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Abstract. The snapshot object is an important and well-studied primi-
tive in distributed computing. This paper will present some implementa-
tions of snapshots from registers, in both asycnhronous and synchronous
systems, and discuss known lower bounds on the time and space com-
plexity of this problem.

1 Introduction

An important problem in shared memory distributed systems is to obtain a con-
sistent view of the contents of the shared memory while updates to the memory
are happening concurrently. For example, in a sensor network, simultaneous read-
ings of all the sensors may be needed, even when the measured readings change
frequently. In a distributed computation, periodically recording the global state
can facilitate error recovery, since the computation can be restarted from the
most recent backup, rather than from the beginning of the computation. Ideally,
one wants to collect these checkpoints without interrupting the computation.
Checkpoints can also be useful for debugging distributed programs, allowing
invariants that have been violated to be found more easily.

To obtain a consistent view, it is not enough to simply collect the entire con-
tents of memory by reading one value at a time. The difficulty is that the first
values that have been read may be out of date by the time that later values are
read. The problem can be formalized as the implementation of a snapshot object
that can be accessed concurrently by different processes. A snapshot object con-
sists of a set of m > 1 components, each capable of storing a value. Processes can
perform two different types of operations: UPDATE any individual component or
atomically SCAN the entire collection to obtain the values of all the components.
A single-writer snapshot object is a restricted version in which there are the
same number of processes as components and each process can UPDATE only
one component.

It is often much easier to design fault-tolerant algorithms for asynchronous
systems and prove them correct if one can think of the shared memory as a snap-
shot object, rather than as a collection of individual registers. Snapshot objects
have been used to solve randomized consensus [3, 4], approximate agreement
[8], and to implement bounded concurrent time stamps [15] and other types of
objects [5, 16].
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Unbounded time stamps are particularly easy to generate using a single-
writer snapshot object. Each process stores the time stamp from its last request
(or 0, if has not yet requested one) in its component. To obtain a new time
stamp, a process performs a SCAN and adds 1 to the maximum time stamp
contained in the result. Then the process updates its component with its new
time stamp. This ensures that a request that is started after another request has
completed will receive a larger time stamp. Note that concurrent requests can
receive the same or different time stamps.

Because snapshot objects are much easier for programmers to use, researchers
have spent a great deal of effort on finding efficient implementations of them from
registers, which, unlike snapshot objects, are provided in real systems.

Our asynchronous shared memory system consists of n processes, p1, . . . , pn

that communicate through shared registers. At each step of a computation, one
process can either read from one register or write a value to one register. In
addition, it can perform a bounded number of local operations that do not
access shared registers. The order in which processes take steps is determined
by an adversarial scheduler. In synchronous shared memory, at each step, every
active process either reads from one register or writes a value to one register, in
addition to performing a bounded amount of local work. An active process is a
process that has neither completed its task nor crashed. The order in which the
shared memory operations occur during a step is determined by an adversarial
scheduler.

We consider linearizable (atomic) implementations [17], where each SCAN
and UPDATE operation appears to take effect at some instant during the time
interval in which it is executed. Implementations should also be wait-free. This
means that there is an upper bound on the number of steps needed for any
process to perform any operation, regardless of the behaviour of other processes.
In particular, processes do not have to wait for other processes to finish. Thus
wait-free implementations tolerate crash failures.

The rest of this paper will present an overview of some different implemen-
tations of snapshot objects from registers and discuss known lower bounds.
Both the time complexity and the number of registers are considered, but not
the size of the registers. Various techniques are known to reduce register size
[9, 11, 12, 15, 19], but these are beyond the scope of this paper.

2 An Asynchronous Implementation Using m Registers

Our first implementation uses one shared register for each component of the
snapshot object. Although simply collecting the values of the registers may give
an invalid view, a valid view is guaranteed if two collects are performed by some
process and, meanwhile, the values of none of the registers are changed. Note
that the value of a register may change and then change back again. To dis-
tinguish between this possibly bad situation and the situation when no changes
have occurred, each process performing an UPDATE to a component writes its
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identifier and a sequence number to the corresponding register together with the
new value.

However, a process can repeatedly collect the values without ever getting two
consecutive identical results. To overcome this problem, when a process performs
UPDATE, it first performs SCAN and writes the result, together with the new
value, its identifier, and a sequence number to the appropriate register. Now,
when a process performs two collects that have different results, it could use the
result of a SCAN that is stored in one of the registers.

Unfortunately, the stored result may be out of date: It may be a memory state
that only occurred before the process began its SCAN. To ensure that a process
p performing a SCAN gets a memory state that occurs while it is executing, it
repeatedly performs collects until either two consecutive collects are the same
(in which case, the result of this collect is its result) or it sees that some other
process has performed at least two different UPDATES since p performed its
first collect. In the second case, p returns the last result written by this other
process, which is from a SCAN that is part of an UPDATE that began after p
began its SCAN.

One of these two cases will occur by the time a process has performed n + 2
collects. Each collect takes takes Θ(m) steps. Thus the time complexity of a
SCAN is O(mn). Since an UPDATE contains an embedded SCAN, its time
complexity is also O(mn). This algorithm, although presented in a slightly dif-
ferent form, is from Afek, Attiya, Dolev, Gafni, Merritt, and Shavit’s paper [1].
It also appears in [13].

3 An Implementation of a Snapshot Object From a
Single-Writer Snapshot Object

Anderson [2] shows how to construct a snapshot object with m components
shared by n processes using a single-writer snapshot object shared by n pro-
cesses. The idea is that each process stores information about every component
of the snapshot object in its component of the single-writer snapshot object.
Specifically, it stores the value of the last UPDATE operation it performed to
each component, together with a time stamp for each of those UPDATES.

To perform a SCAN of the snapshot object, a process performs a SCAN of
the single-writer snapshot object and, for each component, returns the value
with the latest time stamp. Process identifiers are used to break ties.

To perform an UPDATE to component i of the snapshot object, a process
performs a SCAN of the single-writer snapshot object. The result of the SCAN
gives it the time stamp of the last UPDATE to component i performed by
each process. It generates a new time stamp that is later than all of these.
Then the process UPDATES its single-writer component with the new value
and time stamp for component i and the old values and time stamps for all
other components.

Thus, if there is an implementation of a single-writer snapshot object in which
SCAN takes time S(n) and UPDATE takes time U(n) in the worst case, then
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there is an implementation of a snapshot object in which SCAN takes O(S(n))
time and UPDATE takes O(S(n) + U(n)) time.

4 Asynchronous Single-Writer Snapshot Implementations
Using Lattice Agreement

Lattice agreement is a decision problem that is closely related to the single-writer
snapshot object. In this problem, each process gets an element of some lattice
as input and must output an element that is at least as large, but no larger
than the least upper bound of all the inputs. Furthermore, all outputs must be
comparable with one another.

It can easily be solved in O(1) time using a single-writer snapshot object:
Each process UPDATES its component with its input, performs a SCAN, and
takes the least upper bound of all the lattice elements in the result as its output.
Conversely, a single-writer snapshot object in which each process performs at
most one operation can be implemented using single-writer registers and an in-
stance of the lattice agreement problem [7]. To perform an UPDATE, a process
writes the new value to its single-writer register and then performs a SCAN,
throwing away the result. To perform a SCAN, a process collects the values in
all the single-writer registers and uses this view as an input to lattice agreement,
where one view is less than or equal to another view in the lattice if the set of
components that have new values in the first view is a subset of those in the other
view. A process uses its output from the lattice agreement problem as the result
of its SCAN. The reason a process performing an UPDATE with some value v
performs an embedded SCAN is to ensure that there isn’t a later UPDATE by an-
other process whose new value is collected by some SCAN that doesn’t collect v.

Attiya, Herlihy, and Rachman [7] extend this idea to allow processes to per-
form an unbounded number of SCAN and UPDATE operations using an un-
bounded number of instances of lattice agreement. First, each process writes
a sequence number to its single-writer register together with its new value. In
the lattice, one view is less than or equal to another view if each component of
the first view has a sequence number that is less than or equal to the sequence
number in the same component of the other view. A process p that wants to
perform a SCAN (or an embedded SCAN as part of an UPDATE) uses the view
it collects as input to an instance of lattice agreement that it has not already
solved. There may be multiple instances of lattice agreement that are active si-
multaneously. Process p either chooses the latest of these, if it has not already
solved it, or starts a new instance. After getting an output from this instance,
p checks whether a later instance of lattice agreement is active. If not, it can
use this view as its result. Otherwise, it performs a second collect and uses the
view from it as input to the latest instance that is now active. If, after getting
its output to this instance, there is an even later active instance, there is some
other process that participated in the same instance and got a valid view. Then
p uses this view as its result.
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Inoue, Chen, Masuzawa, and Tokura [18] show how to solve agreement in
this lattice in O(n) time. From the discussion above, this implies the existence
of an n-component single-writer snapshot implementation from an unbounded
number of registers in which SCAN and UPDATE take O(n) time. They consider
a complete binary tree of height �log2 n�, with each process assigned to a different
leaf. At its leaf, a process has a view consisting of only one component, which
contains its new value. The process proceeds up the tree, at each successive level
doubling the length of its view, until, at the root, it has a view that includes all
n components. At each internal node of height k, a process solves an instance
of lattice agreement among the 2k processes that are associated with leaves in
its subtree, using an input formed from its resulting view at the previous level.
This takes O(2k) time. The fact that the inputs of processes arriving from the
same child are comparable with one another ensures that all the outputs are
comparable with one another.

Attiya and Rachman [9] also use lattice agreement to show that an n-process
single-writer snapshot object can be implemented from single-writer registers so
that the time complexities of both SCAN and UPDATE are in O(n log n). Like the
previous implementation, they use a complete binary tree of height �log2 n� that
contains a single-writer register for each process at every node. However, their
approach to solving lattice agreement is quite different. First, they consider the
case when at most n SCAN and UPDATE operations are performed. To perform
an UPDATE, a process writes its new value, together with a sequence number, to
its single-writer register at the root of the tree and then performs an embedded
SCAN. To perform a SCAN, a process traverses the tree from the root down to
a leaf. All the processes that end at the same leaf will return the same view. A
process collects the views written to the single-writer registers at each internal
node it reaches. It decides whether to go left or right depending on how the sum
of the sequence numbers it sees compares to some appropriately chosen thresh-
old. A process with a sum that is at or below the threshold goes left and writes
the same view at this child as it wrote at the node from which it came. A process
that goes right computes a new view by taking the union of the views that it col-
lected and writes this view at this child. In either case, the process repeats the
same procedure at the child, until it reaches a leaf. An important observation is
that the sequence number in a component of a view written to a right child is at
least as large as the sequence number in the same component of a view written to
its left sibling. This ensures that the views that processes write at different leaves
are comparable with one another. To handle the general case, the operations are
divided into virtual rounds, each containing n operations. They use a variety of
mechanisms, including bounded counters and handshakes, to separate the oper-
ations from different rounds so that they do not interfere with one another.

5 Faster Asynchronous Snapshot Implementations

Israeli, Shaham, and Shirazi [20] present an implementation of an n-component
single-writer snapshot object A with O(n) SCAN time and O(S(n) + U(n))
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UPDATE time from a single n-component single-writer snapshot object B with
SCAN time S(n) and UPDATE time U(n) and n single-writer registers. Each
process uses its component in the base object B to store both the current value
of its component and a sequence number that it increments each time it per-
forms an UPDATE. After performing an UPDATE, a process then SCANS B
and writes the resulting view to its register. Since B is linearizable, all the views
that are written can be totally ordered, using the sequence numbers contained
in the views. To perform a SCAN of A, a process simply reads the views written
in the registers and chooses the most recent one. Applying the transformation
in Section 3 yields a snapshot object with O(n) SCAN time and O(S(n)+U(n))
UPDATE time. In particular, using Attiya and Rachman’s implementation in
Section 4 yields a snapshot object with O(n) SCAN time and O(n log n) UP-
DATE time.

The same paper also gives a similar implementation of an n-component single-
writer snapshot object A′ with O(n) UPDATE time and O(n + S(n) + U(n))
SCAN time. Here, each process stores a possibily inconsistent view in its regis-
ter. To UPDATE A′, a process reads the views of all processes and, from them,
constructs a new view whose i’th component contains the maximum of the se-
quence numbers in component i together with its associated value. It increments
the sequence number in its own component of this view and replaces its value
with the new value. It then writes this view to its register. To SCAN A′, a
process first reads the registers of all processes and constructs a new view, as
above. It UPDATES its component of the base object B with this view and then
SCANS B. Finally, it constructs a new view, as above, from the views returned
by the SCAN, which it returns as its result. Again, using Attiya and Rachman’s
implementation in Section 4 yields a single-writer snapshot object with O(n)
UPDATE time and O(n log n) SCAN time.

6 Lower Bounds for Asynchronous Snapshots

Jayanti, Tan, and Toueg [23] use a carefully constructed covering argument to
prove that, in any implementation of an n-component single-writer snapshot
object, there is an execution of a SCAN that must read from at least n − 1
different registers. Since a min{m, n}-component single-writer snapshot object
is a special case of an m-component snapshot object shared by n processes, this
implies a lower bound of min(m, n) − 1 on the space and SCAN time of any
implementation of the latter.

Fatourou, Fich, and Ruppert [14, 13], using a different covering argument,
prove that any implementation of an m-component snapshot object shared by
n ≥ m processes requires at least m registers, matching the upper bound in
Section 2. They introduce the concept of a fatal configuration, which has a set
of processes each of which is about to write to a different register and are in
the midst of performing UPDATES to a smaller number of components. No
correct implementation using m or fewer registers can reach a fatal configuration;
otherwise, there is an insufficient number of registers to record UPDATES to
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the other components. This implies a significant amount of information about
such implementations: SCANS never write to registers, each UPDATE operation
writes to only one register, UPDATE operations to the same component write
to the same register, and UPDATE operations to different components write to
different registers. Hence, at least m registers are needed.

Using these results together with an intricate covering argument, they prove
that, for m < n, any space-optimal implementation takes Ω(mn) time to perform
a SCAN in the worst case. This also matches the upper bound in Section 2. For
m = n − 1, the lower bound is Ω(n2), in contrast to the implementations in
Section 4 that use single-writer registers and run significantly faster. Note that
any implementation using single-writer registers only needs to use one single-
writer register per process: All of the single-writer registers into which a process
can write can be combined into one single-writer register having many fields.

Israeli and Shirazi [IS98] proved an Ω(n) lower bound on UPDATE time
for implementations of an n-component single-writer snapshot object using only
single-writer registers. Their proof uses an elegant combinatorial argument. This
can be extended to an Ω(m) lower bound on UPDATE time for implementations
of an m-component snapshot object from m (multi-writer) registers.

7 Synchronous Snapshot Implementations and Lower
Bounds

There is a simple implementation of a synchronous m-component snapshot ob-
ject due to Neiger and Singh [24] in which SCAN and UPDATE each take m+1
steps in the worst case. It uses m registers, each of which holds the current value
of one component. Their idea is to divide time into blocks of m + 1 slots, one
for reading each component and one for writing. To perform an UPDATE, a
process waits until the next write slot and then writes the new value into the
appropriate register. To perform a SCAN, a process just reads the values from
the registers in the order specified by the next m read slots. It is possible to
linearize every operation that includes a write slot in some order during that
write slot so that all the views that result are consistent. They also prove that in
any implementation using m registers, each of which can hold the value of only
one component, S(n) + U(n) ∈ Ω(m), where S(n) is the worst case SCAN time
and U(n) is the worst case UPDATE time.

A small variant of this idea allows SCANS to be performed in one step, while
UPDATES take at most 2m + 1 steps. In this case, one (larger) register holds
the value of the entire snapshot object, which can be read at any time. Time is
divided into blocks of 2m slots. A process that wants to UPDATE component i
reads the register during slot 2i−1 and then write backs its contents in the next
step, with its new value replacing the old value of component i. Brodsky and
Fich [10] show that, with 2m−1 registers, it is possible to improve the UPDATE
time to O(log m). The registers are conceptually organized as a strict balanced
binary tree, where each of the m leaves contains the value of a different compo-
nent and, provided no UPDATES are in progress, each internal node contains
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the concatenation of the values of its children. A process performs a SCAN by
reading the register at the root. To perform an UPDATE, a process writes the
new value to the corresponding leaf and then propagates this information up the
tree to the root. Information from its siblings and from the siblings of each of
its ancestors is also propogated to the root at the same time.

Brodsky and Fich present another implementation in which UPDATE takes
at most 3 steps and SCAN takes at most 3m − 1 steps. It uses m registers, one
for each component. Each register has two fields, a top-field and a bottom-field,
each of which hold a component value. Time is divided into two alternating
phases, each consisting of m consecutive steps. During top-write phases, a pro-
cess performing an UPDATE writes its new value to the top-field of the specified
component and processes performing SCANS read from the bottom-fields. Sim-
ilarly, during bottom-write phases, a process performing an UPDATE writes its
new value to the bottom-field of the specified component and processes perform-
ing SCANS read from the top-fields. This ensures that writes to top-fields don’t
interfere with reads from top-fields and writes to bottom-fields don’t interfere
with reads from bottom-fields. In addition, each register contains a third field
to which processes write when they UPDATE the corresponding component.
The information in this field allows a process performing a SCAN to determine
whether the top-field or the bottom-field contains the value of the most recent
UPDATE to that component.

They also show how to combine their two implementations to perform UP-
DATE in O(log(m/c)) time and SCAN in O(c) time, for any positive integer
c ≤ m. For n < m, they get the same results, but with m replaced by n.

Finally, using an information theoretic argument, they prove a general trade-
off U(n) ∈ Ω(log(min{m, n}/S(n))) between the worst case UPDATE time U(n)
and the worst case SCAN time S(n), matching their upper bounds.

8 Conclusions

This paper presents a brief survey of different implementations of snapshot ob-
jects from registers, together with some complexity lower bounds. It is not in-
tended to be comprehensive. There are a number of interesting aspects this paper
does not cover, for example, randomized implementations [7], implementations
that are adaptive to contention among processes [6], and implementations from
more powerful objects [7, 25, 22].
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