem Every timestamp implementation
for n processes that uses a nowhere
dense universe requires at least n
registers.

Theorem There is a wait-free timestamp
Implementation that uses n-1 single-writer
registers.

U =N x N, ordered lexicographically

GetTS() by process p;, i < n:
t < 1 + max{R,,....R,_}
R < write(t)
return (1,0)

GetTS() by process p;, i < n:
t < 1 + max{R,,...R, i}
R, < write(})
return (1,0)

GetTS() by process p,;:
t < max{R,,....R,
if t > oldt thenc < O
C<—C+1
oldt < t
return (t,c)

GetTS() by process p;, i < n:
t < 1 + max{R,,...R,_;}
R, < write(t)

refurn (1"0) if GetTS returns
(t,c) and then

GetTS() by process p.: |another GetTS
t < max{R,,....R, ;} begins and

if + > oldt then ¢ < 0 |returns (t',c),
el then (f,c) < (t',¢’

oldt < t
return (t,c)

Theorem Every timestamp implementation
for n processes uses more than vn-1/ 2
registers.

Theorem Every timestamp implementation
for n processes that uses a nowhere
dense universe requires at least n
registers.

Theorem There is a timestamp
implementation for n processes that uses
n-1 single-writer registers and no such
implementation uses fewer registers.

Open Problem

What is the minimum number of registers
needed fo implement a timestamp system?

If there is a system that uses fewer than
n-1 registers, it must use some multi-writer

registers and a universe that is NOT
nowhere dense.

