
When Do Transformers Outperform Feedforward and

Recurrent Networks? A Statistical Perspective

Alireza Mousavi-Hosseini1 Clayton Sanford2 Denny Wu3 Murat A. Erdogdu1

March 17, 2025

Abstract

Theoretical efforts to prove advantages of Transformers in comparison with classical architectures such
as feedforward and recurrent neural networks have mostly focused on representational power. In this work,
we take an alternative perspective and prove that even with infinite compute, feedforward and recurrent
networks may suffer from larger sample complexity compared to Transformers, as the latter can adapt
to a form of dynamic sparsity. Specifically, we consider a sequence-to-sequence data generating model
on sequences of length N , in which the output at each position depends only on q relevant tokens with
q ≪ N , and the positions of these tokens are described in the input prompt. We prove that a single-layer
Transformer can learn this model if and only if its number of attention heads is at least q, in which case it
achieves a sample complexity almost independent of N , while recurrent networks require NΩ(1) samples
on the same problem. If we simplify this model, recurrent networks may achieve a complexity almost
independent of N , while feedforward networks still require N samples. Consequently, our proposed sparse
retrieval model illustrates a natural hierarchy in sample complexity across these architectures.

1 Introduction

Transformers [VSP+17], neural network architectures that are composed of attention and feedforward blocks,
are now at the backbone of large models in machine learning across many different tasks [RNSS18, DBK+20,
BMR+20]. The theoretical efforts surrounding the success of Transformers have so far demonstrated various
capabilities like in-context learning [ASA+23, VONR+23, BCW+23, ZFB24, KNS24, and others] and chain
of thought along with its benefits [FZG+23, MS24, LLZM24, KS24, and others] in various settings. There
are fewer works that provide specific benefits of Transformers in comparison with feedforward and recurrent
architectures. On the approximation side, there are tasks that Transformers can solve with size logarithmic
in the input, while other architectures such as recurrent and feedforward networks require polynomial
size [SHT23, SHT24]. Based on these results, [WWHL24] showed a separation between Transformers and
feedforward networks by providing further optimization guarantees for gradient-based training of Transformers
on a sparse token selection task.

While most prior works focused on the approximation separation between Transformers and feedforward
networks, in this work we focus on a purely statistical separation, and ask:

What function class can Transformers learn with fewer samples compared to
feedforward and recurrent networks, even with infinite compute?

[FGBM23] approached the above problem with random features, where the query-key matrix for the attention
and the first layer weights for the two-layer feedforward network were fixed at random initialization. However,
this only presents a partial picture, as neural networks can learn a significantly larger class of functions
once “feature learning” is allowed, i.e., parameters are trained to adapt to the structure of the underlying
task [Bac17, BES+22, DLS22, BBSS22, DKL+23, AAM23, MHWE24].

1University of Toronto and Vector Institute. {mousavi,erdogdu}@cs.toronto.edu.
2Google Research. chsanford@google.com
3New York University and Flatiron Institute. dennywu@nyu.edu.

1

ar
X

iv
:2

50
3.

11
27

2v
1

 [
st

at
.M

L
]

 1
4

M
ar

 2
02

5

Statistical Model Feedforward RNN Transformer

Simple-qSTR ✗ (Theorem 6) ✓ (Theorem 7) ✓ (Theorem 4)

qSTR ✗ (Theorem 6) ✗ (Theorem 9) ✓ (Theorem 4)

Table 1: Summary of main contributions (see Theorem 1). ✓ indicates a sample complexity upper bound
that is almost sequence length-free (up to polylogarithmic factors). ✗ indicates a lower bound of order NΩ(1).

We evaluate the statistical efficiency of transformers and alternative architectures by characterizing how
the sample complexity depends on the input sequence length. A benign sequence length dependence (e.g.,
sublinear) signifies the ability to achieve low test error in longer sequences, which is intuitively connected to
the length generalization capability [AWA+22]. While Transformers have demonstrated this ability in certain
structured logical tasks, they fail in other simple settings [ZBL+23, LAG+23]. Our generalization bounds
for bounded-norm Transformers — along with our contrasts to RNNs and feedforward neural networks —
provide theoretical insights into the statistical advantages of Transformers and lay the foundation for future
rigorous investigations of length generalization.

1.1 Our Contributions

We study the q-Sparse Token Regression (qSTR) data generating model, a sequence-to-sequence model where
the output at every position depends on a sparse subset of the input tokens. Importantly, this dependence
is dynamic, i.e., changes from prompt to prompt, and is described in the input itself. We prove that by
employing the attention layer to retrieve relevant tokens at each position, single-layer Transformers can adapt
to this dynamic sparsity, and learn qSTR with a sample complexity almost independent of the length of the
input sequence N , as long as the number of attention heads is at least q. On the other hand, we develop a new
metric-entropy-based argument to derive norm and parameter-count lower bounds for RNNs approximating
the qSTR model. Thanks to lower bounds on weight norm, we also obtain a sample complexity lower bound
of order NΩ(1) for RNNs. Further, we show that RNNs can learn a subset of qSTR models where the output
is a constant sequence, which we call simple-qSTR, with a sample complexity polylogarithmic in N . Finally,
we develop a novel lower bound technique for feedforward networks (FFNs) that takes advantage of the fully
connected projection of the first layer to obtain a sample complexity lower bound linear in N , even when
learning simple-qSTR models. The following theorem and Table 1 summarize our main contributions.

Theorem 1 (Informal). We have the following hierarchy of statistical efficiency for learning qSTR.

• A single-layer Transformer with H ≥ q heads can learn qSTR with sample complexity almost independent
of N , and cannot learn qSTR when H < q even with infinitely many samples.

• RNNs can learn simple-qSTR models with sample complexity almost independent of N , but require at least
Ω(N c) samples for some absolute constant c > 0 to learn a generic qSTR model, regardless of their size.

• Feedforward neural networks, regardless of their size, require Ω(Nd) samples to learn even simple-qSTR
models, where d is input token dimension.

We experimentally validate the intuitions from Theorem 1 in Figure 1, where we observe that on a 1STR
task, both FFNs and RNNs suffer from a large sample complexity for larger N . However, for a simple-1STR
model RNNs perform closer to Transformers with a much milder dependence on N compared to FFNs1.

1.2 Related Work

While generalization is a fundamental area of study in machine learning theory, theoretical work on the
generalization capabilities of Transformers remains relatively sparse. Some works analyze the inductive biases
of self-attention through connections to max-margin SVM classifiers [VDT24]. Others quantify complexity

1The code to reproduce our experiments is provided at: https://github.com/mousavih/transformers-separation.

2

https://github.com/mousavih/transformers-separation

2 4 6 8 10 12

N (Input Length)

0

20000

40000

60000

80000

100000

120000

140000
n

(T
ra

in
in

g
S

am
pl

es
)

FFN

RNN

Transformer

(a) Sample complexity (1STR)

25 26 27 28 29 30 31 32 33

N (Input Length)

100000

200000

300000

400000

500000

600000

n
(T

ra
in

in
g

S
am

pl
es

)

FFN

RNN

Transformer

(b) Sample complexity (Simple-1STR)

Figure 1: Number of samples required to reach a certain test MSE loss threshold while training with online AdamW.
We consider (a) the 1STR model with loss threshold 0.7 and (b) the simple-1STR model with loss threshold 0.02,
averaged over 5 experiments. We use a linear link function, standard Gaussian input, d = 10 and de = ⌊5 log(N)⌋.
Positional encodings are sampled uniformly from the unit hypercube. This observation is consistent with Theorem 1.

in terms of the simplest programs in a formal language (such as the RASP model of [YCA23]) that solve
the task and relate that to Transformer generalization [ZBL+23, CS24]. The most relevant works to our
own are [EGKZ22, TT23, Tru24], which employ covering numbers to bound the sample complexity of deep
Transformers with bounded weights. They demonstrate a logarithmic scaling in the sequence length, depth,
and width and apply their bounds to the learnability of sparse Boolean functions. We refine these covering
number bounds to better characterize generalization in sequence-to-sequence learning with dynamic sparsity
[SHT23]. Our problems formalize long-context reasoning tasks, extending beyond simple retrieval to include
challenges like multi-round coreference resolution [VOT+24].

Expressivity of Transformers. The expressive power of Transformers has been extensively studied in
prior works. Universality results establish that Transformers can approximate the output of any continuous
function or Turing machine [YBR+19, WCM21], but complexity limitations remain for bounded-size models.
Transformers with fixed model sizes are unable to solve even regular languages, such as Dyck and Parity
[BAG20, Hah20]. Further work [e.g. MS23] relates Transformers to boolean circuits to establish the hardness
of solving tasks like graph connectivity with even polynomial-width Transformers. Additionally, work on
self-attention complexity explores how the embedding dimension and number of heads affects the ability of
attention layers to approximate sparse matrices [LCW21], recover nearest-neighbor associations [AYB24],
and compute sparse averages [SHT23]. The final task closely resembles our qSTR model and has been
applied to relate the capabilities of deep Transformers to parallel algorithms [SHT24]. Several works [e.g.
JBKM24, BHBK24, WDL24] introduce sequential tasks where Transformers outperform RNNs or other state
space models in parameter-efficient expressivity. We establish similar architectural separations with an added
focus on differentiating the generalization capabilities of Transformers, RNNs, and FFNs.

Statistical Separation. Our work is conceptually related to studies on feature learning and adaptivity in
feedforward networks, particularly in learning models with sparsity and low-dimensional structures. Prior work
has analyzed how neural networks and gradient-based optimization introduce inductive biases that facilitates
the learning of low-rank and low-dimensional functions [LMZ18, WLLM19, CB20, MHPG+23, OSSW24].
These studies often demonstrate favorable generalization properties based on certain structures of the solution
such as large margin or low norm [BFT17, NLB+18, OWSS19, WLLM19]. Our goal is to extend efficient
learning of low-dimensional concepts to sequential architectures, ensuring sample complexity remains efficient
in both input dimension d and context length N . Our approach, motivated by [SHT23, WWHL24], suggests
that qSTR is a sequential model whose sparsity serves as a low-dimensional structure, making it the primary
determinant of generalization complexity for Transformers.

3

Notation. For a natural number n, define [n] := {1, . . . , n}. We use ∥·∥p to denote the ℓp norm of vectors.

For a matrix A ∈ Rm×n, ∥A∥p,q :=
∥∥(∥A:,1∥p, . . . , ∥A:,n∥p

)∥∥
q
, and ∥A∥op denotes the operator norm of

A. We use a ≲ b and a ≤ O(b) interchangeably, which means a ≤ Cb for some absolute constant C. We
similarly define ≳ and Ω. Õ and Ω̃ hide multiplicative constants that depend polylogarithmically on problem
parameters. σ denotes the ReLU activation.

2 Problem Setup

Statistical Model. In this paper, we will focus on the ability of different architectures for learning the
following data generating model.

Definition 2 (q-Sparse Token Regression). Suppose p,y ∼ P where

p =

((
x1

t1

)
, . . . ,

(
xN

tN

))
,

ti ∈ [N]q and xi ∈ Rd for i ∈ [N]. In the q-sparse token regression (qSTR) data generating model, the output
is given by y = (y1, . . . , yN)⊤ ∈ RN , where

yi = g(xti1 , . . . ,xtiq),

for some g : Rqd → R. We call this model simple-qSTR if the data distribution is such that ti = t for all
i ∈ [N] and some t drawn from [N]q.

The above defines a class of sequence-to-sequence functions, where the label at position i in the output
sequence depends only on a subsequence of size q of the input data, determined by the set of indices ti. p in
the above definition denotes the prompt or context. Given the large context length of modern architectures,
we are interested in a setting where q ≪ N . In this setting, the answer at each position only depends on a
few tokens, however the tokens it depends on change based on the context. Therefore, we seek architectures
that are adaptive to this form of dynamic sparsity in the true data generating process, with computational
and sample complexity independent of N . As a special case, choosing the link function g above as the tokens’
mean recovers the sparse averaging model proposed in [SHT23], where the authors demonstrated a separation
in terms of approximation power between Transformers and other architectures.

To obtain statistical guarantees, we will impose mild moment assumptions on the data, amounting to
subGaussian inputs and link functions growing at most polynomially.

Assumption 1. Suppose E[∥xi∥r]
1/r ≤

√
Cxdr and E[|yi|r]

1/r ≤
√
Cyrs for all r ≥ 1, i ∈ [N], and some

absolute constants s ≥ 1 and Cx, Cy > 0.

Learning the qSTR model requires two steps: 1. extracting the relevant tokens at each position and
2. learning the link function g. We are interested in settings where the difficulty of learning is dominated by
the first step, therefore we assume g is well-approximated by a two-layer feedforward network.

Assumption 2. There exist mg ∈ N, ag, bg ∈ Rmg and W g ∈ Rmg×qd, such that ∥ag∥2 ≤ ra/
√
mg, and

∥(W g, bg)∥F ≤ √
mgrw for some constants ra, rw > 0, and

sup{
∥xi∥2≤

√
Cd log(nN), ∀i∈[q]

}∣∣g(x1, . . . ,xq) − a⊤g σ(W g(x⊤1 , . . . ,x
⊤
q)⊤ + bg)

∣∣2 ≤ ε2NN,

where C = 3Cxe and ε2NN is some absolute constant.

Ideally, ε2NN above is a small constant denoting the approximation error. This assumption can be verified
using various universal approximation results for ReLU networks. For example, when g is an additive model
of P Lipschitz functions, where each function depends only on a k-dimensional projection of the input, the
above holds for every ε2NN > 0 and mg = Õ

(
(P/

√
ε2NN)

k
)
, ra = Õ

(
(P/

√
ε2NN)

(k+1)/2
)
, and rw = 1 (we can

always have rw = 1 by homogeneity) [Bac17].

4

Empirical Risk Minimization. While Empirical Risk Minimization (ERM) is a standard abstract learning
algorithm to use for generalization analysis, its standard formalizations use risk functions for scalar-valued
predictions. Before introducing the notions of ERM that we employ, we first state several sequential risk
formulations to evaluate a predictor ŷarc(·;Θ) ∈ Farc on i.i.d. training samples {p(i),y(i)}ni=1, where arc

denotes a general architecture. We define the population risk, averaged empirical risk, and point-wise empirical
risk respectively as

Rarc(Θ) :=
1

N
E

 N∑
j=1

(ŷarc(p
(i);Θ)j − y

(i)
j)2

 =
1

N
E
[∥∥∥ŷarc(p

(i);Θ) − y(i)
∥∥∥2
2

]
, (2.1)

R̂arc
n,N (Θ) :=

1

nN

n∑
i=1

N∑
j=1

(
ŷarc(p

(i);Θ)j − y
(i)
j

)2
, (2.2)

R̂arc
n (Θ) :=

1

n

n∑
i=1

(
ŷarc(p

(i);Θ)j(i) − y
(i)

j(i)

)2
, (2.3)

where {j(i)}ni=1 are i.i.d. position indices drawn from Unif([N]).The goal is to minimize the population
risk Rarc(Θ) by minimizing some empirical risk, potentially with weight regularization. We use three
formalizations of learning algorithms to prove our results.

1. Constrained ERM minimizes an empirical risk R̂arc subject to the model parameters belonging on some
(e.g., norm-constrained) set Θ. Concretely, let

Θ̂ ∈ arg min
Θ∈Θ

R̂arc(Θ).

Theorem 4 considers constrained ERM algorithms for bounded-weight transformers with point-wise risk
R̂TR

n (Θ), and Theorem 7 uses R̂RNN
n (Θ) for RNNs. Note that the upper bounds proved for training with

point-wise empirical risk R̂arc
n readily transfer to training with averaged empirical risk R̂arc

n,N .

2. Min-norm ε-ERM minimizes the norm of the parameters, subject to sufficiently small loss:

Θ̂ε ∈ arg min
{Θ:R̂arc(Θ)−min R̂arc≤ε}

∥vec(Θ)∥2. (2.4)

Theorem 9 uses min-norm ε-ERM to place a lower bound on the sample complexity of RNNs with R̂RNN
n (Θ).

The two formulations can be related by letting εΘ denote the risk penalty for restricting parameters to Θ.

3. Beyond ERM, Theorem 6 also considers stationary points of the averaged or point-wise loss, with ℓ2
regularization. This learning algorithm is presented in greater detail in Definition 5.

3 Transformers

A single-layer Transformer is composed of an attention layer and a fully connected feedforward network
that is applied in parallel to the outputs of attention. In the following, we describe our assumptions on the
different components of the Transformer architecture.

Positional encoding. To break the permutation equivaraince of Transformers, we append positional
information to the input tokens. Given a prompt p, we consider an encoding given by

Z(p) =

(
x1 . . . xN

enc(1, t1) . . . enc(N, tN)

)
∈ RDe×N ,

where enc : [N] × [N]q → Rdenc provides the encoding of the position and of ti, and De := d + denc. We use
zi to refer to the ith column above. We remark that allowing enc to take ti as input allows specific encodings

5

of the indices ti that take advantage of the qSTR structure; examples of this have been considered in prior
works [WWHL24]. In practice, we expect such useful encodings to be learned automatically by previous
layers in the Transformer. We remark that for a fair comparison, in our lower bounds for other architectures
we allow arbitrary processing of ti in their encoding procedure. To specify enc, we use a set of vectors {ωi}Ni=1

in Rde that satisfy the following property.

Assumption 3. We have |⟨ωi,ωj⟩| ≤ 1
2 for all i ̸= j, and ∥ωi∥2 = 1 for all i.

Such a set of vectors can be obtained e.g., by sampling random Rademacher vectors from the unit cube
{±1/

√
de}de , with de = Θ(logN), which is the scaling we assume throughout the paper. We can now define

enc(i, ti) =
√
d/q(ωi,ωti1 , . . . ,ωtiq)⊤ ∈ R(q+1)de ,

hence denc = (q+ 1)de and De = d+ (q+ 1)de. The
√

d/q prefactor ensures that xi and enc(i, ti) will roughly
have the same ℓ2 norm, resulting in a balanced input to the attention layer.

Multi-head attention. Given a sequence {zi}Ni=1 where zi ∈ RDe with De as the embedding dimension, a
single head of attention outputs another sequence of length N in RDe , given by

fAttn(p;WQ,WK ,W V) =

 N∑
j=1

W V zj
e⟨WQzi,WKzj⟩∑N
l=1 e

⟨WQzi,WKzl⟩


i∈[N]

.

Where WK ,WQ,W V are the key, query, and value projection matrices respectively. We can simplify the

presentation by replacing W⊤
QWK with a single parameterizing matrix for query-key projections denoted

by WQK ∈ RDe×De , and absorbing W V into the weights of the feedforward layer. This provides us with a
simplified parameterization of attention, which we denote by fAttn(p;WQK). This simplification is standard
in theoretical works (see e.g. [LIPO23, ACDS23, ZFB24, WWHL24]). Our main separation results still apply
when maintaining separate trainable projections; the above only simplifies the exposition.

We can concatenate the output of H attention heads with separate key-query projection matrices to

obtain a multi-head attention layer with H heads. We denote the output of head h ∈ [H] with fAttn(p;W
(h)
QK).

The output of the multi-head attention at position i is then given by

f
(H)
Attn(p;W

(1)
QK, . . . ,W

(H)
QK)i = (fAttn(p;W

(1)
QK)i, . . . , fAttn(p;W

(H)
QK)i)

⊤ ∈ RHDe .

We will denote by ΘQK = (W
(1)
QK, . . . ,W

(H)
QK) the parameters of the multi-head attention.

Finally, a two-layer neural network acts on the output of the attention to generate labels. Given input
h ∈ RHDe , the output of the network is given by

f2NN(h;a2NN,W 2NN, b2NN) = a⊤2NNσ(W 2NNh + b2NN),

where W 2NN ∈ Rm×HDe are the first layer weights, b2NN,a2NN ∈ Rm are the second layer weights and biases,
and m is the width of the layer. We can also use the summarized notation Θ2NN = (a2NN,W 2NN, b2NN) to refer
to the feedforward layer weights. As a result, the prediction of the transformer at position i is given by

ŷTR(p;ΘTR)i = f2NN(f
(H)
Attn(p;ΘQK)i;Θ2NN),

where ΘTR = (ΘQK,Θ2NN) denotes the overall trainable parameters of the Transformer. We will use the
notation ŷTR(p;ΘTR) = (ŷTR(p;ΘTR)1, . . . , ŷTR(p;ΘTR)N)⊤ ∈ RN to denote the vectorized output.

3.1 Limitations of Transformers with Few Heads

In this section, we will demonstrate that H ≥ Ω(q) is required to learn qSTR models, even from a pure
approximation perspective, i.e. with access to population distribution. In contrast to [AYB24], we do not
put any assumptions on the rank of the key-query projections, i.e. our lower bound applies even when the
key-query projection matrix is full-rank.

6

Proposition 3. Consider a qSTR model where yi = 1√
qd

∑q
j=1

(
∥xtij∥2 − E

[
∥xtij∥2

])
, xi ∼ N (0,Σi) such

that Σi = Id for i < N/2 and Σi = 0 for i ≥ N/2. Then, there exists a distribution over (ti)i∈[N] such that

for any choice of ΘTR (including arbitrary {W (h)
QK}h∈[H]), we have

1

N
E
[
∥y − ŷTR(p;ΘTR)∥22

]
≥ 1 − (q + d)H

qd
.

Remark. We highlight the importance of the nonlinear dependence of yi on x for the above lower bound.
In particular, for the sparse token averaging task introduced in [SHT23], a single-head attention layer with a
carefully constructed embedding suffices for approximation.

The above proposition implies that given sufficiently large dimensionality d ≫ q, approximation alone
necessitates at least H = Ω(q) heads. In Appendix A.2, we present the proof of Proposition 3, along with
Proposition 21 which establishes an exact lower bound H ≥ q for all d ≥ 1, at the expense of additional
restrictions on the query-key projection matrix.

3.2 Learning Guarantees for Multi-Head Transformers

We consider the following parameter class ΘTR = {∥vec(Θ)∥2 ≤ R} and provide a learning guarantee for
empirical risk minimizers over ΘTR, with its proof deferred to Appendix A.1.

Theorem 4. Let Θ̂ = arg minΘ∈ΘTR
R̂TR

n (Θ) and m = mg. Suppose we set H = q and R2 = Θ̃(r2a/mg +
mgr

2
w + q2/d). Under Assumptions 1 to 3, we have

RTR(Θ̂n) ≲ ε2NN + Õ

(
C1

√
mgq(d + q) + q3 + qd2

n

)

where C1 = R2qd, with probability at least 1 − n−c for some absolute constant c > 0.

Attention Weights

d+ de
d

0

20

30

40

W
ei

gh
t

M
ag

ni
tu

de

Figure 2: The trained attention weights
W⊤

QWK match our theoretical construc-
tion, see Equation (A.2). We use the 1STR
setup of Figure 1 with N = 100.

We make the following remarks.

• First, the sample complexity above depends on N only up to
log factors as desired. Second, we can remove the C1 factor by
performing a clipping operation with a sufficiently large constant
on the Transformer output. Note that the first and second terms
in the RHS above denote the approximation and estimation
errors respectively. Extending the above guarantee to cover
m ≥ mg and H ≥ q is straightforward.

• This bound provides guidance on the relative merits of scaling
the parameter complexity of the feedforward versus the atten-
tion layer, which remains an active research area related to
Transformer scaling laws [HSSL24, JMB+24], by highlighting
the trade-off between the two in achieving minimal generalization
error. Concretely, mg ≫ d + q represents a regime where the
complexity is dominated by the feedforward layer learning the
downstream task g, while mg ≪ d+ q signifies dominance of the
attention layer learning to retrieve the relevant tokens.

• By incorporating additional structure in the ERM solution, it is possible to obtain improved sample
complexities. A close study of the optimization dynamics may reveal such additional structure in the solution
reached by gradient-based methods, pushing the sample complexity closer to the information-theoretic
limit of Ω(qd). Figure 2 demonstrates that the attention weights achieved through standard optimization
of a Transformer match our theoretical constructions (see Equation A.2), even while maintaining separate
WQ and WK during training. We leave the study of optimization dynamics and the resulting sample
complexity for future work.

7

4 Feedforward Neural Networks (FFNs)

In this section, we consider a general formulation of a feedforward network. Our only requirement will
be that the first layer performs a fully-connected projection. The subsequent layers of the network can
be arbitrarily implemented, e.g. using attention blocks or convolution filters. Specifically, the FFN will
implement the mapping p 7→ f(T ,Wx) where W ∈ Rm1×Nd is the weight matrix in the first layer,
x = (x⊤1 , . . . ,x

⊤
N)⊤ ∈ RNd, and f : [N]qN × Rm1 → RN implements the rest of the network. Unlike the

Transformer architecture, here we give the network full information of T = (t1, . . . , tN), and in particular
the network can implement arbitrary encodings of the position variables t1, . . . , tN . This formulation covers
usual approaches where encodings of t are added to or concatenated with x.

For our negative result on feedforward networks, we can further restrict the class of qSTR models, and
only look at simple models, where a single set of indices t is shared at all positions. Note that for simple-qSTR
models, R̂n of (2.3) and R̂n,N of (2.2) will be equivalent, thus we only consider one of them. Additionally,
the lower bound of this section holds regardless of the loss function used for training. Therefore, for some
arbitrary loss ℓ : R× R → R, we define the empirical risk of the FFN as

L̂FFN(f,W) :=
1

nN

n∑
i=1

N∑
j=1

ℓ(y
(i)
j , f(T (i),Wx(i))j),

where T (i) = (t
(i)
1 , . . . , t

(i)
N). We still use RFFN(f,W) for expected squared loss. Our lower bound covers a

broad set of algorithms, characterized by the following definition.

Definition 5. Let ASP denote the set of algorithms that return a stationary point of the regularized empirical
risk of an FFN. Specifically, for every A ∈ A, A(Sn) returns fA(Sn) and WA(Sn), such that

∇W L̂FFN(fA(Sn),WA(Sn)) + λWA(Sn) = 0,

for some λ > 0 depending on A. Sn above denotes the training set. Let AERM denote the set of algorithms
that return the min-norm approximate ERM. Specifically, every A ∈ AERM returns

A(Sn) = arg min
{f,W :L̂FFN(f,W)≤ε}

∥W ∥F,

for some ε ≥ 0. Define A := ASP ∪ AERM.

In particular, A goes beyond constrained ERM in that it also includes the (ideal) output of first-order
optimization algorithms with weight decay, or ERM with additional ℓ2 penalty on the weights. The following
minimax lower bound shows that all algorithms in class A fail to learn even the subset of simple-qSTR models
with a sample complexity sublinear in N .

Theorem 6. Suppose x ∼ N (0, INd), and consider the simple-1STR model with ti1 = t1 for all i ∈ [N],
where t1 is drawn independently and uniformly in [N], and a linear link function, i.e. y = ⟨u,xt1⟩ for some
u ∈ Sd−1. Let A be the class of algorithms in Definition 5. Then,

inf
A∈A

sup
u∈Sd−1

RFFN(fA(Sn),WA(Sn)) ≥ 1 − n

Nd
,

with probability 1 over the training set Sn.

Remark. The above lower bound implies that learning the simple 1STR model with FFNs requires at least
Nd samples. Note that here we do not have any assumption on m1, i.e. the network can have infinite width.
This is a crucial difference with the lower bounds in [SHT23, WWHL24], where the authors only prove a
computational lower bound, i.e. arguing that a similar model cannot be learned unless m1 ≥ Nd.

The main intuition is that from the stationarity property of Definition 5, the rows of the trained W will
always be in the span of the training samples x(i) for i ∈ [n]. This is an n-dimensional subspace, and the
best predictor that only depends on this subspace still has a loss determined by the variance of y conditioned
on this subspace. By randomizing the target direction u, we can observe that the label y can depend on all
Nd target directions. As a result, as long as n < Nd, this variance will be bounded away from zero, leading
to the failure of FFNs, even with infinite compute/width. For the detailed proof, we refer to Appendix B.

8

5 Recurrent Neural Networks

In this section, we first provide positive results for RNNs by proving that they can learn simple-qSTR with a
sample complexity only polylogarithmic in N , thus establishing a separation in their learning capability from
feedforward networks. Next, we turn to general qSTR, where we provide a negative result on RNNs, proving
that to learn such models their sample complexity must scale with NΩ(1) regardless of model size, making
them less statistically efficient than Transformers. Throughout this section, we focus on bidirectional RNNs,
since the qSTR model is not necessarily causal and the output at position i may depend on future tokens.

5.1 RNNs can learn simple-qSTR

A bidirectional RNN maintains, for each position in the sequence, a forward and a reverse hidden state,
denoted by (h→i)Ni=1 and (h←i)Ni=1, where h→i ,h←i ∈ Rdh . These hidden states are obtained by initializing
h→1 = h←N = 0dh

and recursively applying

h→i = Πrh

(
h→i−1 + f→h (h→i−1, zi−1;Θ→h)

)
, ∀i ∈ {2, . . . , N}

h←i = Πrh

(
h←i+1 + f←h (h←i+1, zi+1;Θ←h)

)
, ∀i ∈ {1, . . . , N − 1},

where Πrh : Rdh → Rdh is the projection Πrhh = (1 ∧ rh/∥h∥2)h, and f→h and f←h are implemented by
feedforward networks, parameterized by Θ→h and Θ←h respectively. Recall zi = (x⊤i , enc(i, ti)

⊤)⊤ is the
encoding of xi. We remark that while we add Πrh for technical reasons, it resembles layer normalization
which ensures stability of the state transitions on very long inputs; a more involved analysis can replace Πrh

with standard formulations of layer normalization. Additionally, directly adding h→i−1 and h←i+1 to the output
of transition functions represents residual or skip connections. The output at position i is generated by

yi = fy(h→i ,h←i , zi;Θy),

which is another feedforward network. Specifically, we consider an RNN with deep transitions [PGCB13] and
let f→h (·;Θ→h) be an Lh layer feedforward network, given by

f→h (·;Θ→h) = W→
Lh

σ
(
W→

Lh−1 . . . σ(W→
2 σ(W→

1 (·) + b→1) + b→2) . . . + b→Lh−1
)
,

therefore Θ→h = (W→
1 , b→1 , . . . ,W→

Lh−1, b
→
Lh−1,W

→
Lh

). We can similarly define f←h (·;Θ←h) with depth Lh,
and fy(·;Θy) with depth Ly. We denote the complete output of the RNN via

ŷRNN(p;ΘRNN) = (fy(h→1 ,h←1 , z1;Θy), . . . , fy(h→N ,h←N , zN ;Θy)) ∈ RN .

We now define the constraint set of this architecture. Let

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN

}
,

where W→
1,h contains the first dh columns of W→

1 , and the conditions above are introduced to ensure f→h and
f←h are at most αN -Lipschitz with respect to the hidden state input. One way to meet this requirement is to

multiply W→
1,h by a factor of αN/

∏Lh

l=2∥W
→
l ∥op in the forward pass. Without this Lipschitzness constraint,

current techniques for proving uniform RNN generalization bounds will suffer from a sample complexity
linear in N , see e.g. [CLZ20]. We have the following guarantee for RNNs learning simple-qSTR models.

Theorem 7. Let Θ̂ = arg minΘ∈ΘRNN
R̂RNN

n (Θ). Suppose Assumptions 1 to 3 hold with the simple-qSTR model,

i.e. ti = t for all i ∈ [N] and some t drawn from [N]q. Then, with Lh, Ly = O(1), rh = Θ̃(
√
qd), and for any

αN ≤ N−1, we obtain

RRNN(Θ̂) ≲ ε2NN +

√
poly(d, q,mg, ra, rw, ε

−1
2NN, log(nN))

n
,

with probability at least 1 − n−c for some absolute constant c > 0.

9

As desired, the above sample complexity depends on N only up to polylogarithmic factors. In particular,
we can choose αN = 0 and fix W→

1,h = W←
1,h = 0, which would simplify the network parametrization. Namely,

in our construction f→ and f← do not need to depend on h→ and h← respectively. The dimension of RNN
weights, implicit in the formulation above, must have a similar polynomial scaling as evident by the proof of
the above theorem in Appendix C.

5.2 RNNs cannot learn general qSTR

For our lower bound, we will consider a broad class of recurrent networks, without restricting to a specific
form of parametrization. Specifically, we consider bidirectional RNNs chracterized by

h→i+1 = projrh
(
f→h (h→i ,xi, ti, i)

)
, ∀ i ∈ {1, . . . , N − 1}

h←i−1 = projrh
(
f←h (h←i ,xi, ti, i)

)
, ∀ i ∈ {2, . . . , N}

yi = fy(U→h→i ,U←h←i ,xi, ti, i), ∀i ∈ [N]

where fy : Rdh × Rdh × Rd × [N]q+1 → R, f→h , f←h : Rdh × Rd × [N]q+1 → Rdh , U→,U← ∈ Rdh×dh , dh
is the width of the model, and rh > 0 is some constant. Moreover, projrh : Rdh → Rdh is any mapping

that guarantees
∥∥projrh(·)

∥∥
2
≤ rh. As mentioned before, this operation mirrors the layer normalization to

ensure that hi remains stable. Further, we assume fy(·,x, t) is L/rh-Lipschitz for all x ∈ Rd and t ∈ [N]q.
This formulation covers different variants of (bidirectional) RNNs used in practice such as LSTM and GRU,
and includes the RNN formulation of Section 5.1 as a special case. Define U := (U→,U←) ∈ Rdh×2dh for
conciseness. Note that in practice fy, f

→
h , f←h are determined by additional parameters. However, the only

weight that we explicitly denote in this formulation is U , since our lower bound will directly involve this
projection, and we keep the rest of the parameters implicit for our representational lower bound.

Our technique for proving a lower bound for RNNs differs significantly from that of FFNs, and in particular
we will control the representation cost of the qSTR model, i.e., a lower bound on the norm of ΘRNN.

We will now present the RNN lower bound, with its proof deferred to Appendix C.3.

Proposition 8. Consider the 1STR model where x ∼ N (0, INd) with a linear link function, i.e. yj =
〈
u,xtj

〉
for some u ∈ Sd−1. Further, ti is drawn independently from the rest of the prompt and uniformly from [N]
for all i ∈ [N]. Then, there exists an absolute constant c > 0, such that

1

N
E
[
∥y − ŷRNN(p)∥2

]
≤ c,

implies

dh ≥ Ω
(N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

(N

L2 log(1 + dh)

)
.

Remark. Note that the unboundedness of Gaussian random variables is not an issue for approximation
here, since (g(x1), . . . , g(xN)) is highly concentrated around SN−1(

√
N). In fact, one can directly assume

(g(x1), . . . , g(xN)) ∼ Unif(SN−1(
√
N)) and derive a similar lower bound. The choice of Gaussian above is

only made to simplify the presentation of the proof.

The above proposition has two implications. First, it has a computational consequence, implying that any
RNN representing the qSTR models requires a width that grows at least linearly with the context-length
N . A similar lower bound in terms of bit complexity was derived in [SHT23] using different tools. More
importantly, the norm lower bound ∥U∥F ≥ Ω̃(

√
N) has a generalization consequence, as it suggests that

norm-based generalization bounds cannot guarantee a sample-complexity independent of N .

To translate the above representational cost result to a sample complexity lower bound, we now introduce
the parametrization of the output function fy. The exact parametrization of the transition functions will
be unimportant, and we will use the notation f→h (h,x, t;Θ→h) to denote a general parameterized function
(similarly with f←). We will assume fy is given by a feedforward network,

fy(U→h→,U←h←,x, t;Θy) = WLy
σ
(
. . . σ(W 2σ(Uh + W yz + by) + b2) . . .

)
,

10

where h = (h→,h←) ∈ R2dh , z = (xi, fE(ti, i)) ∈ Rd+dE . Here, fE(ti, i) is an arbitrary encoding function
with arbitrary dimension dE . Then Θy = (U ,W y, by,W 2, b2, . . . ,WLy), and ΘRNN = (U ,Θy,Θ

→
h ,Θ←h).

Note that thanks to the homogeneity of ReLU, we can always reparameterize the network by taking h̄ = h/rh,
W̄ y = W y/rh, b̄y = by/rh, and W̄ 2 = W 2/rh without changing the prediction function. Thus, in the
following, we take rh = 1 without losing the expressive power of the network. We then have the following
lower bound on the sample complexity of min-norm ε-ERM.

Theorem 9. Consider the 1STR model of Proposition 8. Suppose the size of the hidden state, the depth of
the prediction function, and the weight norm respectively satisfy dh ≤ eN

c

, 2 ≤ Ly ≤ C, and ∥vec(ΘRNN)∥2 ≤
eN

c/Ly for some absolute constants c < 1 and C ≥ 2, and recall we set rh = 1 due to homogeneity of the
network. Let Θ̂ε be the min-norm ε-ERM of R̂RNN

n , defined in (2.4). Then, there exist absolute constants
c1, c2, c3 > 0 such that if n ≤ O(N c1), for any ε ≥ 0, with probability at least c2 over the training set,

1

N
E
[∥∥∥ŷRNN(p; Θ̂n,ε) − y

∥∥∥2
2

]
≥ c3.

Remark. It is possible to remove the subexponential bound on ∥vec(ΘRNN)∥ by allowing the learner to
search over families of RNN architectures with arbitrary dh ≤ eN

c

rather than fixing a single dh. In practice,
even when fixing dh, one would avoid solutions that violate this norm constraint due to numerical instability.

To prove the above theorem, we use the fact that an RNN that generalizes on the entire data distribution
(hence approximates the 1STR model) requires a weight norm that scales with

√
N , while overfitting on the

n samples in the training set with zero empirical risk is possible with a poly(n) weight norm. As a result, as
long as n ≤ N c1 for some small constant c1 > 0, min-norm ε-ERM will choose models that overfit rather
than generalize. A similar approach was taken in [POW+24] to prove sample complexity separations between
two and three-layer feedforward networks. The complete proof is presented in Appendix C.4.

6 Conclusion

In this paper, we established a sample complexity separation between Transformers and baseline architectures,
namely feedforward and recurrent networks, for learning sequence-to-sequence models where the output at
each position depends on a sparse subset of input tokens described in the input itself, coined the qSTR model.
We proved that Transformers can learn such a model with sample complexity almost independent of the
length of the input sequence N , while feedforward and recurrent networks have sample complexity lower
bounds of N and NΩ(1), respectively. Further, we established a separation between FFNs and RNNs by
proving that recurrent networks can learn the subset of simple-qSTR models where the output at all positions
is identical, whereas feedforward networks require at least N samples. An important direction for future
work is to develop an understanding of the optimization dynamics of Transformers to learn qSTR models,
and to study sample complexity separations that highlight the role of depth in Transformers.

Acknowledgments

The authors thank Alberto Bietti and Song Mei for useful discussions. MAE was partially supported by the
NSERC Grant [2019-06167], the CIFAR AI Chairs program, and the CIFAR Catalyst grant.

References

[AAM23] Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pages 2552–2623. PMLR, 2023.

[ACDS23] Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 37:45614–45650, 2023.

11

[ASA+23] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

[AWA+22] Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length gen-
eralization in large language models. Advances in Neural Information Processing Systems,
35:38546–38556, 2022.

[AYB24] Noah Amsel, Gilad Yehudai, and Joan Bruna. On the benefits of rank in attention layers. arXiv
preprint arXiv:2407.16153, 2024.

[Bac17] Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1–53, 2017.

[BAG20] S. Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. In Conference on Empirical Methods in Natural Language
Processing, 2020.

[BBSS22] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models
with shallow neural networks. In Advances in Neural Information Processing Systems, 2022.

[BCW+23] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2023.

[BES+22] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang.
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the
Representation. arXiv preprint arXiv:2205.01445, 2022.

[BFT17] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. Advances in neural information processing systems, 30, 2017.

[BHBK24] Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the
representational capabilities of transformers and recurrent architectures, 2024.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[CB20] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss, 2020.

[CLZ20] Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent
neural networks. In Proceedings of the Twenty Third International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
1233–1243. PMLR, 2020.

[CS24] Sourav Chatterjee and Timothy Sudijono. Neural networks generalize on low complexity data.
ArXiv, abs/2409.12446, 2024.

[DBK+20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[DKL+23] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. Learning
two-layer neural networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

12

[DLS22] Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn Repre-
sentations with Gradient Descent. In Conference on Learning Theory, 2022.

[EGKZ22] Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine Learning,
pages 5793–5831. PMLR, 2022.

[FGBM23] Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a
study through the random features lens. Advances in Neural Information Processing Systems,
36, 2023.

[FZG+23] Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in Neural
Information Processing Systems, 36, 2023.

[Hah20] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, December 2020.

[HSSL24] Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all
attention is needed, 2024.

[JBKM24] Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me:
Transformers are better than state space models at copying. ArXiv, abs/2402.01032, 2024.

[JMB+24] Samy Jelassi, Clara Mohri, David Brandfonbrener, Alex Gu, Nikhil Vyas, Nikhil Anand, David
Alvarez-Melis, Yuanzhi Li, Sham M. Kakade, and Eran Malach. Mixture of parrots: Experts
improve memorization more than reasoning, 2024.

[KNS24] Juno Kim, Tai Nakamaki, and Taiji Suzuki. Transformers are minimax optimal nonparametric
in-context learners. In ICML 2024 Workshop on In-Context Learning, 2024.

[KS24] Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought.
arXiv preprint arXiv:2410.08633, 2024.

[LAG+23] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing
attention glitches with flip-flop language modeling, 2023.

[LCW21] Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of
self-attention matrices. ArXiv, abs/2106.03764, 2021.

[LIPO23] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In International
Conference on Machine Learning, pages 19565–19594. PMLR, 2023.

[LLZM24] Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024.

[LMZ18] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning
Theory, pages 2–47. PMLR, 2018.

[MHPG+23] Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A
Erdogdu. Neural networks efficiently learn low-dimensional representations with sgd. In The
Eleventh International Conference on Learning Representations, 2023.

[MHWE24] Alireza Mousavi-Hosseini, Denny Wu, and Murat A Erdogdu. Learning multi-index models
with neural networks via mean-field langevin dynamics. arXiv preprint arXiv:2408.07254, 2024.

13

[MS23] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought, 2023.

[MS24] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. In The Twelfth International Conference on Learning Representations, 2024.

[NLB+18] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro.
Towards understanding the role of over-parametrization in generalization of neural networks.
arXiv preprint arXiv:1805.12076, 2018.

[OSSW24] Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Pretrained transformer efficiently
learns low-dimensional target functions in-context. arXiv preprint arXiv:2411.02544, 2024.

[OWSS19] Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of
bounded norm infinite width relu nets: The multivariate case, 2019.

[PGCB13] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. How to construct
deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.

[POW+24] Suzanna Parkinson, Greg Ongie, Rebecca Willett, Ohad Shamir, and Nathan Srebro. Depth
separation in norm-bounded infinite-width neural networks. In The Thirty Seventh Annual
Conference on Learning Theory, pages 4082–4114. PMLR, 2024.

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. OpenAI Blog, 2018.

[SHT23] Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations
of transformers. Advances in Neural Information Processing Systems, 36, 2023.

[SHT24] Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and
logarithmic depth. In Proceedings of the 41st International Conference on Machine Learning,
2024.

[Tru24] Lan V Truong. On rank-dependent generalisation error bounds for transformers. arXiv preprint
arXiv:2410.11500, 2024.

[TT23] Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization
bounds for transformers, 2023.

[VDT24] Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast conver-
gence rates for self-attention. ArXiv, abs/2402.05738, 2024.

[VONR+23] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151–35174. PMLR,
2023.

[VOT+24] Kiran Vodrahalli, Santiago Ontanon, Nilesh Tripuraneni, Kelvin Xu, Sanil Jain, Rakesh Shivanna,
Jeffrey Hui, Nishanth Dikkala, Mehran Kazemi, Bahare Fatemi, Rohan Anil, Ethan Dyer, Siamak
Shakeri, Roopali Vij, Harsh Mehta, Vinay Ramasesh, Quoc Le, Ed Chi, Yifeng Lu, Orhan Firat,
Angeliki Lazaridou, Jean-Baptiste Lespiau, Nithya Attaluri, and Kate Olszewska. Michelangelo:
Long context evaluations beyond haystacks via latent structure queries, 2024.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

[WCM21] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study
on approximating turing machines with transformers, 2021.

14

[WDL24] Kaiyue Wen, Xingyu Dang, and Kaifeng Lyu. Rnns are not transformers (yet): The key
bottleneck on in-context retrieval, 2024.

[WLLM19] Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

[WWHL24] Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D. Lee. Transformers provably learn sparse
token selection while fully-connected nets cannot. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

[YBR+19] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions?, 2019.

[YCA23] Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize
exactly the star-free languages, 2023.

[ZBL+23] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. ArXiv, abs/2310.16028, 2023.

[ZFB24] Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models
in-context. Journal of Machine Learning Research, 25(49):1–55, 2024.

15

Table of Contents

1 Introduction 1

1.1 Our Contributions . 2

1.2 Related Work . 2

2 Problem Setup 4

3 Transformers 5

3.1 Limitations of Transformers with Few Heads . 6

3.2 Learning Guarantees for Multi-Head Transformers . 7

4 Feedforward Neural Networks (FFNs) 8

5 Recurrent Neural Networks 9

5.1 RNNs can learn simple-qSTR . 9

5.2 RNNs cannot learn general qSTR . 10

6 Conclusion 11

A Details of Section 3 17

A.1 Proof of Theorem 4 . 17

A.2 Details on Limitations of Transformers with Few Heads . 23

B Proof of Theorem 6 25

C Proofs of Section 5 26

C.1 Approximations . 27

C.2 Generalization Upper Bounds for RNNs . 33

C.3 Proof of Proposition 8 . 38

C.4 Proof of Theorem 9 . 40

D Auxiliary Lemmas 43

16

A Details of Section 3

Here we present the omitted results and proofs of Section 3. We begin by presenting the improved sample
complexity for Transformers.

A.1 Proof of Theorem 4

To prove Theorem 4, we will prove the more general theorem below.

Theorem 10. Let Θ̂ := arg minΘ∈ΘTR
R̂TR

n (Θ), where

ΘTR :=
{
∥a2NN∥2 ≤ ra/

√
m, ∥(W 2NN, b2NN)∥F ≤ rw

√
m,
∥∥∥W (h)

QK

∥∥∥
2,1

≤ α ∀h ∈ [H]
}
.

Suppose H = q, m = mg, and α = Θ̃(1) (given in Lemma 11). Then, under Assumptions 1 to 3, with
probability at least 1 − n−c for some absolute constant c > 0, we have

RTR(Θ̂) ≤ O(ε2NN) + Õ

(
C1

√
(mgq(d + q) + r6zr

2
ar

2
wq

2 ∧ q(q2 + d2))

n

)
, (A.1)

where C1 = qr2ar
2
wr

2
z .

We begin with a lemma establishing the capability of Transformers in approximating qSTR models.

Lemma 11. Suppose Assumption 2 holds. Let rx =
√

3Cxed log(nN). Assume H = q and mg = m. Then,
there exists ΘTR such that

sup
{∥xj∥2≤rx, ∀j∈[N]}

∣∣g(xti1 , . . . ,xtiq) − ŷTR(p;ΘTR)i
∣∣ ≤ 2

√
ε2NN,

and

∥a2NN∥2 ≤ ra√
m
, ∥(W 2NN, b2NN)∥F ≤

√
mrw,

∥∥∥∥W (h)
QK

⊤
∥∥∥∥
2,1

≤ 2deq

d
log

(
2rarwrxN

√
q

ε2NN

)
,

for all h ∈ [H].

Proof. In our construction, the goal of attention head h at position i will be to output ztih . Namely, we
want to achieve

fAttn(p;W
(h)
QK)i ≈ ztih .

Note that to do so, for each key token zj , we only need to compute ⟨ωtih ,ωj⟩. Therefore, most entries in

W
(h)
QK can be zero. We only require a block of de × de, which corresponds to comparing ωj and ωtih when

comparing query zi and key zj . Thus, we let

W
(h)
QK =

0(d+hde)×d 0(d+hde)×de
0(d+hde)×qde

0de×d αIde
0de×qde

0(q−h)de×d 0(q−h)de×de
0(q−h)de×qde

 (A.2)

Then, we have
〈
zi,W

(h)
QKzj

〉
= α⟨ωtih ,ωj⟩d/q. We can then verify that∥∥∥AfAttn(p;W

(h)
QK)i −Aztih

∥∥∥
2
≤
∑
j ̸=tih

e−αd/(2q)(∥Azj∥ + ∥Aztih∥2)

for every matrix A. We will specifically choose A to be the projection onto the first d coordinates in the
following. Hence, α will control the error in the softmax attention approximating a “hard-max” attention
that would exactly choose ztih .

17

To construct the weights of the feedforward layer a2NN,W 2NN, b2NN, we let a2NN = ag and b2NN = bg from
Assumption 2, and define W 2NN by extending W g with zero entries such that

W 2NN

zti1

. . .
ztiq

 = W g

xti1

. . .
xtiq

.

Then ∥W 2NN∥F = ∥W g∥F. Notice that · 7→ a⊤σ(W (·) + b) is rarw Lipschitz. As a result, for any x with
∥x∥ ≤ rx we have ∣∣g(xti1 , . . . ,xtiq) − ŷTR(p;ΘTR)i

∣∣ ≤ √
ε2NN + εAttn,

where we recall ∣∣g(xti1 , . . . ,xtiq) − f2NN((zti1 , . . . ,ztiq);a2NN,W 2NN, b2NN)
∣∣ ≤ √

ε2NN,

and

εAttn =
∣∣∣f2NN((zti1 , . . . ,ztiq);Θ2NN) − f2NN(f

(q)
Attn(p;ΘQK);Θ2NN)

∣∣∣
≤ rarw

√√√√ q∑
h=1

∥∥∥AfAttn(p;W
(h)
QK)i −Aztih

∥∥∥2
2

≤ 2rarwrxN
√
qe−αd/(2q),

where we recall Azj = xj . Thus, with

α = 2q log(2rarwrxN
√
q/
√
ε2NN)/d

we can guarantee the distance is at most 2
√
ε2NN.

Before proceeding to obtain statistical guarantees, we will show that we can consider the encodings z
(i)
j

to be bounded with high probability. This will be a useful event to consider throughout the proofs of various
sections.

Lemma 12. Suppose {p(i)}ni=1 are n input prompts (not necessarily independent) drawn from the input

distribution, with tokens denoted by {(x
(i)
j)Nj=1}ni=1. Under Assumption 1, for any rx > 0 we have

P
(

max
i∈[n],j∈[N]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed).

In particular, for rx =
√

3Cxed log(nN) we have

P
(

max
i∈[n],j∈[N]

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤
√

1

nN
.

Proof. Via Markov’s inequality, for any p > 0 and rx > 0, we have

P
(

max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤

E
[
maxi,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤
E
[∑

i,j

∥∥∥x(i)
j

∥∥∥p
2

]
rpx

≤ Nn(Cxpd)p/2

rpx
.

Let p = r2x/(Cxed). Then,

P
(

max
i,j

∥∥∥x(i)
j

∥∥∥
2
≥ rx

)
≤ nNe−r

2
x/(2Cxed),

which proves the first statement, and the second statement follows by plugging in the specific value of rx.

18

We are now ready to move to the generalization analysis of Transformers. First, we have to formally
define the prediction function class of Transformers with a notation suitable for this section. We begin by
defining the function class of attention. We have

FAttn = {p, j 7→ f
(H)
Attn(p;ΘQK)j : ΘQK ∈ ΘQK},

where we will later specify ΘQK. Additionally, we define F2NN by

F2NN = {h 7→ f2NN(h;Θ2NN) : Θ2NN ∈ Θ2NN},

where Θ2NN = (a2NN,W 2NN, b2NN), and we will later specify Θ2NN. Then the class FTR can be defined as

FTR = {p, j 7→ f2NN(fAttn(p)j) : fAttn ∈ FAttn, f2NN ∈ F2NN}.

Recall we use the Sn to denote the training set. To avoid extra indices, we will use the notation p, j ∈ Sn

to go over {p(i), j(i)}ni=1. We can then define the following distances on the introduced function classes

dTR∞(f, f ′) := sup
p,j

|f(p)j − f ′(p)j |, ∀f, f ′ ∈ FTR

dAttn∞ (f, f ′) := sup
p,j

∥f(p)j − f ′(p)j∥2, ∀f, f ′ ∈ FAttn

d2NN∞ (f, f ′) := sup
∥·∥2≤

√
Hrz

|f(·) − f ′(·)|, ∀f, f ′ ∈ F2NN.

We choose the radius
√
Hrz for defining d2NN∞ since on the event of Lemma 12, this will be the norm bound on

the output of the attention layer at every position.

Recall that for a distance d∞ and a set F , an ϵ-covering F̂ is a set such that for every f ∈ F , there
exists f̂ ∈ F̂ such that d∞(f, f̂) ≤ ϵ. The ϵ-covering number of F , denoted by C(F , d∞, ϵ), is the number of
elements of the smallest such F̂ . The following lemma relates the covering number of FTR to those of FAttn

and F2NN.

Lemma 13. Suppose f2NN is Lf Lipschitz for every f2NN ∈ F2NN. Then, for any ϵ2NN, ϵAttn > 0, on the event
of Lemma 12 we have

log C(FTR, d
TR
∞, ϵ2NN + Lf ϵAttn) ≤ log C

(
F2NN, d

2NN
∞ , ϵ2NN

)
+ log C

(
FAttn, d

Attn
∞ , ϵAttn

)
.

Proof. The proof simply follows from the triangle inequality, namely

sup
p,j

∣∣∣fTR(p;ΘTR)j − fTR(p; Θ̂TR)j

∣∣∣ ≤ sup
∥h∥2≤

√
Hrz

∥∥∥f2NN(h;ΘNN) − f2NN(h; Θ̂NN)
∥∥∥
2

+ Lf sup
p,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥
2
.

We have the following estimate for the covering number of F2NN.

Lemma 14. Suppose ∥vec(ΘRNN)∥2 ≤ R and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and j ∈ [N]. Then,

log C
(
F2NN, d

2NN
∞ , ϵ

)
≲ mgHDe log(1 + poly(R)/ϵ).

This is a special case of Lemma 30, proved in Appendix C.

For the next step, define the distance

dQK
∞ (ΘQK,Θ

′
QK) := sup

p,j

∥∥∥Θ⊤QKzj −Θ′
⊤
QKzj

∥∥∥
2

on ΘQK, where we recall ΘQK = (W
(1)
QK, . . . ,W

(H)
QK) ∈ RDe×HDe . The following lemma relates the covering

number of the multi-head attention layer to the matrix covering number of the class of attention parameters.

19

Lemma 15. Suppose
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and j ∈ [N]. Then,

log C(FAttn, d
Attn
∞ , ϵ) ≤ log C

(
ΘQK, d

QK
∞ ,

ϵ

2r2z

)
.

Proof. We recall that Z ∈ RN×De denotes the encoded prompt, and softmax is applied row-wise. For

conciseness, Let ∆ := supp,j

∥∥∥f (H)
Attn(p;ΘQK)j − f

(H)
Attn(p; Θ̂QK)j

∥∥∥2
2
. Then we have

∆ = sup
p,j∈Sn

∑
h∈[H]

∥∥∥fAttn(p;W
(h)
QK)j − fAttn(p; Ŵ

(h)

QK)j

∥∥∥2
2

= sup
p,j∈Sn

∑
h∈[H]

∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)Z − softmax
(
z⊤j Ŵ

(h)

QKZ
⊤)Z∥∥∥2

2

≤ sup
p,j∈Sn

∑
h∈[H]

∥∥∥Z⊤∥∥∥2
2,∞

∥∥∥softmax(z⊤j W
(h)
QKZ

⊤)⊤ − softmax(z⊤j Ŵ
(h)

QKZ
⊤)⊤

∥∥∥2
1
,

where we used Lemma 39 for the last inequality. Moreover, by [EGKZ22, Corollary A.7],∥∥∥softmax
(
z⊤j W

(h)
QKZ

⊤)⊤ − softmax
(
z⊤j Ŵ

(h)

QKZ
⊤)∥∥∥

1
≤ 2
∥∥∥ZW (h)⊤

QKzj −ZŴ
(h)⊤

QKzj

∥∥∥
∞

≤ 2
∥∥∥Z⊤∥∥∥

2,∞

∥∥∥W (h)⊤
QKzj − Ŵ

(h)⊤
QKzj

∥∥∥
2
.

Consequently,

∆ ≤ 4r4z sup
p,j∈Sn

∑
h∈[H]

∥∥∥∥W (h)
QK

⊤
zj − Ŵ

(h)⊤
QKzj

∥∥∥∥2
2

= 4r4z sup
p,j∈Sn

∥∥∥Θ⊤QKzj − Θ̂
⊤
QKzj

∥∥∥2
2
,

which completes the proof.

Further, we have the following covering number estimate for ΘQK.

Lemma 16. Suppose ΘQK = {∥ΘQK∥2,1 ≤ R2,1, ∥ΘQK∥F ≤ RF } and
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and

j ∈ [N]. Then,

log C
(
ΘQK, d

QK
∞ , ϵ

)
≲ min

(
r2zR

2
2,1 log(2HD2

e)

ϵ2
, HD2

e log
(

1 +
2RF rz

ϵ

))
.

Proof. The first estimate comes from Maurey’s sparsification lemma [BFT17, Lemma 3.2], while the second
estimate is based on the inequality∥∥∥Θ⊤QKzj − Θ̂

⊤
QKzj

∥∥∥
2
≤ rz

∥∥∥ΘQK − Θ̂QK

∥∥∥
F
,

and covering ΘQK with the Frobenius norm, see e.g. Lemma 41.

Finally, we obtain the following covering number for FTR.

Proposition 17. Suppose ∥a2NN∥2 ≤ rm,a, ∥(W 2NN, b2NN)∥F ≤ Rm,w, and
∥∥∥W (h)

QK

∥∥∥
2,1

≤ rQK for all h ∈ [H].

Further assume
∥∥∥z(i)

j

∥∥∥
2
≤ rz for all i ∈ [n] and j ∈ [N]. Let R := max(rm,a, Rm,w, rz). Then,

log C(FTR, dF , ϵ) ≲mgHDe log(1 + R/ϵ)

20

+ min

(
r6zr

2
m,aR

2
m,wH

2r2QK log(HD2
e)

ϵ2
, HD2

e log
(

1 +

√
HrQKr

3
zrm,aRm,w

ϵ

))
.

Proof. The proof follows from a number of observations. First, given the parameterization in the statement of
the proposition, we have Lf = rm,aRm,w in Lemma 13. Moreover, we have RF ≤

√
HrQK and R2,1 ≤ HrQK

in Lemma 16. The rest follows from combining the statements of the previous lemmas.

Next, we will use the covering number bound to provide a bound for Rademacher complexity. Recall that
for a class of loss functions L, the empirical and population Rademacher complexities are defined as

R̂n(L) := E

[
sup
ℓ∈L

1

n

n∑
i=1

ξiℓ(p
(i),y(i), j(i))

]
, Rn(L) := E(p,y,j)

[
R̂n(L)

]
respectively, where (ξi) are i.i.d. Rademacher random variables. Let the class of loss functions be defined by

Lτ := {(p,y, j) 7→ (fTR(p)j − yj)
2 ∧ τ : fTR ∈ FTR}, (A.3)

for some constant τ > 0 to be fixed later. We then have the following bound on Rademacher complexity.

Lemma 18. Suppose maxi∈[n],j∈[N]

∥∥∥z(i)
j

∥∥∥
2
≤ rz. For the loss class Lτ given by (A.3), we have

R̂n(Lτ) ≤ Õ

(
τ

√
C1 + (C2 ∧ C3)

n

)
,

where C1 = mgHDe, C2 = r6zr
2
m,aR

2
m,wH

2r2QK , and C3 = HD2
e .

Proof. Let C(L, dL∞, ϵ) denote the ϵ-covering number of L, where ℓ(p,y, j) = (f(p)j−yj)
2∧τ and ℓ′(p,y, j) =

(f ′(p)j − yj)
2 ∧ τ . Then, for any α ≥ 0, by a standard chaining argument,

R̂n(Lτ) ≲ α +

∫ τ

α

√
log C(L, dL∞, ϵ)

n
dϵ.

≲ α +

∫ τ

α

√
log C(F , dTR∞, ϵ/(2

√
τ))

n

≲ α +

∫ τ

α

√
C1 log(R

√
τ/ϵ)

n
dϵ +

{∫ τ

α

√
τC2 log(HD2

e)

nϵ2
dϵ

}
∧

{∫ τ

α

√
C3 log(1 + C4

√
τ/ϵ)

n
dϵ

}

≲ α +

√
τ2C1 log(R

√
τ/α)

n
+

{√
τC2 log(HD2

e)

n
log
(τ
α

)}
∧

{√
τ2C3 log(1 + C4

√
τ/α)

n

}
,

where (Ci)
3
i=1 are given in the statement of the lemma and C4 =

√
HrQKr

3
zrm,aRm,w. Choosing α = 1/

√
n

completes the proof.

Using standard symmetrization techniques, the above immediately yields a high probability upper bound
for the expected truncated loss of any estimator in ΘTR.

Corollary 19. Let Θ̂ = arg minΘ∈ΘTR
R̂TR

n (Θ), where ΘTR is described in Proposition 17. Define rz =√
r2x + d(1 + 1/q) where rx is defined in Lemma 12. Let C1, C2, and C3 be defined as in Lemma 18. Then,

with probability at least 1 − δ − (nN)−1/2 over Sn, we have

RTR
τ (Θ̂) − R̂TR

n (Θ̂) ≤ Õ

(
τ

√
(C1 + C2 ∧ C3)

n

)
+ O

(
τ

√
log(1/δ)

n

)
,

where RRNN
τ (Θ̂) := Ep,j,y

[
(ŷTR(p; Θ̂)j − yj)

2 ∧ τ
]

21

Proof. The proof is a standard consequence of Rademacher-based generalization bounds, with the additional
observation that

1

n

n∑
i=1

(
ŷTR(p

(i); Θ̂)j(i) − y
(i)

j(i)

)2 ∧ τ ≤ R̂TR
n (Θ̂).

The last step in the proof of the generalization bound is to bound RTR(Θ̂) with RTR
τ (Θ̂). This is achieved

by the following lemma.

Lemma 20. Define κ2 := Hr2m,aR
2
m,wr

2
z . Then, under Assumption 1, for τ ≍ κ2 log(κ2N

√
n) + log(κ2

√
n)s,

we have

RTR(Θ̂) −RTR
τ (Θ̂) ≤

√
1

n
.

Proof. For conciseness, define ∆y :=
∣∣∣ŷTR(p; Θ̂)j − yj

∣∣∣. By the Cuachy-Schwartz inequality, we have

RTR(Θ̂) = E
[
∆2

y1
[
∆y ≤

√
τ
]]

+ E
[
∆2

y1
[
∆y >

√
τ
]]

≤ RTR
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

.

Moreover,

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷ(p; Θ̂)4j

]1/2
.

By Assumption 1, we have E
[
y4j
]1/2

≲ 1. Additionally, note that∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≤ ∥a2NN∥2(
√
H∥W 2NN∥F max

l∈[N]
∥zl∥2 + ∥b2NN∥2)

≤
√
Hrm,aRm,w(1 + max

l∈[N]
∥zl∥2).

To bound maxl∈[N]∥zl∥2, we use the subGaussianity of ∥xl∥2 characterized in Assumption 1. Specifically, for
all r ≥ 1

E
[

max
l∈[N]

∥xl∥42

]
≤ E

[
max
l∈[N]

∥xl∥4r2

]1/r
≤ E

[
N∑
l=1

∥xl∥4r2

]1/r

≤ N1/r E
[
∥x1∥4r2

]1/r
≲ N1/rC2

xd
2r2

≲ (Cxd log(N))2,

where the last inequality follows from choosing r = logN . As a result,

E
[
ŷ(p; Θ̂)4j

]1/2
≲ Hr2m,aR

2
m,wr

2
z log(N)2 =: κ2 log(N)2.

We now turn to bounding the probability. We have

P
(
∆y ≥

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷ(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
≤ exp

(
−Ω(τ1/s)

)
+ N exp

(
− Ω

(τ

Hr2m,aR
2
m,wr

2
z

))
,

where the second inequality follows from sub-Weibull concentration bounds for y and Lemma 12. Choosing
τ = Θ(κ2 log(κ2N

√
n) + log(κ2

√
n)s) completes the proof.

22

Proof of Theorem 10. The theorem follows immediately from the approximation guarantee of Lemma 11,
the generalization bound of Corollary 19, and the truncation control of Lemma 20.

A.2 Details on Limitations of Transformers with Few Heads

While Proposition 3 is only meaningful in the setting of d = Ω(q), the following proposition provides an exact
lower bound H ≥ q on the number of heads for all d, at the expense of additional restrictions on the attention
matrix.

Proposition 21. Consider the qSTR data model. Suppose d = 1 and yi = 1√
q

∑q
j=1(x2

tij − E[x2
tij]). Assume

xi ∼ N (0, σ2
i) independently, such that σi = 1 for i < N/2 and σi = 0 for i ≥ N/2. Further, assume

the attention weights between the data and positional encoding parts of the tokens are fixed at zero, i.e.

W
(h)
QK =

(
W (h)

x 0d×(q+1)de

0(q+1)de×d W (h)
ω

)
where W (h)

x ∈ Rd×d and W (h)
ω ∈ R(q+1)de×(q+1)de are the attention

parameters, for i ∈ [H]. Then, there exists a distribution over (ti)i∈[N] such that for any choice of ΘTR, we
have

1

N
E
[
∥y − ŷTR(p;ΘTR)∥22

]
≥ 1 − H

q
.

Note that in our approximation constructions for learning qSTR, we always fixed the attention weights
between data and positional components to be zero, which is why we assume the same in Proposition 21.

Proof of Proposition 21. We will simply choose ti = (1, . . . , q) deterministically for i ≥ N
2 and draw ti

from an arbitrary distribution for i < N/2. Note that we have

RTR(ΘTR) =
1

N

N∑
i=1

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
≥ 1

N

N∑
i=N/2

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
.

Let ϕ : RHDe → R denote the mapping by the feedforward layer. Fix some i ≥ N/2. Note that

ŷTR(p;ΘTR)i = ϕ(f
(H)
Attn(p;ΘQK)i)

= ϕ(

N∑
j=1

α
(1)
ij zj , . . . ,

N∑
j=1

α
(H)
ij zj)

= ϕ̃
(q∑

j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (zl)

N
l=q+1

)
,

for some real-valued function ϕ̃, where

α
(h)
ij =

e

〈
zi,W

(h)
QKzj

〉
∑N

l=1 e

〈
zi,W

(h)
QKzj

〉 ,

are the attention scores. Let A(i) ∈ RH×q be the matrix such that A
(i)
hj = α

(h)
ij . Let x1:q = (x1, . . . , xq)⊤ ∈ Rq.

Then,

RTR(ΘTR) ≥
1

N

N∑
i=N/2

E
[(

yi − ϕ̃
(
A(i)x1:q, (zl)

N
l=q+1

))2]

≥ 1

Nq

N∑
i=N/2

E
[
Var
(
∥x1:q∥2 |V (i)x1:q

)]
(A.4)

23

where V (i) ∈ RH×q is a matrix whose rows form an orthonormal basis of span(α
(1)
i , . . . ,α

(H)
i) where

α
(h)
i = (α

(h)
i1 , . . . , α

(h)
iq)⊤ ∈ Rq (note that V (i) may have fewer than H rows, we consider the worst-case for

the lower bound which is having H rows). The second inequality follows from the fact that zl is independent

of x1:q for l ≥ q + 1, and the fact that best predictor of yi (in L2 error) given A(i)x1:q is E
[
yi |V (i)x1:q

]
.

Next, thanks to the structural property of W
(h)
QK in the assumption of the proposition and the fact that

xi = 0 for i ≥ N/2, α
(h)
ij does not depend on (xl)l∈[q] for all h ∈ [H], i ≥ N/2, and j ∈ [q]. As a result, V (i)

is independent of x1:q. Therefore,

x1:q |V (i)x1:q ∼ N (V (i)⊤V (i)x1:q, Iq − V (i)⊤V (i)).

By Lemma 40, we have Var(∥x1:q∥2 |V (i)x1:q) = 2(q − H), which combined with (A.4) completes the
proof.

We now present the similarly structured proof of Proposition 3.

Proof of Proposition 3. The choice of distribution over (ti)i≥N/2 is similar to the one presented above,

i.e. we let ti = (1, . . . , q) deterministically for i ≥ N
2 . However, for i < N

2 , we draw ti such that they are
independent from x. Once again, we use the fact that

RTR(ΘTR) ≥
1

N

N∑
i=N/2

E
[
(yi − ŷTR(p;ΘTR)i)

2
]
.

Recall zi = (x⊤i , enc(i, ti)
⊤). Fix some i ≥ N/2, and define

α̃
(h)
ij = e

〈
enc(i,ti),W

(h,e,x)
QK xj

〉
+
〈
enc(i,ti),W

(h,e,e)
QK enc(j,tj)

〉
,

where we use the notation

W
(h)
QK =

W
(h,x,x)
QK W

(h,x,e)
QK

W
(h,e,x)
QK W

(h,e,e)
QK

,

for the query-key matrix of each head. Recall that xi = 0 for i < N/2, thus the attention weights are given by

α
(h)
ij =

α̃
(h)
ij∑N

l=1 α̃
(h)
il

.

Recall from the proof of Proposition 21 that we denote the feedforward layer by ϕ : RHDe → R. With this
notation, we have

ŷTR(p;ΘTR)i = ϕ(

N∑
j=1

α
(1)
ij zj , . . . ,

N∑
j=1

α
(H)
ij zj)

= ϕ̃
(q∑

j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (α̃

(h)
ij)h=H,j=N

h=1,j=1 , (zj)
N
j=l+1

)
.

Therefore, using the fact that zj and α̃
(h)
ij are independent of x1:q for j ≥ l + 1, we have

RTR(ΘTR) =
1

N

N∑
i=N/2

E


yi − ϕ̃

(q∑
j=1

α
(1)
ij xj , . . . ,

q∑
j=1

α
(H)
ij xj , (α̃

(h)
ij)h=H,j=N

h=1,j=1 , (zj)
N
j=l+1

)2


≥ 1

Nqd

N∑
i=N/2

E
[
Var

(
∥x1:q∥2 |

(〈
α

(h,r)
i ,x1:q

〉)h=H,r=d

h=1,r=1
, (α̃

(h)
ij)h=H,j=q

h=1,j=1

)]

24

≥ 1

Nqd

N∑
i=N/2

E
[
Var

(
∥x1:q∥2 |

(〈
α

(h,r)
i ,x1:q

〉)h=H,r=d

h=1,r=1
,
(〈

w
(h)
i,j ,x1:q

〉)H,q

h=1,j=1

)]

=
1

Nqd

N∑
i=N/2

E
[
var
(
∥x1:q∥2 |V (i)x1:q

)]
,

where α
(h,r)
i ∈ Rqd such that

(α
(h,r)
i)jl =

{
α
(h)
ij , if l = r

0, if l ̸= r,

which yields
〈
α

(h,r)
i ,x1:q

〉
=
∑q

j=1 α
(h)
ij xjr, and w

(h)
i,j ∈ Rqd such that

(w
(h)
i,j)sl =

{(
W

(h,e,x)
QK

⊤
enc(i, ti)

)
l
, if s = j

0 if s ̸= j,

which yields
〈
w

(h)
i,j ,x1:q

〉
=
〈
W (h,e,x)⊤ enc(i, ti),xj

〉
. Finally, V (i) is a matrix whose rows form an or-

thonormal basis of span
((

α
(h,r)
i

)h=H,r=d

h=1,r=1
,
(
w

(h)
i,j

)h=H,j=q

h=1,j=1

)
. Namely, V (i) has at most H(d + q) rows. Recall

that

x1:q |V (i)x1:q ∼ N (V (i)⊤V (i)x1:q, Iqd − V (i)⊤V (i)).

Once again, by Lemma 40, we conclude that var(∥x1:q∥2 |V (i)x1:q) ≥ 2(qd−H(q + d)), which completes the
proof.

B Proof of Theorem 6

Let u be sampled uniformly from Sd−1 independently from p = (t1,x), and note that we have

sup
u∈Sd−1

E
[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
≥ Eu∼Unif(Sd−1),j,y,p∼P

[
(yj − fA(Sn)(t1,WA(Sn)x)j)

2
]
,

for all A ∈ A. From this point, we will simply use f for fA(Sn) and W for WA(Sn). Next, we argue that the
output weights of any algorithm in A satisfy

wk =

n∑
i=1

α
(i)
k x(i), ∀k ∈ [m1],

for some coefficients (α
(i)
k)i∈[n],k∈[m1]. This is straightforward to verify for A ∈ ASP, as

∇wk
L̂FFN(f,W) ∈ span(x(1), . . . ,x(n)).

For A ∈ AERM, note that L̂FFN only depends on wk through its projection on span(x(1), . . . ,x(n)). As a
result, any minimum-norm ε-ERM would satisfy wk ∈ span(x(1), . . . ,x(n)).

Note that for n ≤ Nd, the span of x(1), . . . ,x(n) is n-dimensional with probability 1 over Sn. Let
v(1), . . . ,v(n) denote an orthonormal basis of span(x(1), . . . ,x(n)), and let V = (v(1), . . . ,v(n))⊤ ∈ Rn×Nd.
Recall that for the simple-1STR model considered here, yj = y =

〈
u,xtq

〉
for j ∈ [N]. Then,

Eu,y,j,p

[
(yj − f(t1,Wx)j)

2
]
≥ Eu,t1,V x[Var(y |u, t1,V x)] = Eu,t1,V x[Var(⟨P t1u,x⟩ |u, t1,V x)],

where P t1 ∈ RNd×d has the form
(
0d, . . . , Id︸ ︷︷ ︸

t1

, . . . ,0d

)⊤
. The conditioning above comes from the fact that

via training, f and W can depend on u, but the prediction depends on x only through V x. Conse-
quently, we replace the predicition of the FFN by the best predictor having access to u, t1, and V x.

25

Note that t1, u, and V x are jointly independent, and the joint distribution
(
⟨P t1u,x⟩,V x

)
is given by

N
(

0,

(
1 V P t1u

u⊤P⊤t1V
⊤ In

))
, thus we have

Var(⟨P t1u,x⟩ |u, t1,V x) = 1 − ∥V P t1u∥
2
.

In particular,

Eu[Var(⟨P t1u,x⟩ |u, t1,V x)] = 1 − 1

d

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2,

and

Eu,t1 [Var(⟨P t1u,x⟩ |u, t1,V x)] = 1 − 1

Nd

N∑
t1=1

n∑
i=1

∥∥∥P⊤t1v(i)
∥∥∥2

= 1 − 1

Nd

n∑
i=1

∥∥∥v(i)
∥∥∥2 = 1 − n

Nd
.

C Proofs of Section 5

The following is the roadmap we will take for the proof of Section 5.1. The goal here is to implement a
bi-directional RNN in such a way that

h→i ≈
(
xt11[t1 < i], . . . ,xtq1[tq < i]

)
,

and
h←i ≈

(
xt11[t1 > i], . . . ,xtq1[tq > i]

)
.

Throughout this section, we will use the notation

Ψ(x, t, i) = (x⊤1[t1 = i], . . . ,x⊤1[tq = i])⊤.

We can obtain the hidden states above through the following updates

h→i+1 = h→i + Ψ(xi,ωt,ωi),

and
h←i−1 = h←i + Ψ(xi,ωt,ωi).

where

Ψ(xi,ωt,ωi)l =
xiσ(⟨ωi,ωtl⟩ − δ)

1 − δ
= xi1[tl = i], ∀ l ∈ [q]

where we recall ωt = (ωt1 , . . . ,ωtq), and σ is ReLU. As a result, our network must approximate

f→h (h→i ,xi,ωt,ωi;Θ
→
h) = f←h (h←i ,xi,ωt,ωi;Θ

←
h) ≈ Ψ(xi,ωt,ωi).

A core challenge in this approximation is that if we simply control

∥f→h (h→i , zi;Θ
→
h) − Ψ(xi,ωt,ωi)∥2 ≤ ε, (C.1)

this error will propoagte through the forward pass, and we will have∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≲ Nε.

26

As a result, we would like an implementation that satisfies the following

∥f→h (h→i , zi;Θ
→
h)l − Ψ(xi,ωt,ωi)l∥2 ≤

{
0 tl ̸= i

ε tl = i.
(C.2)

Note that

h→i =

i−1∑
j=1

f→h (h→j , zj ;Θ
→
h).

Since for each l ∈ [q], tl = j is possible for at most one j ∈ [N], (C.2) implies∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj ,ωt,ωj)

∥∥∥∥∥∥
2

≤ √
qε,

for all i ∈ [N], hence, we can avoid dependence on N .

We can implmenet f→h to satisfy (C.1) with a depth three network, where the first two layers implements〈
ωi,ωtj

〉
(as a sum of Lipschitz 2-dimensional functions, an example of their approximation is given by [Bac17,

Proposition 6]), and the third performs coordinate-wise product between xi and σ(
〈
ωi,ωtj

〉
− 1/2) (which

for each coordinate is a Lipschitz two-dimensional function). To ensure f→h satisfies (C.2), we can pass the
outputs to a fourth layer which rectifies its input near zero to be exactly zero using ReLU activations.

To generate yi from h→i and h←i , we first calculate

hi = fhh(h→i ,h←i ,xi,ωi,ωt)

≈ h→i + h←i + Ψ(xi,ωt,ωi)

≈ (xt1 , . . . ,xtq).

Finally, yi can be generated from hi by applying the two-layer neural network from Assumption 2 that
approximates yi = g(xt).

Note that the construction above has a complexity poly(d, q, log(nN)) (both in terms of number and
weight of parameters), only depending on N up to log factors. As a result, by a simple parameter-counting
approach, the sample complexity of regularized ERM would also be (almost) independent of N . We also
simply use the encoding

zi = (xi,ωi,ωti1 , . . . ,ωtiq)⊤,

for the RNN positive result. The scaling difference with the encoding for Transofrmers is only made to
simplify the exposition, as we no longer keep explicit dependence on d and q.

C.1 Approximations

As explained above, to implement f→h we first construct a depth three neural network (with two layers of
non-linearity) which approximately performs the following mapping

h
x
ωi

ωt1
...

ωtq


7→


x

⟨ωi,ωt1⟩
...〈

ωi,ωtq

〉
 7→

2xσ(⟨ωi,ωt1⟩ − 1/2)
...

2xσ(
〈
ωi,ωtq

〉
− 1/2)

.

The first mapping will be provided by

χ1 = A1σ(W 1χ0 + b1),

27

where χ0 = (h⊤,x⊤,ω⊤i ,ω
⊤
t1 , . . . ,ω

⊤
tq)⊤ ∈ Rdh+d+(q+1)de , W 1 ∈ Rm1×(dh+d+(q+1)de), b1 ∈ Rm1 , and A1 ∈

R(d+q)×m1 , with m1 as the width of the first layer. We will use the notation

χ1 = (χx
1 , χ

ω
1 (1), . . . , χω

1 (q))

to refer for the first d coordinates and the rest of the q coordinates of χ1 respectively, thus ideally χx
1 = x

and χω
1 (l) = ⟨ωi,ωtl⟩. The second mapping is provided by

χ2 = A2σ(W 2χ1 + b2),

where W 2 ∈ Rm2×(d+q), b2 ∈ Rm2 , and A2 ∈ Rdq×m2 . We will similarly use the notation χ2 =
(χ2(1), . . . ,χ2(q)), where our goal is to have χ2(l) ≈ 2xσ(⟨ωi,ωtl⟩ − 1/2). To implement the first mapping,
we rely on the following lemma.

Lemma 22. Let σ be the ReLU activation. For any ε > 0 and positive integer de, there exists m =
O(d3e(log(de/ε)/ε)

2), a ∈ Rm, W ∈ Rm×2de , and b ∈ Rm, such that

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

and
∥a∥2 ≤ O

(
d5/2e (log(de/ε)/ε)

3/2/
√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ 1, ∥b∥∞ ≤ 1.

Proof. Consider the mapping e1j , e2j 7→ e1je2j . Note that when |e1j | ≤ 1 and |e2j | ≤ 1, this mapping is√
2-Lipschitz, and the output is bounded between [−1, 1]. Then, by Lemma 42, for every εj > 0, there exists

mj ≤ O((1/εj log(1/εj))
2), aj ∈ Rmj ,W j ∈ Rmj×2de , and bj ∈ Rmj , such that

sup
|e1j |≤1,|e2j |≤1

∣∣∣∣∣e1je2j −
m∑
l=1

ajlσ
(〈
wjl, (ω

⊤
1 ,ω

⊤
2)⊤

〉
+ bjl

)∣∣∣∣∣ ≤ εj ,

∥aj∥2 ≤ O
(
(log(1/εj)/εj)

3/2/
√
mj

)
, ∥bj∥∞ ≤ 1, and ∥wjl∥1 ≤ 1. Specifically, the only non-zero coordinates

of wjl are the jth and de + jth coordinates.

Let εj = ε/de and m =
∑de

j=1 mj = O(d3e(log(de/ε)/ε)
2). Construct a, b ∈ Rm and W ∈ Rm×2de by

concatenating (aj), (bj), and (W j) respectively. The resulting network satisfies

sup
ω1,ω2∈Sde−1

∣∣∣∣⟨ω1,ω2⟩ − a⊤σ

(
W

(
ω1

ω2

)
+ b

)∣∣∣∣ ≤ ε,

while ∥a∥2 ≤ O
(
d
5/2
e (log(de/ε)/ε)

3/2/
√
m
)
, ∥b∥∞ ≤ 1, and

∥∥∥W⊤
∥∥∥
1,∞

≤ 1, completing the proof.

We can now specify A1,W 1, and b1 in our construction.

Lemma 23. For any ε > 0, let m̄1 = O(d3e(log(de/ε)/ε)
2) and m1 = 2d + qm̄1. Then, there exist

A1 ∈ R(d+q)×m1 , W 1 ∈ Rm1×(dh+d+(q+1)de), and b1 ∈ Rm1 , given by Equations (C.3) to (C.7), such that

χx
1 = x, |χω

1 (l) − ⟨ωi,ωtl⟩| ≤ ε,

for all h ∈ Rdh , x ∈ Rd, ωi, (ωtj)j∈[q] ∈ Sde−1, and l ∈ [q]. Furthermore, we have the following guarantees∥∥∥W⊤
1

∥∥∥
1,∞

≤ O(1), ∥b1∥∞ ≤ O(1),
∥∥∥A⊤1 ∥∥∥

1,∞
≤ O(d5/2e (log(de/ε)/ε)

3/2).

Proof. We define the decompositions

W 1 =

(
W 11

W 12

)
, b1 =

(
b11
b12

)
, A1 =

(
A11

A12

)
, (C.3)

28

where W 11 ∈ R2d×(dh+d+de), W 12 ∈ Rqm̄1×(dh+d+de), b11 ∈ R2d, b12 ∈ Rqm̄1 , A11 ∈ Rd×m1 , and A12 ∈
Rq×m1 . Let v1, . . . ,vd denote the standard basis of Rd, and notice that σ(z) − σ(−z) = z. Therefore, we can
implement the identity part of the mapping by letting

W 11 =


0dh

v⊤1 0⊤(q+1)de

0dh
−v⊤1 0⊤(q+1)de

...
...

0dh
v⊤d 0⊤(q+1)de

0dh
−v⊤d 0⊤(q+1)de

, (C.4)

as well as

b1 = 02d, and A11 =


1 −1 0 0 . . . 0 0⊤qm̄1

0 0 1 −1 . . . 0 0⊤qm̄1

...
...

...
...

...
...

...
0 . . . 0 0 1 −1 0⊤qm̄1

 (C.5)

Notice that
∥∥∥W⊤

11

∥∥∥
1,∞

= 1 and
∥∥∥A⊤11∥∥∥

1,∞
= 2. To implement the inner product part of the mapping, we

take the construction of weights, biases, and second layer weights from Lemma 22, and rename them as
W̃ 1 ∈ Rm̄1×2de , b̃1 ∈ Rm̄1 , and ã1 ∈ Rm̄1 . Let us introduce the decomposition W̃ 1 =

(
W̃ 11 W̃ 12

)
, where

W̃ 11, W̃ 12 ∈ Rm̄1×de . With this decomposition, we can separate the projections applied to the first and
second vectors in Lemma 22. We can then define

W 12 =


0m̄1×(dh+d) W̃ 11 W̃ 12 0m̄1×de

. . . 0m̄1×de

0m̄1×(dh+d) W̃ 11 0m̄1×de W̃ 12 . . . 0m̄1×de

...
...

...
...

...
...

0m̄1×(dh+d) W̃ 11 0m̄1×de 0m̄1×de . . . W̃ 12

, (C.6)

as well as

b12 =

b̃1
...

b̃1

, and A12 =


0⊤2d ã⊤1 0⊤m̄1

. . . 0⊤m̄1

0⊤2d 0⊤m̄1
ã⊤1 . . . 0⊤m̄1

...
...

...
...

...

0⊤2d 0⊤m̄1
. . . 0⊤m̄1

ã⊤1

. (C.7)

From Lemma 22, we have
∥∥∥W⊤

12

∥∥∥
1,∞

≤ 1, ∥b12∥∞ ≤ 1, and∥∥∥A⊤12∥∥∥
1,∞

= ∥ã1∥1 ≤ O(d5/2e (log(de/ε)/ε)
3/2),

which completes the proof.

To introduce the construction of the next layer, we rely on the following lemma which establishes the
desired approximation for a single coordinate, the proof of which is similar to that of Lemma 22.

Lemma 24. Let σ be the ReLU activation. Suppose |h| ≤ rh∞, |x| ≤ rx∞ and |z| ≤ 1. Let R :=√
1 + rx∞

2 + rh∞
2
. For any ε > 0, there exists m = O(R6(log(R/ε)/ε)3), a ∈ Rm, W ∈ Rm×2, and

b ∈ Rm, such that

sup
|h|≤rh∞,|x|≤rx∞,|z|≤1

∣∣h + 2xσ(z − 1/2) − a⊤σ
(
W (h, x, z)⊤ + b

)∣∣ ≤ ε

and
∥a∥2 ≤ O

(
R6(log(R/ε)/ε)2/

√
m
)
,
∥∥∥W⊤

∥∥∥
1,∞

≤ R−1, ∥b∥∞ ≤ 1.

Additionally, if rh∞ = 0, we have the improved bounds

m = O
(
R4(log(R/ε)/ε)2

)
, ∥a∥2 ≤ O

(
R5(log(R/ε)/ε)3/2/

√
m
)

29

Proof. Note that (h, x, z) 7→ h+2xσ(z−1/2) is 2R-Lipschitz, and |h + 2xσ(z − 1/2)| ≤ R. The proof follows
from Lemma 42 with dimension 3 when rh∞ ̸= 0 and dimension 2 otherwise.

With that, we can now construct the weights for the second mapping in the network.

Lemma 25. Suppose ∥χx
1 ∥∞ ≤ rx and maxl|χω(l)| ≤ 1. Let R :=

√
1 + r2x. Then, for every ε > 0 and

absolute constant δ ∈ (0, 1), there exists m̄2 ≤ O(R4(log(R/ε)/ε)3/2), m2 := qdm̄2, and A2 ∈ Rdh×m2 ,
W 2 ∈ Rm2×(d+q), and b2 ∈ Rm2 given by Equations (C.8) and (C.9) such that

∥χ2(l) − 2χx
1σ(χω

1 (l) − 1/2)∥∞ ≤ ε,

for all such χ1 and l ∈ [q], where we recall χ2 = A2σ(W 2χ1 + b2). Moreover, we have∥∥∥A⊤2 ∥∥∥
1,∞

≤ O(R4(log(R/ε)/ε)3/2),
∥∥∥W⊤

2

∥∥∥
1,∞

≤ R−1, ∥b2∥∞ ≤ 1.

Proof. Let W̃ =
(
w̃21 w̃22

)
, b̃, and ã be the weights obtained from Lemma 24, where w̃21, w̃22, b̃, ã ∈ Rm̄2 .

To construct W 2 and b2, we let

W 2 =



W 2(1, 1)
...

W 2(1, d)
...

W 2(q, 1)
...

W 2(q, d)


, b22 =



b2(1, 1)
...

b2(1, d)
...

b2(q, 1)
...

b2(q, d)


. (C.8)

where W 2(l, j) ∈ Rm̄2×(d+q) is given by

W 2(l, j) =
(
0m̄2×(j−1) w̃21 0m̄2×(d−j) 0m̄2×(l−1) w̃22 0m̄2×(q−l)

)
,

and b2(l, j) = b̃2. Consequently,
∥∥∥W⊤

2

∥∥∥
1,∞

≤ 1 and ∥b2∥∞ ≤ 1. Finally, we have

A2 =


ã⊤2 0⊤m̄2

. . . 0⊤m̄2

0⊤m̄2
ã⊤2 . . . 0⊤m̄2

...
...

...
...

0⊤m̄2
. . . 0⊤m̄2

ã⊤2

. (C.9)

Consequently, we obtain
∥∥∥A⊤2 ∥∥∥

1,∞
≤ O(R4(log(R/ε)/ε)3/2), completing the proof.

We are now ready to provide the four-layer feedforward construction of f→(h,x, t;Θ→h).

Proposition 26. Let z = (x,ωi,ωt1 , . . . ,ωtq). Then, for every ε > 0, there exists a feedforward network
with Lh = 4 layers given by

f→(h, z;Θ→h) = WLh
σ
(
. . . σ

(
W 2σ

(
W 1(h⊤, z⊤)⊤ + b1

)
+ b2

)
. . .
)

where W i ∈ Rmi×mi−1 , bi ∈ Rm
i for i ∈ {2, . . . , Lh − 1}, W 1 ∈ Rm1×dh+d+(q+1)de , b1 ∈ Rm1 , and WLh

∈
Rdh×mLh−1 that satisfies the following:

1. If tl = i, then ∥∥∥f→(h, z; Θ̂
→
h)l − x

∥∥∥
2
≤ ε

30

2. Else f→(h, z; Θ̂
→

)l = 0d,

for all l ∈ [q], h ∈ Rdh and ∥x∥2 ≤ rx. Additionally ∥W i∥F ≤ poly(rx, De, ε
−1) for all i ∈ [Lh] and

mi, ∥bi∥2 ≤ poly(rx, De, ε
−1) for all i ∈ [Lh − 1], where we recall De = d + (q + 1)de.

Proof. Let Ã1 ∈ R(d+q)×m1 , W̃ 1 ∈ Rm1×(dh+d+(q+1)de), b̃1 ∈ Rm1 be given by Lemma 23 with error parameter
ε1 and Ã2 ∈ Rdh×m2 , W̃ 2 ∈ Rm2×(d+q), b̃2 ∈ Rm2 be given by Lemma 25 with error parameter ε2. Recall
that

χ1 = Ã1σ
(
W̃ 1χ0 + b̃1

)
, χ2 = Ã2σ

(
W̃ 2χ1 + b̃2

)
.

By the triangle inequality,∥∥∥Ψ(x, t, i) − Ã2σ
(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤
∥∥∥Ψ(x, t, i) − Ã2σ

(
W̃ 2χ̄1 + b̃2

)∥∥∥
∞

+
∥∥∥Ã2σ

(
W̃ 2χ̄1 + b̃2

)
− Ã2σ

(
W̃ 2χ1 + b̃2

)∥∥∥
∞

≤ε2 +
∥∥∥Ã⊤2 ∥∥∥

1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

∥χ1 − χ̄1∥∞

≤ε2 +
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

ε1,

where χ̄1 = (x⊤, ⟨ωi,ωt1⟩, . . . ,
〈
ωi,ωtq

〉
)⊤. By letting ε2 = ε/4, we obtain

m2,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Similarly, we can let ε1 = ε/
(
4
∥∥∥Ã2

∥∥∥
1,∞

∥∥∥W̃ 2

∥∥∥
1,∞

)
, which yields

m1,
∥∥∥Ã2

∥∥∥
F
,
∥∥∥W̃ 2

∥∥∥
F
,
∥∥∥b̃2∥∥∥

2
≤ poly(rx, De, ε

−1).

Let

W 2 = W̃ 2Ã1, W 1 = W̃ 1, b1 = b̃1, b2 = b̃2.

Then,
χ2 = Ã2σ(W 2σ(W 1(h⊤z⊤)⊤ + b1) + b2),

satisfies ∥χ2 − Ψ(x, t, i)∥∞ ≤ ε/2 for all ∥x∥2 ≤ rx.

Recall that when tl ̸= i for some l ∈ [q], we would like to guarantee the output of the network to be equal
to Ψ(x, t, i)l = 0d. To do so, we rely on the fact that z 7→ σ(z − b)− σ(−z − b) is zero for |z| ≤ b, and has an
L∞ distance of b from the identity, i.e. |z − σ(z − b) + σ(−z − b)| ≤ b. This mapping needs to be applied
element-wise to χ2. Let W̃ 3 ∈ R2dh×dh , b3 ∈ R2dh , and W 4 ∈ Rdh×2dh via

W̃ 3 =


v⊤1
−v⊤1

...
v⊤d
−v⊤d

, b3 = −ε

2
12dh

, W 4 =

1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

.

As a result, χ3 = W 4σ(W̃ 3χ2 + b3) satisfies

|(χ3)j − (χ2)j | ≤

{
0 |(χ2)j | ≤ ε/2

ε/2 |(χ2)j | > ε/2
, ∀j ∈ [dh]. (C.10)

We thus make two observations. First, ∥χ3 − χ2∥∞ ≤ ε/2, and consequently ∥χ3(l) − Ψ(x, t, i)l∥∞ ≤ ε
for all l ∈ [q]. Second, when tl ̸= i, we have Ψ(x, t, i)l = 0d and |χ2(l)j | ≤ ε/2 for all j ∈ [d] since

31

∥χ2(l) − Ψ(x, t, i)l∥∞ ≤ ε/2. Consequently, by the first case in (C.10), we have χ3(l)j = 0 for all j ∈ [d]. We
can summarize these two observations as follows

∥χ3(l) − Ψ(x, t, i)l∥∞ ≤

{
0 tl ̸= i

ε tl = i
,

which completes the proof.

With the above implementation of f→(h, z;Θ→h), we have the following guarantee on h→i for all i ∈ [N].

Corollary 27. Let f→h be given by the construction in Proposition 26, and suppose rh ≥ √
q(rx +

√
dε).

Then, h→i satisfies the following guarantees for all i ∈ [N] and l ∈ [q]:

1. If tl ≥ i, then h→i (l) = 0d

2. If tl < i, then ∥h→i (l) − xtl∥∞ ≤ ε.

Proof. We can prove the statement by induction. Note that it holds for i = 1 since h→1 = 0d. For the
induction step, suppose it holds up to some i, and recall

h→i+1 = h→i + f→h (h→i , zi;Θ
→
h).

• If tl ≥ i + 1, then h→i (l) = 0d and f→h (h→j , zi;Θ
→
h) = 0d by Proposition 26.

• If tl < i < i + 1, then ∥h→i (l) − xtl∥∞ ≤ ε by induction hypothesis, and f→h (h→j , zj ;Θ
→
h) = 0d.

• Finally, if tl = i < i + 1, then h→i (l) = 0 and ∥f→h (h→i , zi;Θ
→
h) − xtl∥∞ ≤ ε.

Note that since
∥∥h→j ∥∥2 ≤ rh for all j ∈ [N], the projection Πrh will always be identity through the forward

pass, concluding the proof.

By symmetry, the same construction for f←h would yield a similar guarantee on h←j .

The last step is to design fy(h→,h←, z;Θy) such that

fy(h→,h←, zi;Θy) ≈ g
(
h→ + h← + (x⊤i 1[t1 = i], . . . ,x⊤i 1[tq = i])⊤

)
.

The following proposition provides the end-to-end RNN guarantee for approximating simple qSTR models.

Proposition 28. Suppose g satisfies Assumption 2. Then there exist RNN weights ΘRNN with vec(ΘRNN) ∈ Rp

(i.e. with p parameters) and rh ≥ √
qrx +

√
ε2NN/(rarw), such that

sup
i∈[N]

∣∣g(xt1 , . . . ,xtq) − ŷ(p;ΘRNN)i
∣∣2 ≤ 4ε2NN (C.11)

for all t ∈ [N]q and ∥xj∥2 ≤ rx for all j ∈ [N]. Additionally, we have

∥vec(ΘRNN)∥2 ≤ poly(rx, De, rw, ra, ε
−1
2NN), p ≤ poly(rx, De,mg, rw, ra, ε

−1
2NN), (C.12)

and f→h , f←h do not depend on h→ and h←, namely the first dh columns of W→
1 and W←

1 that are multiplied
by h→ and h← respectively are zero.

Proof. As the proof of this proposition mostly follows from the previous proofs in this section, we only state
the procedure for obtaining the desired weights.

Let (vj)
dh
j=1 denote the standard basis of Rdh . Since σ(z) − σ(−z) = z, we can implement the identity

mapping in Rdh via a two-layer feedforward network with the following weights

W id =


v⊤1
−v⊤1

...
v⊤dh

−v⊤dh

, bid = 02dh
,Aid =

1 −1 0 0 . . . 0 0
0 0 1 −1 . . . 0 0
0 0 0 0 . . . 1 −1

,

32

where W id ∈ R2dh×dh , bid ∈ R2dh , and Aid ∈ Rdh×2dh . Let W 1, b1, Ã1, W̃ 2, b2, Ã2 be given as in the proof
of Proposition 26, for achieving an L∞ error of ε̃, to be fixed later. Recall zi = (x⊤i ,ω

⊤
i ,ω

⊤
t1 , . . . ,ω

⊤
tq)⊤. In

the following, we remove the zero columns of W 1 corresponding to the h part of the input (see Lemma 23),
which does not change the resulting function. Our construction can then be denoted by

h→i
Aidσ(W id·)−−−−−−−−→ h→i

Aidσ(W id·)−−−−−−−−→ h→i ↘

h←i
Aidσ(W id·)−−−−−−−−→ h←i

Aidσ(W id·)−−−−−−−−→ h←i → h→i + h←i + χ2

a⊤
g σ(W g·+bg)−−−−−−−−−→ ŷRNN(p;ΘRNN)i

zi
Ã1σ(W 1·+b1)−−−−−−−−−→ χ1

Ã2σ(W̃ 2·+b2)−−−−−−−−−→ χ2 ↗

Note that the addition above can be implemented exactly by using the fact that σ(z1 + z2 + z3) − σ(−z1 −
z2 − z3) = z1 + z2 + z3. Specifically, the weights of this layer are given by

W add =


v⊤1 v⊤1 v⊤1
−v⊤1 −v⊤1 −v⊤1

...
...

...
v⊤dh

v⊤dh
v⊤dh

−v⊤dh
−v⊤dh

−v⊤dh

, badd = 02dh
, Aadd = Aid,

where W add ∈ R2dh×3dh , badd ∈ R2dh , Aadd ∈ Rdh×2dh .

Let Θ→h (and similarly Θ←h) be given by Proposition 26 with corresponding error εh. Using the shorthand
notation xt = (xt1 , . . . ,xtq) ∈ Rdq and x̂t = h→i + h←i + χ2, we have

∥h→i + h←i + χ2 − x̂t∥2 ≤

∥∥∥∥∥∥h→i −
i−1∑
j=1

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥h←i −
i+1∑
j=N

Ψ(xj , t, j)

∥∥∥∥∥∥
2

+ ∥χ2 − Ψ(xi, t, i)∥2

≤
√
qd(2εh + ε̃),

which holds for all input prompts p with ∥xj∥2 ≤ rx for all j ∈ [N]. Finally, we have

sup
∥xj∥2≤rx, ∀j∈[N]

∣∣g(xt) − a⊤g σ(W gx̂t + bg)
∣∣ ≤ sup
∥xj∥2≤rx, ∀j∈[N]

∣∣g(xt) − a⊤g σ(W gxt + bg)
∣∣

+ sup
∥xj∥2≤rx, ∀j∈[N]

∣∣a⊤g σ(W gxt + bg) − a⊤g σ(W gx̂t + bg)
∣∣

≤
√
ε2NN + rarw

√
qd(2εh + ε̃).

Choosing εh =
√
ε2NN/(4

√
qdrarw) and ε̃ =

√
ε2NN/(2

√
qdrarw), we obtain RNN weights that saitsfy

∥vec(ΘRNN)∥2 ≤ poly(rx, De, ra, rw, ε
−1
2NN), completing the proof.

C.2 Generalization Upper Bounds for RNNs

Recall the state transitions

h→j+1 = Πrh

(
h→j + f→h (h→j , zj ;Θ

→
h)
)

h←j−1 = Πrh

(
h←j + f←(h←, zj ;Θ

←)
)
.

We will use the notation h→j (p;Θ→h) and h←j (p;Θ←j) to highlight the dependence of the hidden states on the
prompt p and parameters Θ→h and Θ←h . We then define the prediction function as F (p;Θ→h ,Θ←h ,Θy) where

F (p;Θ→h ,Θ←h ,Θy)j = fy(h→j (p;Θ→h),h←j (p;Θ←h), zj ;Θy).

We can now define the function class

FRNN = {p, j 7→ F (p;Θ→h ,Θ←h ,Θy)j : Θ→h ,Θ←h ,Θy ∈ ΘRNN}.

33

We can then define our distance function by going over {p, j ∈ Sn},

d∞(F, F̂) = sup
p,j∈Sn

∣∣∣F (p;Θ→h ,Θ←h ,Θy)j − F (p; Θ̂
→
h , Θ̂

←
h ,Θy)j

∣∣∣.
We will further use the notation

fy(·;Θy) = W y
Ly

σ
(
W y

Ly−1 . . . σ(W 1
L1

(·) + by1) . . . + byLy−1
)
∈ Fy

NN,Ly
,

and
f→h (·;Θ→h) = W→

Lh
σ(W→

Lh−1 . . . σ(W→
1 (·) + b→1) . . . + b→Lh−1) ∈ F→NN,Lh

.

We similarly define F←NN,Lh
. The covering number of FRNN can be related to that of Fy

NN,Ly
, F→NN,Lh

, and
F→NN,Ly

, through the following lemma.

Lemma 29. Suppose for every Θ→h ,Θ←h ,Θy ∈ ΘRNN we have∥∥∥W y
Ly

. . .W y
1

∥∥∥
op

≤ Cy
W ,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN ,

where αN ≤ N−1. Then,

log C(FRNN, d∞, ϵ) ≤ log C(Fy
NN,Ly

, d∞, ϵ/2) + log C
(
F→NN,Lh

, d∞,
ϵ

4eCy
wN

)
+ log C

(
F←NN,Lh

, d∞,
ϵ

4eCy
wN

)
Proof. Throughout the proof, we will use the shorthand notation h→j = h→j (p;Θ→h) and ĥ

→
j = h→j (p; Θ̂

→
h),

with similarly define h←j and ĥ
←
j . We begin by observing

sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy) − fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣ ≤ E1 + E2

where

E1 := sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ;Θy) − fy(h→j ,h←j , zj ; Θ̂y)
∣∣∣

E2 := sup
p,j∈Sn

∣∣∣fy(h→j ,h←j , zj ; Θ̂y) − fy(ĥ
→
j , ĥ

←
j , zj ; Θ̂y)

∣∣∣.
Then, we observe that E1 = d∞(fy(·;Θy), fy(·; Θ̂y)).Thus, we can ensure E1 ≤ ϵ/2 with a covering {Θ̂y} of
size C(Fy

NN,Ly
, d∞, ϵ/2). Hence, we move to E2.

Using the Lipschitzness of fy, we obtain

E2 ≤
∥∥∥W y

Ly
. . .W y

1

∥∥∥
op

(
sup
p,j

∥∥∥h→j − ĥ→j

∥∥∥
2

+ sup
p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)
≤ Cy

W

(
sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2

+ sup
p,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2

)
.

Further, by Lipschitzness of Πrh , we have

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2

+ sup
p,j

∥∥∥f→h (h→j−1, zj−1; Θ̂
→
h) − f→h (ĥ

→
j−1, zj−1; Θ̂

→
h)
∥∥∥
2︸ ︷︷ ︸

=:Eh1

+ sup
p,j

∥∥∥f→h (h→j−1, zj−1;Θ→h) − f→h (h→j−1, zj−1; Θ̂
→
h)
∥∥∥
2︸ ︷︷ ︸

=:Eh2

.

34

By the Lipschitzness of f→h , for the second term we have

Eh
1 ≤

∥∥∥Ŵ→
Lh

. . . Ŵ
→
1,h

∥∥∥
op

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
≤ αN

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2
.

Moreover, we have Eh
2 ≤ d∞(f→h (·;Θ→h), f→h (·; Θ̂

→
h)). Consequently, we obtain

sup
p,j

∥∥∥h→j − ĥ
→
j

∥∥∥
2
≤ (1 + αN) sup

p,j

∥∥∥h→j−1 − ĥ
→
j−1

∥∥∥
2

+ d∞(f→h (·;Θ→h), f→h (·; Θ̂
→
h))

≤
j−2∑
l=0

(1 + αN)ld∞(f→h (·;Θ→h), f→(·; Θ̂
→
h))

≤ (1 + αN)j−1 − 1

αN
d∞(f→h (·;Θ→h), f→h (·; Θ̂

→
h))

≤ eNd∞(f→h (·;Θ→h), f→h (·; Θ̂
→
h)).

We can similarly obtain an upper bound on supp,j

∥∥∥h←j − ĥ
←
j

∥∥∥
2
. Hence, we have

E2 ≤ eCy
wN
{
d∞(f→h (·;Θ→h), f→h (·; Θ̂

→
h)) + d∞(f←h (·;Θ←h), f←h (·; Θ̂

←
h))

}
.

Therefore, by constructing ϵ/(2eCy
wN) coverings {Θ̂

→
h } and {Θ̂

←
h } which have sizes

C(F→NN,Lh
, ϵ/(4eCy

wN)), and, C(F←NN,Lh
, ϵ/(4eCy

wN))

respectively, we complete the covering of FRNN.

The next step is to bound the covering number of the class of feedforward networks, as performed by the
following lemma.

Lemma 30. Let

FNN,L = {x 7→ WLσ(WL−1σ(. . .W 2(σ(W 1x + b1) . . . + bL−1) : ΘNN ∈ ΘNN},

where ΘNN = (W 1, b1, . . . ,WL−1, bL−1,WL) and vec(ΘNN) ∈ Rp. Further, define the distance function

d∞(f, f ′) = sup
∥x∥≤R

|f(x) − f ′(x)|, ∀f, f ′ ∈ FNN,L.

Suppose ∥W l∥F, ∥bl∥2 ≤ R for all l. Then, for any absolute constant depth L = O(1), we have

log C(FNN,L, d∞, ϵ) ≤ p log(1 + poly(R)/ϵ).

Proof. Let x0 = x, xl = σ(W lxl−1 + bl) for l ∈ [L − 1], and xL = WLxL−1. Also let (x̂l) be the

corresponding definitions under weights and biases (Ŵ l) and (b̂l). First, we remark that for l ∈ [L− 1],

∥xl∥2 ≤ ∥W l∥op∥xl−1∥2 + ∥bl∥2 (C.13)

≤
l∏

i=1

∥W i∥op∥x0∥2 +

l−1∑
i=0

∥bl−i−1∥2
i∏

j=0

∥W l−j∥op + ∥bl∥2

≤ poly(R), (C.14)

where we used the fact that L is an absolute constant. Next, for l ∈ [L− 1], we have

∥xl − x̂l∥2 ≤
∥∥∥W lxl−1 − Ŵ lx̂l−1

∥∥∥
2

+
∥∥∥bl − b̂l

∥∥∥
2

≤ ∥W l∥op∥xl−1 − x̂l−1∥2 + ∥x̂l−1∥2
∥∥∥W l − Ŵ l

∥∥∥
op

+
∥∥∥bl − b̂l

∥∥∥
2

35

≤ poly(R)
{
∥xl−1 − x̂l−1∥2 +

∥∥∥W l − Ŵ l

∥∥∥
F

+
∥∥∥bl − b̂l

∥∥∥
2

}
.

Once again, using the fact that L is an absolute constant and by expnaind the above inequality, we obtain

∥xl − x̂l∥2 ≤ poly(R)

{
l∑

i=1

∥∥∥W i − Ŵ i

∥∥∥
F

+
∥∥∥bi − b̂i

∥∥∥
2

}
.

Finally, we have the bound

∥xL − x̂L∥2 ≤ ∥WL∥op∥xL−1 − x̂L−1∥2 + ∥x̂L−1∥2
∥∥∥WL − ŴL

∥∥∥
op

≤ poly(R)
∥∥∥vec(ΘNN) − vec(Θ̂NN)

∥∥∥
2
.

Consequently, we have

log C(FNN,L, d∞, ϵ) ≤ log C({Θ ∈ Rp : ∥Θ∥2 ≤ poly(d, q)}, ∥·∥2, ϵ/poly(R))

≤ p log(1 + poly(R)/ϵ),

where the last inequality follows from Lemma 41.

Therefore, we immediately obtain the following bound on the covering number of FRNN.

Corollary 31. Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤ R} and
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and j ∈ [N].

Then,
log C(FRNN, d∞, ϵ) ≤ p log(1 + poly(R)N/ϵ).

We can now proceed with standard Rademacher complexity based arguments. Similar to the argument in
Appendix A.1, we define a truncated version of the loss by considering the loss class

LRNN
τ = {(p,y, j) 7→ (fRNN(p)j − yj)

2 ∧ τ : fRNN ∈ FRNN},

where the constant τ > 0 will be chosen later. We then have the following bound on the empirical Rademacher
complexity of LRNN

τ .

Lemma 32. In the same setting as Corollary 31 and with τ ≥ 1, we have

R̂n(LRNN
τ) ≤ O

τ

√
p log(RNnτ

)
n

.

Proof. By a standard discretization bound for Rademacher complexity, for all ϵ > 0 we have

R̂n(LRNN
τ) ≤ ϵ + τ

√
2 log C(LRNN

τ , d∞, ϵ)

n

≤ ϵ + τ

√
2 log C(FRNN, d∞, ϵ/(2

√
τ))

n

≤ ϵ + τ

√
2p log(1 + poly(R)N

√
τ/ϵ)

n
,

where the second inequality follows from Lipschitzness of (·)2 ∧ τ . We conclude the proof by choosing
ϵ = 1/

√
n.

We can directly turn the above bound on the empirical Rademacher complexity into a bound on
generalization gap.

36

Corollary 33. Let Θ̂ = arg minΘ∈ΘRNN
R̂RNN

n (Θ). Suppose ΘRNN ⊆ {Θ ∈ Rp : ∥vec(Θ)∥2 ≤ R}, and

additionally
√

3Cxed log(nN) + q + 1 ≤ R. Then, for every δ > 0, with probability at least 1 − δ − (nN)−1/2

over the training set, we have

RRNN
τ (Θ̂) − R̂RNN

τ (Θ̂) ≤ O

(
τ

√
p log(RNnτ)

n
+ τ

√
log(1/δ)

n

)
.

Proof. We highlight that for the specified R, Lemma 12 guarantees
∥∥∥z(i)

j

∥∥∥
2
≤ R for all i ∈ [n] and j ∈ [N]

with probability at least 1 − (nN)−1/2. Standard Rademacher complexity generalization arguments applied
to Lemma 32 complete the proof.

Note that R̂RNN
τ (Θ̂) ≤ R̂RNN

n (Θ̂) which is further controlled in the approximation section by Proposition 28.
Therefore, the last step is to demonstrate that choosing τ = poly(d, q, log n) suffices to achieve a desirable

bound on RRNN(Θ̂) through RRNN
τ (Θ̂).

Lemma 34. Consider the setting of Corollary 33, and additionally assume R ≥ rh. Then, for some
τ = poly(R, log n), we have

RRNN(Θ̂) −RRNN
τ (Θ̂) ≤

√
1

n
.

.

Proof. The proof of this lemma proceeds similarly to the proof of Lemma 20. By defining

∆y :=
∣∣∣ŷRNN(p; Θ̂)j − yj

∣∣∣
and following the same steps (where we recall j ∼ Unif([N])), we obtain

RRNN(Θ̂) = E
[
∆2

y1[∆y ≤
√
τ]
]

+ E
[
∆2

y1[∆y >
√
τ]
]

≤ RRNN
τ (Θ̂) + E

[
∆4

y

]1/2P(∆y ≥
√
τ
)1/2

,

where

E
[
∆4

y

]1/2 ≤ 2E
[
y4j
]1/2

+ 2E
[
ŷRNN(p; Θ̂)4j

]1/2
and

P
(
∆y >

√
τ
)
≤ P

(
|yj | ≥

√
τ

2

)
+ P

(∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≥ √
τ

2

)
From Assumption 1, we have E

[
y4j
]1/2

≲ 1 and P(|yj | ≥
√
τ/2) ≤ e−Ω(τ1/s). For the prediction of the RNN,

we have the following bound (see (C.14) for the derivation)∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ Ly∏
l=1

∥W y
l ∥op

∥∥(h→j ,h←j , zj)
∥∥
2

+

Ly−1∑
i=0

∥∥∥byLy−i−1

∥∥∥
2

i∏
l=0

∥∥∥W y
Ly−l

∥∥∥
op
.

As a result, ∣∣∣ŷRNN(p; Θ̂)j

∣∣∣ ≤ poly(R)(1 + rh + ∥zj∥).

As a result, by the fact that rh ≤ R and Assumption 1, after taking an expectation, we immediately have

E
[
ŷRNN(p; Θ̂)4j

]1/2
≤ poly(R).

On the other hand, from Lemma 12 (with n = N = 1), we obtain

P
(∣∣∣ŷRNN(p; Θ̂)

∣∣∣ ≥ √
τ

2

)
≤ e−Ω(τ/ poly(R))

Therefore, for some τ = poly(R, log n) we can obtain the bound stated in the lemma.

We can summarize the above facts into the proof of Theorem 7.

37

Proof of Theorem 7. From the approximation bound of Proposition 28, we know that for some R =
poly(d, q, ra, rw, ε

−1
2NN, log(nN)) and the constraint set

ΘRNN =
{
Θ : ∥vec(Θ)∥2 ≤ R,

∥∥W→
Lh

∥∥
op

. . .
∥∥W→

1,h

∥∥
op

≤ αN ,
∥∥W←

Lh

∥∥
op

. . .
∥∥W←

1,h

∥∥
op

≤ αN

}
with any αN ≤ N−1, we have R̂RNN(Θ̂) ≲ ε2NN. The proof is then completed by letting rh =

√
qrx +√

ε2NN/(rarw), invoking the generalization bound of Corollary 33, and the bound on truncation error given in
Lemma 34, with R = poly(d, q, ra, rw, ε

−1
2NN, log(nN)).

C.3 Proof of Proposition 8

The crux of the proof of Proposition 8 is to show the following position, which provides a lower bound on the
prediction error at any fixed position in the prompt.

Proposition 35. Consider the same setting as in Proposition 8. There exists an absolute constant c > 0,
such that for any fixed j ∈ [N], if

E
[
(ŷRNN(p)j − yj)

2
]
≤ c,

then

dh ≥ Ω
(N

log(1 + L2∥U∥2op)

)
, and ∥U∥2op ≥ Ω

(N

L2 log(1 + dh)

)
.

We shortly remark that the statement of Proposition 8 directly follows from that of Proposition 35.

Proof of Proposition 8. Let c be the constant given by Proposition 35. Suppose that

1

N
E
[
∥ŷRNN(p) − y∥22

]
≤ c.

Then,

min
j∈[N]

E
[
(ŷRNN(p)j − yj)

2
]
≤ 1

N

N∑
j=1

E
[
(ŷRNN(p)j − yj)

2
]
≤ c.

As a result, there exists some j ∈ [N] such that E
[
(ŷRNN(p)j − yj)

2
]
≤ c. We can then invoke Proposition 35

to obtain lower bounds on dh and ∥U∥op, completing the proof of Proposition 8.

We now present the proof of Proposition 35.

Proof of Proposition 35. Let hj = (U→h→j ,U←h←j) ∈ R2dh , and define

Φ(hj) :=
(
fy(hj ,xj , (1), j), . . . , fy(hj ,xj , (j − 1), j), fy(hj ,xj , (j + 1), j), . . . , fy(hj ,xj , (N), j)

)⊤
∈ RN−1.

In other words, Φ : R2dh → RN−1 captures all possible outcomes of ŷRNN(p)j depending on the value of tj
(excluding the case where tj = j). Ideally, we must have fy(hj ,xj , (k), j) ≈ g(xk).

Let p(1), . . . ,p(P) be an i.i.d. sequence of prompts, then modify them to share the jth input token, i.e.

x
(i)
j = x

(1)
j for all i ∈ [P], with P to be determined later. Note that by our assumption on prompt distribution,

this operation does not change the marginal distribution of each p(i). Similarly, define

g(i) := (g(x
(i)
1), . . . , g(x

(i)
j−1), g(x

(i)
j+1), . . . , g(x

(i)
N))⊤ ∈ RN−1

for each prompt. We also let h(i)→
j ,h(i)←

j be the corresponding hidden states obtained from passing these

prompts through the RNN, and define h
(i)
j using them. Note that g(1), . . . , g(P) is an i.i.d. sequence of vectors

drawn from N (0, IN−1).

38

We now define two events E1 and E2, where

E1 =
{
∀ i ̸= k,

∥∥∥g(i) − g(k)
∥∥∥
2
≥ εg

√
N − 1

}
,

and

E2 =

{
P∑
i=1

1

[∥∥∥Φ(h
(i)
j) − g(i)

∥∥∥
2
≥ ε

√
N

δ

]
≤ 2δ2P

}
,

where δ ∈ (0, 1) will be chosen later. In other words, E1 is the event in which g(i) are “packed” in the space,
while E2 is the event where the RNN will be “wrong” at position j on at most 2δ2 fraction of the prompts.
We will now attempt to lower bound P(E1 ∩ E2).

Note that g(i) − g(k) (d)
=

√
2g where g ∼ N (0, IN−1). By a union bound we have

P
(
EC

1

)
≤
∑
i̸=k

P
(∥∥∥g(i) − g(k)

∥∥∥
2
≤ εg

√
N − 1

)
≤ P 2P

(√
2∥g∥2 ≤ εg

√
N − 1

)
≤ P 2P

(
∥g∥2 − E[∥g∥2] ≤

(εg√
2
− c
)√

N − 1

)
≤ P 2e−(c−εg/

√
2)2(N−1)/2,

for all εg ≤ c
√

2, where c > 0 is an absolute constant such that c
√
N − 1 ≤ E[∥g∥], and the last inequality

holds by subGaussianity of the norm of a standard Gaussian random vector. From here on, we will choose
εg = c/

√
2 (and simply denote εg ≍ 1), which implies P

(
EC

1

)
≤ P 2e−c

2(N−1)/8.

To lower bound P(E2), consider a random prompt-label pair p,y and the corresponding g. Note that
in the prompt p, the index tj is drawn independently of the rest of p, and has a uniform distribution in
[N]. Let p[tj 7→ k] denote a modification of p where we set tj equal to k, and let y[tj 7→ k] be the labels
corresponding to this modified prompt. We then have

1

N
∥Φ(hj) − g∥22 =

1

N

∑
k ̸=j

(
ŷRNN(p[tj 7→ k])j − g(xk)

)2
≤ 1

N

N∑
k=1

(
ŷRNN(p[tj 7→ k])j − y(p[tj 7→ k])j

)2
= Etj

[
(ŷRNN(p)j − yj)

2
]

As a result, via a Markov inequality, we obtain

P
(

1

N
∥Φ(hj) − g∥22 ≥ ε2

δ2

)
= P

(
Etj

[
(ŷRNN(p)j − yj)

2
]
≥ ε2

δ2

)
≤

δ2 E
[
(ŷRNN(p)j − yj)

2
]

ε2

≤ δ2.

Going back to our lower bound on P(E2), define the Bernoulli random variable

z(i) = 1

[∥∥∥Φ(h
(i)
j) − g(i)

∥∥∥
2
≥ ε

√
N

δ

]
.

Note that (z(i)) are i.i.d. since h
(i)
j and g(i) do not depend on xj . Then, by Hoeffding’s inequality,

P
(
EC

2

)
= P

 P∑
j=1

z(i) ≥ 2δ2P

 ≤ e−2Pδ4 .

39

We now have our desired lower bound on P(E1 ∩ E2), given by

P(E1 ∩ E2) ≥ 1 − P
(
EC

1

)
− P

(
EC

2

)
≥ 1 − e−2Pδ4 − P 2e−c

2(N−1)/8.

Suppose δ ≥ e−c
′N for some absolute constant c′ > 0. Then, choosing P = ⌊ec′′N⌋ for some absolute constant

c′′ > 0 would ensure P(E1 ∩ E2) > 0, and allows us to look at this intersection.

Let I = {i : z(i) = 0}. On E1, and for i, k ∈ I with i ̸= k we have∥∥∥Φ(h
(i)
j) − Φ(h

(k)
j)
∥∥∥
2
≥
∥∥∥g(i) − g(k)

∥∥∥
2
−
∥∥∥Φ(h

(i)
j) − g(i)

∥∥∥
2
−
∥∥∥Φ(h

(k)
j) − g(k)

∥∥∥
2

≥ εg
√
N − 1 − 2ε

√
N

δ
=: L

√
Nεh.

Note that from the Lipschitzness of fy, we have
∥∥∥Φ(h

(i)
j) − Φ(h

(k)
j)
∥∥∥
2
≤ L

√
N

rh

∥∥∥h(i)
j − h

(k)
j

∥∥∥
2
. As a result,

the set
{
h
(i)
j : i ∈ I

}
is an rhεh-packing for {h : ∥h∥2 ≤

√
2∥U∥oprh}. Using Lemma 41, the log packing

number can be bounded by

log I ≤

{
dh log

(
1 +

2
√

2∥U∥op
εh

)}
∧

{
2∥U∥2op

ε2h

(
1 + log

(
1 +

Mε2h
2∥U∥2op

))}
.

On E1 ∩ E2, we have I ≥ (1 − 2δ2)P ≥ (1 − 2δ2)ecN for some absolute constant c > 0. Therefore,

log(1 − 2δ2) + cN

log(1 + 2
√

2∥U∥op/εh)
≤ dh,

and
ε2h
(
log(1 − 2δ2) + cN

)
2 + 2 log(1 + dhε2h/(2∥U∥2op))

≤ ∥U∥2op.

Choosing δ = 1/2 and recalling εg ≍ 1, we obtain εh ≳ (1 − Cε)/L for some absolute constant C > 0, which
concludes the proof.

C.4 Proof of Theorem 9

We first provide an estimate for the capacity of two-layer feedforward networks to interpolate n samples.

Lemma 36. Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id) and let y(i) = ⟨u,xti⟩ for arbitrary ti ∈ [N] and u ∈ Sd−1.

Then, there exists an absolute constant c > 0 such that for all m ≥ n and with probability at least c, there
exist data dependent weights a, b ∈ Rm and W ∈ Rm×d, such that

a⊤σ(Wx(i) + b) = y(i), ∀ i ∈ [n]

and
∥a∥22 + ∥W ∥2F + ∥b∥22 ≤ O(n3).

Proof. The proof of Lemma 36 is an immediate consequence of two lemmas.

1. Lemma 37 shows that the inputs x(1), . . . ,x(n) can be projected to sufficiently separated scalar values
with a unit vector v.

2. Lemma 38 perfectly fits n univariate samples using a two-layer ReLU neural network. When invoking
this lemma, we use ∥z∥2 = O(

√
n) and ϵ = Ω(1/n2) as given by Lemma 37.

40

The only missing piece is to upper bound ∥y∥2 appearing in the final bound of Lemma 38. To that end, we
apply the following Markov inequality,

P
(
∥y∥22 ≥ 6n

)
≤

E
[
∥y∥22

]
6n

≤ 1

6
.

As the statement of Lemma 37 holds with probability at least 1
3 , this suggests that the statement of Lemma 36

holds with probability at least 1
6 , concluding the proof.

Lemma 37. Suppose {x(i)}ni=1
i.i.d.∼ N (0, Id). Then, with probability at least 1/3, there exists some v ∈ Sd−1

(dependent on {x(i)}) such that for all i ̸= j,∣∣∣v⊤x(i) − v⊤x(j)
∣∣∣ = Ω

(
1

n2

)
. (C.15)

and
∑n

i=1(v⊤x(i))2 = O(n).

Proof. The proof follows the probabilistic method. Sample v ∼ Unif(Sd−1) independent of {x(i)}. For each
i ̸= j, let

ai,j = u⊤(x(i) − x(j))

and note that ai,j |v ∼ N (0, 2). We apply basic Gaussian anti-concentration to place a lower bound on the
probability of any ai,j being close to zero,

P(∃i, j s.t. |ai,j | ≤ ϵ) ≤
∑
i ̸=j

P(|ai,j | ≤ ϵ) =
∑
i̸=j

E[P(|ai,j | ≤ ϵ |v)] ≤ n2ϵ√
π

≤ 1

3
,

where the last inequality follows by taking ϵ =
√
π/(3n2). Furthermore,

P

(
n∑

i=1

(v⊤x(i))2 ≥ 3n

)
≤
∑n

i=1 E
[
(v⊤x(i))2

]
3n

=
1

3
,

by Markov’s inequality. Combining the two events completes the proof.

Lemma 38. Consider some z = (z(1), . . . , z(n))⊤ ∈ Rn and y = (y(1), . . . , y(n))⊤ ∈ Rn, such that∣∣z(i) − z(j)
∣∣ ≥ ϵ for all i ̸= j. For simplicity, assume ϵ ≤ 1. Then, there exists a two-layer ReLU neural

network

g(t) =

m∑
j=1

ajσ(wjt + bj)

that satisfies g(z(i)) = y(i) for all i ∈ [n], m = n, and

∥a∥22 + ∥w∥22 + ∥b∥22 = O

∥y∥2
√

n + ∥z∥22
ϵ

. (C.16)

Proof. Without loss of generality, we assume that z(1) ≤ · · · ≤ z(n). Then, we define the neural network g as
follows:

g(t) =

n∑
i=1

a′iσ(w′it− b′i) = y(1)σ(t− z(1) + 1) +

(
y(2) − y(1)

z(2) − z(1)
− y(1)

)
σ(t− z(1))

+

n∑
i=3

(
y(i) − y(i−1)

z(i) − z(i−1)
− y(i−1) − y(i−2)

z(i−1) − z(i−2)

)
σ(t− z(i−1)).

41

One can verify by induction that g(z(i)) = y(i) for every i by noting that the slope of g is

(y(i) − y(i−1))/(z(i) − z(i−1))

between (z(i−1), y(i−1)) and (z(i), y(i)). From the above, we have w′i = 1,
∥∥b′∥∥2

2
≲ ∥z∥22 + 1, and ∥a′∥22 ≲

∥y∥22/ϵ2. For α =
(
(∥z∥22 +n)ϵ2/∥y∥22

)1/4
, let u = αu′, w = w′/α, and b = b′/α. By homogeneity, the neural

network with weights (u,w, b) has identical outputs to that of (u′,w′, b′) and satisfies (C.16), completing
the proof.

We are now ready to present the proof of the sample complexity lower bound for RNNs.

Proof of Theorem 9. First, consider the case where dh < n. Note that as a function of Uh =
(U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥WLy

∥∥
op

∥∥WLy−1
∥∥
op

. . . ∥W 2∥op.

Using the AM-GM inequality, (
L2∥U∥2op

)1/Ly

≤ 1

Ly
∥vec(Θ)∥22 ≤ eN

c/Ly .

As a result, we have L∥U∥op ≤ eN
c/2. By invoking Proposition 26, to obtain population risk less than some

absolute constant c3 > 0, we need

dh ≥ Ω

(
N

log(1 + L2∥U∥2op)

)
≥ Ω(N1−c).

This implies n ≥ dh ≥ Ω(N1−c). By taking c1 in the theorem statement to be less than 1 − c, we obtain a
contradiction. Therefore, we must have either a population risk at least c3 or dh ≥ n.

Suppose now that dh ≥ n. We show that with constant probability, we can construct an RNN that
interpolates the n training samples with norm independent of n. We simply let Θ→h = 0, Θ←h = 0, U = 0,
and describe the construction of WLy

, . . . ,W 2,W y, and (bl) in the following. Using the construction of
Lemma 36, we can let

W y =

(
W 0n×dE

0(m−n)×d 0(m−n)×dE

)
, b1 =

(
b

0m−n

)
, W 2 =

 a⊤ 0⊤m−n
−a⊤ 0⊤m−n

0(m−2)×n 0(m−2)×(m−n)

,

where W ∈ Rn×d, and a, b ∈ Rn are given by Lemma 36. Then,

W⊤
2 σ(W yx

(i)

j(i)
+ by) = (y

(i)

j(i)
,−y

(i)

j(i)
, 0, . . . , 0)⊤.

For (W l)
Ly−1
l=3 , we let (Wl)11 = (Wl)22 = 1, and choose the rest of the coordinates of W l to be zero. Therefore,

the output of the lth layer is given by

(σ(y
(i)

j(i)
), σ(−y

(i)

j(i)
), 0, . . . , 0)⊤.

For the final layer, we let WLy
= (1,−1, 0, . . . , 0). Using the fact that σ(z) − σ(−z) = z, we obtain

fy(U→h→j ,U←h←j , z
(i)

j(i)
;Θy) = y

(i)

j(i)

We have found Θ such that R̂RNN
n (Θ) = 0 and ∥vec(Θ)∥22 ≤ O(n3) (recall that Ly ≤ O(1)). As a result, Θ̂ε

must also satisfy
∥∥∥vec(Θ̂ε)

∥∥∥2
2
≤ O(n3).

42

On the other hand, notice that as a function of Uh = (U→h→,U←h←), fy is L-Lipschitz with

L =
∥∥WLy

∥∥
op

∥∥WLy−1
∥∥
op

. . . ∥W 2∥op.

From Proposition 8, using the fact that ∥·∥op ≤ ∥·∥F and the AM-GM inequality, we obtain

1

Ly
∥vec(Θ)∥22 ≥

(
L2∥U∥2op

)1/Ly

≥ Ω

((
N

log dh

)1/Ly
)

to achieve population risk less than some absolute constant c3 > 0. Recall that log dh ≤ N c for some c < 1.

The proof is completed by noticing that unless n ≥ Ω(N c1) for some absolute constant c1 > 0,
∥∥∥vec(Θ̂ε)

∥∥∥
2

will always be less than the lower bound above, with some absolute constant probability c2 > 0 over the
training set.

D Auxiliary Lemmas

Lemma 39. Suppose A ∈ Rd1×d2 and B ∈ Rd2×d3 . Then, for all r, s ≥ 1 and p, q ≥ 1 such that 1/p+1/q = 1,
we have

∥AB∥r,s ≤ ∥A∥r,p∥B∥q,s.

Proof. First, we note that for any vector b ∈ Rd2 we have

∥Ab∥r =

∥∥∥∥∥∥
d2∑
j=1

bjA:,j

∥∥∥∥∥∥
r

≤
d2∑
j=1

|bj |∥A:,j∥r ≤ ∥A∥r,p∥b∥q,

where the last inequality holds for all conjugate indices p, q and follows from Hölder’s inequality. We now
have

∥AB∥sr,s =

d3∑
j=1

∥AB:,j∥sr ≤
d3∑
j=1

∥A∥sr,p∥B:,j∥sq = ∥A∥r,p∥B∥q,s.

The next lemma follows from standard Gaussian integration.

Lemma 40. Suppose x ∼ N (µ,Σ). Then Var(∥x∥2) = 2 tr(Σ⊤Σ) + 4µ⊤Σµ.

The following lemma combines two different techniques for establishing a packing number over the unit ball,
the first construction uses volume comparison, whereas the second construction uses Maurey’s sparsification
lemma, both of which are well-established in the literature.

Lemma 41. Let P denote the ϵ-packing number of the unit ball in Rd. We have

logP ≤
{
d log

(
1 +

2

ϵ

)}
∧
{

1

ϵ2
(1 + log(1 + 2dϵ2))

}
.

Finally, the lemma below allows us to approximate arbitrary Lipschitz functions with two-layer feedforward
networks.

Lemma 42 ([Bac17, Propositions 1 and 6]). Suppose f : Rd → R satisfies |f(x)| ≤ LR and |f(x) − f(x′)| ≤
L∥x− x′∥2 for all x,x′ ∈ Rd with ∥x∥2 ≤ R and ∥x′∥2 ≤ R and some constants L,R > 0. Then, for every
ε > 0, there exists a positive integer m and W ∈ Rm×d, b ∈ Rm, and a ∈ Rm, such that

sup
∥x∥2≤R

∣∣f(x) − a⊤σ(Wx + b)
∣∣ ≤ ε.

Additionally, we have

m ≤ Cd

(LR(1 + log(LR/ε))

ε

)d
,
∥∥∥W⊤

∥∥∥
2,∞

≤ 1

R
, ∥b∥∞ ≤ 1, ∥a∥2 ≤ CdLR√

m
·
(
LR(1 + log(LR/ε))

ε

)d+1
2

.

43

	Introduction
	Our Contributions
	Related Work

	Problem Setup
	Transformers
	Limitations of Transformers with Few Heads
	Learning Guarantees for Multi-Head Transformers

	Feedforward Neural Networks (FFNs)
	Recurrent Neural Networks
	RNNs can learn simple-qSTR
	RNNs cannot learn general qSTR

	Conclusion
	Details of Section 3
	Proof of Theorem 4
	Details on Limitations of Transformers with Few Heads

	Proof of Theorem 6
	Proofs of Section 5
	Approximations
	Generalization Upper Bounds for RNNs
	Proof of Proposition 8
	Proof of Theorem 9

	Auxiliary Lemmas

