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Abstract

Statistics and optimization have been closely linked since the very outset. This connection

has become more essential lately, mainly because of the recent advances in computational

resources, the availability of large amount of data, and the consequent growing interest in

statistical and machine learning algorithms. In this dissertation, we will discuss how one

can use tools from statistics such as Stein’s lemma, subsampling, and shrinkage to design

scalable, and efficient optimization algorithms. The focus will be on the large-scale problems

where iterative minimization of the empirical risk –or maximization of the log-likelihood–

is computationally intractable, i.e., the number of observations n is much larger than the

dimension of the parameter p.

In each chapter, we will discuss an efficient estimator or optimization algorithm designed

for training a statistical model when the dataset is large, i.e. in the regime n � p � 1.

The proposed algorithms have wide applicability to many supervised learning problems

such as binary classification with smooth surrogate losses, generalized linear problems in

their canonical representation, and M-estimators. The algorithms rely on iterations that

are constructed through Stein’s lemma, subsampling, and/or shrinkage techniques that

achieve quadratic convergence rate, and that are cheaper than any batch optimization

method by at least a factor of O (p). We will discuss theoretical guarantees of the proposed

algorithms, along with their convergence behavior in terms of data dimensions. Finally, we

will demonstrate their performance on well-known classification and regression problems,

through extensive numerical studies on large-scale real datasets, and show that they achieve

the highest performance compared to other widely used and specialized algorithms.
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Chapter 1

Introduction

Classical regression analysis can be traced back to early 19th century where Carl Friedrich

Gauss and Adrien-Marie Legendre invented the method of least squares around the same

time [Sti81]. Their objective was to understand the properties of celestial bodies, and they

applied least squares to a dataset that is composed of measurements from astronomical

objects. Gauss was the first to model the measurement errors using a normal density.

He computed the maximum likelihood estimator under the linear model, which led to the

celebrated linear regression. Ever since Gauss’s pioneering work, traditional statistical

methodology follows the same steps. First, a model is proposed by the statistician to

explain certain properties of the dataset. Second, the proposed model is trained by carefully

formulating it as an optimization problem – for example maximum likelihood estimation

by minimizing the negative log-likelihood via Newton-Raphson method. The relationship

between statistical methodology and optimization is obviously essential, however – in the

broadest sense – statistical estimation techniques have been the primary beneficiary. In this

dissertation, we will reverse this arrangement. We will show that optimization algorithms

can also immensely benefit from the classical results from statistical estimation theory.

Statistics and optimization have been closely related since the very outset because of

the nature of statistical methodology, and the order in which it is carried. This order

has not changed much since Gauss, even though there have been tremendous advances in

computational resources and the availability of large amount of data which in turn required

statisticians to care more about the computational aspects of their models. Datasets with

millions of samples and features require careful handling, since off-the-shelf optimization

tools are not adequate in general – even simple statistical models may take days to train

1



CHAPTER 1. INTRODUCTION 2

using traditional algorithms. Therefore, it is essential for statisticians to devise efficient

algorithms to practice their methodology.

Modern data science is facing lots of computational challenges due to availability of

tremendous amounts of data, but there are very strong tools in statistics and probability

that can turn this surplus to advantage. Having huge amounts of samples allows statisti-

cian to reduce an optimization problem that is defined on empirical risk to its population

counterpart which is due to the phenomenon called concentration of measure. Then, tools

from statistical estimation theory can be used to design fast, efficient, and reliable estima-

tors as well as optimization algorithms. This methodology will be our main tool in this

dissertation. First, we will look at the general structure of a statistical learning problem,

reduce it to its population version using concentration of measure due to large-scale regime

assumption, and then we will design an efficient algorithm on the population version of the

problem using techniques from statistical estimation.

1.1 Loss Minimization: Regression and Classification

Many problems in statistics, and machine learning can be formulated as a minimization of

the following form

minimize
β∈Rp

f(β) := R̂(β) + rλ(β) , (1.1)

where the objective function f : Rp → R is the sum of an empirical risk function R̂ : Rp → R,

and a regularizer rλ : Rp → R at a given penalty level λ ∈ R. The empirical risk function

can be written as an average of n functions fi : Rp → R,

R̂(β) =
1

n

n∑
i=1

fi(β) , (1.2)

where n denotes the number of samples in the dataset, and p denotes the dimension of the

parameter. Functions fi typically quantify the loss incurred by the sample i. Throughout,

we assume that the dataset is very large, i.e., n and p are both large, but n is much larger

than p. More specifically, we focus on the regime n� p� 1.

The minimization problem introduced in Equation (1.1) is generally the final step in

a statistical estimation method. In statistical learning, each function fi corresponds to a
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measure of misfit or cost of misclassification associated to sample i in the dataset. In order

to make this connection more explicit, assume that the dataset consists of n pairs (yi, xi)

satisfying the classical linear model

yi = 〈xi, β〉+ εi, for i = 1, 2, ..., n, (1.3)

where yi ∈ R represent the response variable which can be continious or binary, xi ∈ Rp rep-

resent the set of centered features (Σjxij = 0), εi ∼ N(0, σ2) denotes the Gaussian noise, and

〈a, b〉 denotes the standard inner product between vectors a and b. Given the above linear

model, regularized maximum likelihood estimation can be formulated as in Equation (1.1)

where each function corresponds to the negative of the log-likelihood of that particular ob-

servation. After getting rid of the redundant terms, maximum likelihood estimator in the

above linear model is computed by minimizing the empirical risk in Equation (1.2) where

each term in the summation is given as

fi(β) = (yi − 〈xi, β〉)2. (1.4)

This is generally referred to as the ordinary least squares or linear regression. More generally,

one can use exponential families to model the response variables, which leads to a more

flexible setup called generalized linear models.

1.1.1 Generalized Linear Models

Generalized Linear Models (GLMs) play a crucial role in numerous statistical and machine

learning problems. GLMs formulate the natural parameter in exponential families as a linear

model and provide a miscellaneous framework for statistical methodology and supervised

learning tasks. Celebrated examples include linear, logistic, multinomial regressions and

applications to graphical models [NB72, MN89, KF09].

We say that the distribution of a random variable y ∈ R belongs to an exponential

family with natural parameter η ∈ R if its density can be written as

g(y|η) = eηy−Ψ(η)h(y), (1.5)

where Ψ is generally referred to as the cumulant generating function, and h is called the

carrier density. Let y1, y2, ..., yn be independent observations such that for i = 1, 2, ..., n,
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the distribution of yi belongs to an exponential family with natural parameter ηi, i.e.,

yi ∼ g(yi|ηi). Denoting the vector of natural parameters by η = (η1, ..., ηn)T , the joint

likelihood can be written as

g(y1, y2, ..., yn|η) = exp

{
n∑
i=1

[yiηi −Ψ(ηi)]

}
n∏
i=1

h(yi). (1.6)

We will consider the problem of learning the maximum likelihood estimator in the above

exponential family framework, where the vector η ∈ Rn is modeled through the linear

relation,

η = Xβ, (1.7)

for some design matrix X ∈ Rn×p with rows xi ∈ Rp, and a coefficient vector β ∈ Rp.
This formulation is known as Generalized Linear Models (GLMs) under their canonical

representation.

The above representation provides a flexible framework for statistical methodology. The

cumulant generating function Ψ determines the class of GLMs, i.e., for ordinary least squares

(OLS) we use Ψ(z) = z2/2, for logistic regression (LR) we use Ψ(z) = log(1 + ez), and for

Poisson regression (PR) we use Ψ(z) = ez.

Finding the maximum likelihood estimator in the above formulation is equivalent to

minimizing the negative log-likelihood function,

R̂(β) =
1

n

n∑
i=1

Ψ(〈xi, β〉)− yi〈xi, β〉. (1.8)

The relation to OLS and LR can be seen much easier by plugging in the corresponding

Ψ(z) in Equation (1.8); for example in the case of OLS, compare Equations (1.4) and

each summand in Equation (1.8) for Ψ(z) = z2/2. In a classification problem where the

dataset has binary response variables yi ∈ {0, 1}, modeling the response with the binomial

distribution is equivalent to choosing each function in the empirical risk as

fi(β) = log(1 + exp(〈xi, β〉))− yi〈xi, β〉. (1.9)

This leads to the classical logistic regression.
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1.1.2 Binary Classification with Smooth Surrogate Loss

The above GLM formulation can be extended to more general settings. For example, let us

assume that for i = 1, 2, ..., n, the response is binary, yi ∈ {0, 1}. Binary classification with

smooth surrogate loss can be described by the following minimization of an empirical risk,

minimize
β∈Rp

1

n

n∑
i=1

`(yi; q(〈xi, β〉)), (1.10)

where ` and q are referred to as the loss and the link functions, respectively. Note that

we set fi(·) = `(yi; q(〈xi, ·〉) in Equation (1.2). The loss function ` quantifies the cost of

misclassification, and there are various loss functions that are used in practice. Examples

include log-loss, boosting loss, square loss etc; we will discuss some of them in Chapter 2,

i.e, see Table 2.1. As in the previous section, we constrain our analysis to the canonical

links. The concept of canonical links for binary classification is introduced by [BSS05], and

it is quite similar to the generalized linear problems.

For any given loss function, we define the partial losses `k(·) = `(y = k; ·) for k ∈ {0, 1}.
Since we have a binary response variable, we can write any loss in the following format

`(y; q) =y`1(q) + (1− y)`0(q),

=y (`1(q)− `0(q)) + `0(q).

The above formulation is clearly of the form of a generalized linear problem.

1.1.3 Regularization and Constrained Optimization

It is often the case in statistical methodology that a regularization term rλ(β) is included

to the minimization problem for sparsity and/or shrinkage purposes [FHT01]. This term

typically helps to prevent issues such as overfitting, colinearity, by penalizing the complexity

of the optimal solution β; examples include restrictions for smoothness, bounds on the

vector space norm or constraining the feasible set. There are numerous options for the

regularization function rλ. Below, we only review the most popular ones.

Ridge penalty. The regularization is obtained by penalizing the `2 norm of the coef-

ficients [HK70, FHT01]. When there are many correlated variables in a linear model,

the coefficients may have high variance [FHT01]. As a result, unusually large positive
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coefficient on one variable can be canceled by a similarly large negative coefficient on

its correlated counterpart. `2 regularization can prevent this issue.

The minimization problem can be written as an `2 penalized empirical risk

minimize
β∈Rp

f(β) := R̂(β) +
λ

2
‖β‖22 . (1.11)

The penalty level λ is a complexity parameter that controls the amount of shrinkage.

The optimal coefficients are shrunk further towards zero for larger values of λ. It

should be noted that even though the ridge penalty induces shrinkage towards zero,

it does not enforce sparsity on the coefficients.

An equivalent way to introduce ridge penalty is through the following constrained

optimization problem

minimize
β∈C

f(β) := R̂(β) where C =
{
β ∈ Rp : ‖β‖2 ≤ λ

′} . (1.12)

There is a one-to-one correspondence between the parameters λ in Equation (1.11)

and λ′ in Equation (1.12). Hence, one solves either the unconstrained optimization

problem in Equation (1.11) or the constrained problem in Equation (1.12). We will

discuss these methods in the next section.

Lasso penalty. The lasso penalty is very similar to ridge penalty. In this case,

instead of the `2 norm, one constrains the `1 norm of the coefficients [Tib96]. In

the compressed sensing literature, this type of regularization is commonly referred

to as Basis Pursuit De-noising [CDS01]. Lasso regularization dominated the recent

statistics literature due its success in variable selection.

The lasso problem can be written as an unconstrained minimization,

minimize
β∈Rp

f(β) := R̂(β) + λ ‖β‖1 . (1.13)

Similar to the ridge penalty, an equivalent unconstrained formulation is

minimize
β∈C

f(β) := R̂(β) where C =
{
β ∈ Rp : ‖β‖1 ≤ λ

′} . (1.14)
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Again, there is a one-to-one correspondence between the parameters λ in Equa-

tion (1.13) and λ′ in Equation (1.14) [FHT01].

Elastic net and `q penalties. There are many different regularization choices

available. For example, a compromise between ridge and lasso is called elastic net.

The elastic net penalty can be written as

minimize
β∈Rp

f(β) := R̂(β) + αλ ‖β‖22 + (1− α)λ ‖β‖1 for α ∈ [0, 1]. (1.15)

The elastic-net selects variables like the lasso, and shrinks together the coefficients of

correlated predictors like ridge.

Similar to `1 and `2 penalties, one can also use `q norm for regularization. How-

ever, elastic net has significant computational advantages over the `q penalties [ZH05,

FHT01].

Above, we have seen many statistical methods written as an optimization problem. In

the next section, we review some popular methods to solve these problems.

1.2 Optimization Methods Used in Statistics

There are numerous optimization algorithms for solving the aforementioned minimization

problems. Since the gradient of the objective function is generally non-linear, the optimiza-

tion method needs be iterative [Bis95, BV04, Nes13]. In the unconstrained case, a standard

update rule is given as

βt+1 = βt − γtQt∇βf(βt), (1.16)

where γt is the step size, and Qt is a suitable scaling matrix that provides curvature informa-

tion. Throughout the introduction, we will focus on the unconstrained case for simplicity.

The above iteration – or its projected or proximal version – is also our main focus in Chap-

ters 3 and 4, but with a new approach on how to compute the sequence of scaling matrices

{Qt}t>0. We will formulate the problem of finding a scalable Qt as an estimation problem

and apply a Stein-type lemma, subsampling, and/or shrinkage techniques that provides us

with a computationally efficient update rule. It is worth noting that in Chapter 2, we will

consider an entirely different technique which will be discussed later.
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Figure 1.1: Plots show the quadratic approximations performed by an optimization algo-
rithm at each iteration. The quality of the local approximations depend on the quadratic
functions {qt}t≥0.

The standard approach in non-linear continuous optimization is to approximate the

objective function R̂ locally with a function qt : Rp → R at each iteration t, and minimize

this local approximation to find the next iteration point. The function sequence {qt}t≥0

determines the type of the optimization algorithm. Most literature focuses on quadratic

approximations of the following form

qt(β) =R̂(βt) + 〈∇R̂(βt), β − βt〉+
1

2γt
〈β − βt, [Qt]−1(β − βt)〉, (1.17)

around the current iteration point βt. This approximation yields the standard update rule

as given in Equation (1.16) when minimized over β, i.e.,

argmin
β∈Rp

qt(β) = βt − γtQt∇R̂(βt). (1.18)

Obviously, the functions qt that are of the form in Equation (1.17) are quadratic, and they

look like second order Taylor series approximations. The quality of the local quadratic

approximation is determined by the curvature matrix Qt. By choosing a suitable curvature

(scaling) matrix, one can devise various algorithms.

The iterations of the form Equation (1.16) have been extensively studied in the op-

timization literature. The case where Qt is equal to the identity matrix corresponds to

gradient descent (GD) which, under smoothness assumptions, achieves linear convergence

rate with O(np) per-iteration cost. More precisely, gradient descent with ideal step size

yields ∥∥βt+1 − β∗
∥∥

2
≤ ξt1,GD

∥∥βt − β∗∥∥2
,
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Figure 1.2: Plots show various convergence types. From left to right: Linear convergence
obtained by first order methods, quadratic convergence obtained by second order meth-
ods, and composite convergence obtained by Newton-Stein method. Error at iteration t is
quantified by ‖β̂t − β̂∗‖2.

where, as limt→∞ ξ
t
1,GD = 1 − (λ∗p/λ

∗
1), and λ∗i is the i-th largest eigenvalue of the Hessian

of f(β) at the true minimizer β∗ of R̂.

Second order methods such as Newton method (NM) or Newton-Raphson and natural

gradient descent (NGD) [Ama98] can be recovered by taking Qt to be the inverse Hessian

and the Fisher information evaluated at the current iterate, respectively. Such methods

may achieve quadratic convergence rates with O(np2 +p3) per-iteration cost [Bis95, Nes13].

In particular, for t large enough, Newton method yields

∥∥βt+1 − β∗
∥∥

2
≤ ξt2,NM

∥∥βt − β∗∥∥2

2
,

and it is insensitive to the condition number of the Hessian. However, when the number of

samples grows large, computation of Qt becomes extremely expensive. First two plots in

Figure 1.2 depicts linear, quadratic convergence rates, respectively.

It is quite common in statistical learning that each step of Newton-Raphson method is

formulated as a weighted least squares problem [FHT10]. For example, in order to com-

pute the maximum likelihood estimator in generalized linear problems, one can solve a

weighted least squares problem at each iteration. This formulation is commonly referred

to as iteratively re-weighted least squares (IRLS). We emphasize that IRLS and standard

Newton-Raphson methods are equivalent for GLMs under their canonical representation

[MN89, FHT10], and we will use the latter to refer to this algorithm throughout this dis-

sertation.

A popular line of research tries to construct the matrix Qt in a way that the update
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is computationally feasible, yet still provides sufficient second order information. This can

be accomplished by estimating the Hessian with a computationally efficient matrix. Such

attempts resulted in Quasi-Newton methods, in which only gradients and iterates are used in

the construction of matrix Qt, resulting in an efficient update at each step t [Nes13, Bis95].

These algorithms are based on the Quasi-Newton relation which is given as,

Qt+1(∇f(βt+1)−∇f(βt)) = βt+1 − βt. (1.19)

Denoting by ∆Qt = Qt+1 − Qt, gt = ∇f(βt+1) − ∇f(βt), and dt = βt+1 − βt, several

popular Quasi-Newton updates can be written as below [Nes13, Bis95].

• Rank-one correction scheme:

∆Qt =
(dt −Qtgt)(dt −Qtgt)T

〈dt −Qtgt, gt〉
. (1.20)

• Davidon-Fletcher-Powell scheme:

∆Qt =
dt[dt]T

〈dt, gt〉
− Qtgt[gt]TQt

〈Qtgt, gt〉
. (1.21)

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme:

∆Qt =
Qtgt[dt]T + dt[gt]TQt

〈Qtgt, gt〉
− αtQ

tgt[gt]TQt

〈Qtgt, gt〉
, (1.22)

where αt = 1 + 〈gt, dt〉/〈Qtgt, gt〉.

From the computational point of view, BFGS is considered as the most stable scheme

[Bro70, Fle70, Gol70, Sha70, Nes13, Bis95]. For completeness, we note that it requires

O(np+ p2) per-iteration cost [Bis95, Nes13].

Finally, another popular approach in large-scale optimization is to use subsampling

techniques where scaling matrix Qt is constructed through randomly selected set of data

points [Mar10, BCNN11, EM15]. At iteration t, the scaling matrix Qt is computed using a

subset of the samples which reduces the cost of computing the Hessian substantially in the

regime we consider. That is, the cost of computing the full Hessian is generally O
(
np2
)

whereas using a subsample S ⊂ [n], this can be reduced to O
(
|S|p2

)
. Subsampling has

been widely used in both first and second order methods, but was not as well studied in the
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second order case for which the scaling matrix is approximated. In particular, theoretical

guarantees were still missing. We will discuss this in detail in Chapter 4, and see that they

achieve composite convergence rate which can be seen from the right plot in Figure 1.2. We

will discuss this type of convergence in detail in Chapters 3 and 4.

1.3 Computational Challenges in Large-Scale Optimization

Problems

The main challenge in problems of the form Equation (1.1) is to balance the trade-off

between the per-iteration cost of an optimization algorithm and its convergence rate. First

order methods enjoy cheaper per-iteration cost of O (np) (n is the sample size, p is the

dimension), but they achieve locally linear convergence rate which is considered as slow in

batch optimization. On the other hand, second order methods enjoy quadratic convergence

rate, yet their per-iteration cost is O
(
np2
)
. In the large-scale regime, where n � p �

1, per-iteration cost of O
(
np2
)

is not affordable. Below, we describe where these main

computational issues stem from.

Cost of computing Hessian. Given a problem of the form in Equation (1.1),

standard Newton update requires the computation of the Hessian which is of the form

∇2f(β) =
1

n

n∑
i=1

∇2fi(β). (1.23)

Notice that the Hessian is an average of n matrices, and each one belongs to Rp×p.
Unless there is a special structure in the problem, one needs to compute the matrix

∇2f in order to use Newton method, and enjoy quadratic convergence. Since we

average over n matrices where each has p2 entries, the cost of computing the Hessian

becomes O
(
np2
)
. In the large-scale problems, namely n � p � 1, this is the main

bottleneck for the second order optimization methods.

Cost of computing the inverse of the Hessian. For large-scale problems, when

the dimension of the feature vectors p is large, computing the inverse of a p×p matrix

may be extensive. Standard inversion algorithms can perform this operation with

O
(
p3
)

computation (or a little better than p3). In this regime, classical approach is
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to avoid inversion by solving the following linear system of equations

−∇2f(β)d = ∇f(β), (1.24)

and taking a step towards the direction of d. The above system may be solved ex-

actly by various factorization methods or approximately by using iterative methods

[HS52, PS75]. Iterative methods are proven to be effective in the large-scale regime,

but these methods typically specialize on certain types of equations. For the prob-

lems we consider, we will assume that the Hessian is positive semidefinite, hence the

Cholesky factorization and conjugate gradient methods are applicable. It is important

to highlight that these methods work well when p is too large, where matrix inversion

is not affordable. In terms of approximations, conjugate gradient methods work very

well, but early stopping may result in imprecise directions, and late stopping may

cause serious numerical issues due to the iterations in Lanczos process [HS52, PS75].

For moderate values of p, exact inversion of the Hessian is affordable.

Fluctuations due to subsampling. Subsampled Newton methods have been proven

to be very useful in practice [Mar10, BCNN11, EM15]. A key challenge is that the

subsampled Hessian is close to the actual Hessian along the directions corresponding

to large eigenvalues (large curvature directions in f(β)), but is a poor approximation

in the directions corresponding to small eigenvalues (flatter directions in f(β)). This

yields poor estimation of Hessian, and as a result, the resulting subsampled Newton

algorithm may have undesirable convergence, or even fail to converge. The same issue

is commonly encountered in statistical estimation theory as well. Especially in co-

variance estimation, it is well-known that the performance of various estimators can

be significantly improved by simple procedures such as shrinkage and/or thresholding

[CCS10, DGJ13, GD14]. To this extent, we will use a specialized low-rank approxima-

tion as the important second order information is generally contained in the largest

few eigenvalues/vectors of the Hessian.

The computational challenges introduce various limitations in the practical settings

[EM15, EF15, EFM15]. Using certain tools from statistics and probability theory such as

Stein’s lemma, zero-biased transformations, subsampling and shrinkage techniques we will

remedy some of these issues.
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1.4 Summary of Contributions

We propose efficient estimators and/or optimization algorithms for large-scale problems

by assuming random design, and applying Stein’s lemma, subsampling, and/or shrinkage

techniques. Each chapter will introduce and discuss a different optimization approach, and

study its theoretical properties.

1.4.1 Scalable First Order Stein Approximations for GLMs

In Chapter 2, we take an unconventional approach for minimizing Equation (2.1), based

on an identity that is well-known in some areas of statistics, but appears to have received

relatively little attention for its computational implications in large-scale problems. Let

βpop denote the true minimizer of the population version of the risk function given in Equa-

tion (1.2), and let βols denote the corresponding ordinary least squares (OLS) coefficients

defined as βols = E
[
xxT

]−1 E [xy]. Then, under certain random predictor (design) models,

βpop ∝ βols. (1.25)

For logistic regression with Gaussian design (which is equivalent to Fisher’s discriminant

analysis), Equation (1.25) was noted by Fisher in the 1930s [Fis36]; a more general formu-

lation for models with Gaussian design is given in [Bri82]. The relationship Equation (1.25)

suggests that if the constant of proportionality is known, then βpop can be estimated by

computing the OLS estimator, which may be substantially simpler than minimizing the em-

pirical risk. In fact, in some applications like binary classification, it may not be necessary

to find the constant of proportionality in Equation (1.25). Our work in this chapter builds

on this idea.

Our contributions can be summarized as follows.

• We show that βpop is approximately proportional to βols in the random design setting,

regardless of the covariate (predictor) distribution. That is, we prove∥∥∥βpop − cΨ × βols
∥∥∥
∞

.
1

p
,

for some cΨ ∈ R which depends on the non-linearity Ψ. Our generalization uses zero-

bias transformations [GR97]. We also show that the above relation still holds under

certain types of regularization.
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• We design a computationally efficient estimator for βpop by first estimating the OLS

coefficients, and then estimating the proportionality constant cΨ via line search. We

refer to the resulting estimator as the Scaled Least Squares (SLS) estimator and denote

it by β̂ sls. After estimating the OLS coefficients, the second step of our algorithm

involves finding a root of a real valued function; this can be accomplished using

iterative methods with up to a quadratic convergence rate and only O(n) per-iteration

cost. This is cheaper than the classical batch methods mentioned above by at least a

factor of O(p).

• For random design with sub-Gaussian predictors, we show that∥∥∥β̂ sls − βpop
∥∥∥
∞

.
1

p
+

√
p

n/ log(n)
.

This bound characterizes the performance of the proposed estimator in terms of data

dimensions, and justifies the use of the algorithm in the regime n� p� 1.

• We demonstrate how to transform a binary classification problem with smooth sur-

rogate loss into a generalized linear problem, and how our methods can be applied

to obtain a computationally efficient optimization scheme. We further discuss the

canonicalization of the square loss, which may be of independent interest to non-

convex optimization community.

• We propose a scalable algorithm for converting one generalized linear problem to

another by exploiting the proportionality relation Equation (1.25). The proposed

algorithm requires only O (n) per each iteration, with no additional cost.

• We study the statistical and computational performance of β̂ sls, and compare it to

that of the empirical risk minimizer (using several well-known implementations), on

a variety of large-scale datasets.

1.4.2 Newton-Stein Method: A New Second Order Method

In Chapter 3, we focus on how to solve the maximum likelihood problem efficiently in the

GLM setting when the number of observations n is much larger than the dimension of the

coefficient vector p, i.e., n � p � 1. The optimization algorithms for solving the GLM

problem were discussed in Section 1.1.1, where the objective function was the negative of
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the log-likelihood, however only a few of these algorithms can utilize the special structure of

GLMs. In this chapter, we propose an algorithm which takes a Newton step that utilizes this

special structure by using a Stein-type lemma [Ste81] along with subsampling techniques. It

attains fast convergence rates with low per-iteration cost. The proposed algorithm is called

Newton-Stein method which we abbreviate as NewSt. Our contributions in this chapter

can be summarized as follows:

• We recast the problem of constructing a scaling matrix as an estimation problem and

apply a Stein-type lemma along with subsampling techniques to form a computation-

ally feasible Q.

• Newton-Stein method allows further improvements through eigenvalue shrinkage, eigen-

value thresholding, subsampling and various other techniques that are available for

covariance estimation.

• Excessive per-iteration cost of O(np2+p3) of Newton method is replaced by O(np+p2)

per-iteration cost, and a one-time O(|S|p2) cost, where |S| is the subsample size.

• Assuming that the rows of the design matrix are i.i.d. and have bounded support (or

sub-Gaussian), and denoting the iterates of Newton-Stein method by {β̂t}t, we prove

a bound of the form

∥∥β̂t+1 − β∗
∥∥

2
≤ τ1

∥∥β̂t − β∗∥∥2
+ τ2

∥∥β̂t − β∗∥∥2

2
, (1.26)

where β∗ is the true minimizer and τ1, τ2 are the convergence coefficients, and they

are deterministic. The above bound implies that the local convergence starts with

a quadratic phase and transitions into linear as the iterate gets closer to the true

minimizer. We further establish a global convergence result of Newton-Stein method

coupled with a line search algorithm.

• We demonstrate the performance of Newton-Stein method on real and synthetic data

sets by comparing it to commonly used optimization algorithms.

1.4.3 Convergence Rates of Subsampled Newton Methods

In Chapter 4, we study the local convergence properties of subsampled Newton methods.

The algorithms presented in this chapter are more general than the algorithms discussed in
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Chapters 2 and 3 in the sense that they are applicable to a broader class of machine learning

problems. As previously mentioned in Section 1.2, subsampled Newton methods are com-

monly used in practice with numerous applications [Mar10, BCNN11, VP12, EM15, Erd15].

If the subsampled Hessian is close to the true Hessian, these methods can approach Newton

method in terms of convergence rate, nevertheless, they enjoy much smaller complexity per

update. No convergence rate analysis is available for these methods; this analysis is the

main contribution of this chapter. Relying on random matrix theory, and empirical risk the-

ory, we derive the local convergence properties of subsampled Newton methods. To the best

of our knowledge, the best result in this direction is proven in [BCNN11] that estabilishes

asymptotic convergence without quantitative bounds (by the theory from [GNS09]).

• We show that subsampled Newton methods enjoy a composite convergence rate:

quadratic at start and linear near the minimizer, as illustrated in the right plot in

Figure 1.2. Formally, we prove a bound of the form

‖β̂t+1 − β̂∗‖2 ≤ ξt1‖β̂t − β̂∗‖2 + ξt2‖β̂t − β̂∗‖22, (1.27)

with coefficients that are explicitly given (and are computable from data). Note

that this is similar to the bound given for Newton-Stein method, but this time the

coefficients are random variables.

• We propose a new subsampled Newton method that relies on subsampling and eigen-

value thresholding. We call our algorithm NewSamp and show that it enjoys composite

convergence rate as given in Equation (1.27).

• The asymptiotic behavior of the linear convergence coefficient is limt→∞ ξ
t
1 = 1 −

(λ∗p/λ
∗
r+1) + δ, for δ small. The condition number (λ∗1/λ

∗
p) which controls the con-

vergence of gradient decent, has been replaced by the milder (λ∗r+1/λ
∗
p). For datasets

with strong spectral features, this can be a large improvement.

• The complexity per iteration of NewSamp is O(np+ |S|p2) with |S| the sample size.

In the large-scale regime where n� p, if a subsample size of O (n/p) is used, cost at

each iteration becomes O (np). This is the per-iteration cost of gradient descent.

• Finally, we demonstrate the performance of NewSamp on four datasets, and compare

it to the well-known optimization methods.
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1.5 Organization, Published Materials, and Acknowledgments

This dissertation is organized as follows. Chapter 2 introduces a new estimator by applying

Stein’s lemma to the gradient, and using the subsampling technique. Contents of this

chapter are based on the papers [EBD16b, EBD16a]. Chapter 3 proposes a second order

method by applying Stein’s lemma and subsampling techniques to estimate the expectation

of the Hessian. Contents of this chapter are based on the papers [Erd15, Erd16]. In

Chapter 4, we analyze the convergence rates of subsampled Newton methods, and propose

a new second order method with the additional improvements via shrinkage techniques.

Contents of this chapter are based on the paper [EM15]. Finally, we conclude with a brief

discussion in Chapter 5.

The papers [EBD16b, EBD16a] are joint works with Mohsen Bayati, and Lee H. Dicker.

The paper [EM15] is joint work with Andrea Montanari. The papers [Erd15, Erd16] are my

own work, though I am grateful to Mohsen Bayati and Andrea Montanari for stimulating

conversations on the topics of these works.



Chapter 2

First Order Stein Approximations

to Gradient

Contents of this chapter are based on the papers [EBD16b, EBD16a]. In this chapter,

we show that under random sub-Gaussian design, the true minimizer of the population

risk in a generalized linear problem is approximately proportional to the corresponding

ordinary least squares (OLS) estimator. This is obtained by applying a variant of Stein’s

lemma known as zero-bias transformation to the gradient. Using this relation, we design an

algorithm that achieves almost the same accuracy as the empirical risk minimizer through

iterations that attain up to a quadratic convergence rate, and that are cheaper than any

batch optimization algorithm by at least a factor of O(p). During this project, Murat A.

Erdogdu was partially supported by National Science Foundation grant CMMI:1554140.

2.1 Introduction

Consider the following stochastic optimization problem over the population risk

minimize
β∈Rp

R(β) := E
[
Ψ (〈x, β〉)− y〈x, β〉

]
, (2.1)

where Ψ : R→ R is a non-linear function, y ∈ Y ⊂ R denotes the response variable, x ∈ X ⊂
Rp denotes the predictor (or covariate), and the expectation is over the joint distribution

of (y, x). The above minimization is called a generalized linear problem in its canonical

representation, and it is commonly encountered in the statistical learning. Celebrated

18
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examples include binary classification with smooth surrogate losses [BSS05, RW10], and

generalized linear models (GLMs) such as Poisson regression, logistic regression, ordinary

least squares, multinomial regression and many applications involving graphical models

[NB72, MN89, WJ08, KF09]. These methods play a crucial role in numerous machine

learning and statistics problems, and provide a miscellaneous framework for many regression

and classification tasks.

The exact minimization of the stochastic optimization problem given as Equation (2.1),

requires the knowledge of the underlying distribution of the variables (y, x). In practice,

however, the joint distribution is not available. Therefore, after observing n independent

data points (yi, xi), the standard approach is to minimize the empirical risk approximation

given as

minimize
β∈Rp

R̂(β) :=
1

n

n∑
i=1

Ψ (〈xi, β〉)− yi〈xi, β〉 . (2.2)

In the case of GLMs, the empirical risk minimization given in Equation (2.2) is called the

maximum likelihood estimation, whereas in the case of binary classification, it is generally

referred to as surrogate loss minimization. Due to non-linear structure of the optimization

task given in Equation (2.2), for both problems, the minimization of the empirical risk

requires iterative methods that we have reviewed in Section 1.2. Regardless of the problem

formulation, the most commonly used optimization method is the Newton-Raphson method,

which may be viewed as a reweighted least squares algorithm [MN89, BSS05]. This method

uses a second-order approximation to benefit from the curvature of the log-likelihood and

achieves locally quadratic convergence. A drawback of this approach is its excessive per-

iteration cost of O(np2). On the other hand, first-order approximation yields the gradient

descent algorithm, which attains a linear convergence rate with O(np) per-iteration cost.

Although its convergence rate is slow compared to that of the second-order methods, its

modest per-iteration cost makes it practical for large-scale problems. In the regime n �
p, another popular optimization technique is the class of Quasi-Newton methods [Bis95,

Nes13], which can attain a per-iteration cost of O(np), and the convergence rate is locally

super-linear; a well-known member of this class of methods is the BFGS algorithm [Bro70,

Fle70, Gol70, Sha70].

In this chapter, we consider a different approach, based on an identity that is well-

known in some areas of statistics, but appears to have received relatively little attention
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for its computational implications in large-scale problems. Assume that βpop denotes the

true minimizer of the population risk given in Equation (2.1), and let βols denote the

corresponding ordinary least squares (OLS) coefficients defined as βols = E
[
xxT

]−1 E [xy].

Then, under certain random design models, we have

βpop ∝ βols. (2.3)

It is well-known that for logistic regression with Gaussian design (which is equivalent to

Fisher’s discriminant analysis), Equation (2.3) was noted by Fisher in the 1930s [Fis36]; a

more general formulation for models with Gaussian design is given in [Bri82]. The relation-

ship Equation (2.3) suggests that if the constant of proportionality is known, then βpop can

be estimated by computing the OLS estimator, which may be substantially simpler than

minimizing the empirical risk. In fact, in some applications like binary classification, it may

not be necessary to find the constant of proportionality in Equation (2.3). Our work in this

chapter builds on this idea.

The rest of the chapter is organized as follows: Section 2.1.1 surveys the related work and

Section 2.2 introduces the required background and the notation. In Section 2.3, we provide

the intuition behind the relationship Equation (2.3), which are based on exact calculations

for the Gaussian design setting. In Section 2.4, we propose our algorithm and discuss

its computational properties. Theoretical results are given in Section 2.5. In Section 2.6,

we propose an algorithm to convert one GLM type to another. We discuss how a binary

classification problem can be cast as a generalized linear problem in Section 2.7, and in

Section 2.8 we propose a method to canonicalize the square loss. Section 2.9 provides a

thorough comparison between the proposed algorithm and other existing methods. Finally,

we conclude this chapter with a brief discussion in Section 2.11.

2.1.1 Related work

As mentioned in Section 2.1, the relationship Equation (2.3) is well-known in several forms

in statistics. Brillinger [Bri82] derived Equation (2.3) for models with Gaussian predictors

using Stein’s lemma. Li & Duan [LD89] studied model misspecification problems in statistics

and derived Equation (2.3) when the predictor distribution has linear conditional means

(this is a slight generalization of Gaussian predictors). The relation Equation (2.3) has led

to various techniques for dimension reduction [Li91, LD09], and more recently, it has been
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studied by [PV16, TAH15] in the context of compressed sensing. It has been shown that the

standard lasso estimator may be very effective when used in models where the relationship

between the expected response and the signal is nonlinear, and the predictors (i.e. the

design or sensing matrix) are Gaussian. A common theme for all of this previous work is

that it focuses solely on settings where Equation (2.3) holds exactly and the predictors are

Gaussian (or, in the case of [LD89], very nearly Gaussian). Random design assumptions

and Stein’s have been a frequent theme in many recent works [BEM13, Erd17, DE16]. Two

key novelties of the present chapter are (i) our focus on the computational benefits following

from Equation (2.3) for large scale problems with n � p � 1; and (ii) our rigorous finite

sample analysis of models with non-Gaussian predictors, where Equation (2.3) is shown to

be approximately valid. To the best of our knowledge, the present chapter and its earlier

version [EBD16b] are the first to consider the relation Equation (2.3) in the context of

optimization.

2.2 Preliminaries and Notation

We assume a random design setting, where the observed data consists of n random iid pairs

(y1, x1), (y2, x2), . . ., (yn, xn); yi ∈ Y ⊂ R is the response variable and xi = (xi1, . . . , xip)
T ∈

X ⊂ Rp is the vector of predictors or covariates. We focus on problems where the mini-

mization Equation (2.1) is desirable, but we do not need to assume that (yi, xi) are actually

drawn from a particular distribution or the corresponding statistical model (i.e. we allow

for model misspecification).

βpop = argmin
β∈Rp

E
[
Ψ(〈xi, β〉)− yi〈xi, β〉

]
. (2.4)

While we make no assumptions on Ψ beyond smoothness, note that when the optimization

problem is GLM, and Ψ is the cumulant generating function for yi | xi, then the problem

reduces to the standard GLM with canonical link and regression parameters βpop [MN89].

Examples of GLMs in this form include logistic regression with Ψ(w) = log{1+ew}, Poisson

regression with Ψ(w) = ew, and linear regression (least squares) with Ψ(w) = w2/2.

Our objective is to find a computationally efficient estimator for βpop. The alternative es-

timator for βpop proposed in this chapter is related to the OLS coefficient vector, which is de-

fined by βols := E[xix
T
i ]−1E [xiyi]; the corresponding OLS estimator is β̂ols := (XTX)−1XT y,

where X = (x1, . . . , xn)T is the n× p design matrix and y = (y1, . . . , yn)T ∈ Rn.
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Additionally, throughout the text we let [m]={1, 2, ...,m}, for positive integers m, and

we denote the size of a set S by |S|. The m-th derivative of a function g : R→ R is denoted

by g(m). For a vector u ∈ Rp and a n×p matrix U, we let ‖u‖q and ‖U‖q denote the `q-vector

and -operator norms, respectively. If S ⊆ [n], let US denote the |S| × p matrix obtained

from U by extracting the rows that are indexed by S. For a symmetric matrix M ∈ Rp×p,
λmax(M) and λmin(M) denote the maximum and minimum eigenvalues, respectively, and

ρk(M) denotes the condition number of M with respect to k-norm. We denote by Nq

the q-variate normal distribution, and all expectations are over all randomness inside the

brackets. Finally, we use a . b and a ≤ O (b) interchangeably, whichever is convenient

(where O (·) refers to the big O notation).

2.3 From OLS to True Minimizer: Gaussian Case

To motivate our methodology, we assume in this section that the covariates are multivariate

normal, as in [Bri82]. These distributional assumptions will be relaxed in Section 2.5.

Proposition 2.3.1. Assume that the covariates are multivariate normal with mean 0 and

covariance matrix Σ, i.e. xi ∼ Np(0,Σ). Then βpop can be written as

βpop = cΨ × βols, (2.5)

where cΨ ∈ R is the fixed point of the mapping

z → E
[
Ψ(2)(〈xi, βols〉z)

]−1
. (2.6)

Proof of Proposition 2.3.1. The optimal point in the optimization problem Equation (2.4),

has to satisfy the following normal equations,

E [yxi] = E
[
xiΨ

(1)(〈xi, β〉)
]
. (2.7)

Now, denote by φ(x | Σ) the multivariate normal density with mean 0 and covariance matrix

Σ. We recall the well-known property of Gaussian density dφ(x | Σ)/dx = −Σ−1xφ(x | Σ).
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Using this and integration by parts on the right hand side of the above equation, we obtain

E
[
xiΨ

(1)(〈xi, β〉)
]

=

∫
xΨ(1)(〈x, β〉)φ(x | Σ) dx, (2.8)

=Σβ E
[
Ψ(2)(〈xi, β〉)

]︸ ︷︷ ︸
∈ R

,

which is basically the Stein’s lemma. Combining this with the normal equations Equa-

tion (2.7) and multiplying both side with Σ−1, we obtain the desired result.

Proposition 2.3.1 and its proof provide the main intuition behind our proposed method.

Observe that in our derivation, we only worked with the right hand side of the normal

equations Equation (2.7) which does not depend on the response variable yi. Therefore, the

equivalence will hold regardless of the joint distribution of (yi, xi). This is the main differ-

ence from the proof of [Bri82] where yi is assumed to follow a single index model. In Section

2.5, where we extend the method to non-Gaussian predictors, the identity Equation (2.8)

is generalized via the zero-bias transformations [GR97].

2.3.1 Regularization

A version of Proposition 2.3.1 incorporating regularization — an important tool for datasets

where p is large relative to n or the predictors are highly collinear — is also possible, as

outlined briefly in this section. We focus on `2-regularization (ridge regression) in this

section; some connections with lasso (`1-regularization) are discussed in Section 2.5 and

Corollary 2.5.2.

For λ ≥ 0, define the `2-regularized empirical risk minimizer,

βpopλ = argmin
β∈Rp

E [Ψ(〈xi, β〉)− yi〈xi, β〉] +
λ

2
‖β‖22 (2.9)

and the corresponding `2-regularized OLS coefficients βolsλ =
(
E
[
xix

T
i

]
+ λI

)−1 E [xiyi] (so

βpop = βpop0 and βols = βols0 ). The same argument as above implies that

βpopλ = cΨ × βolsγ , where γ = λcΨ. (2.10)

This suggests that the ordinary ridge regression for the linear model can be used to estimate

the `2-regularized empirical risk minimizer βpopλ . Further pursuing these ideas for problems
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Algorithm 1 SLS: Scaled Least Squares Estimator

Input: Data (yi, xi)
n
i=1

Step 1. Compute the least squares estimator: β̂ols and ŷ = Xβ̂ols.
For a subsampling based OLS estimator, let S ⊂ [n] be a

random subset and take β̂ols = |S|
n (XT

SXS)−1XT y.

Step 2. Solve the following equation for c ∈ R: 1 = c
n

∑n
i=1 Ψ(2)(c ŷi).

Use Newton root-finding method:
Initialize c;
Repeat until convergence:

c← c−
c 1
n

∑n
i=1 Ψ(2)(c ŷi)− 1

1
n

∑n
i=1

{
Ψ(2)(c ŷi) + c ŷiΨ(3)(c ŷi)

}.

Output: β̂ sls = c× β̂ols.

where regularization is a critical issue may be an interesting area for future research.

2.4 Scaled Least Squares Estimator

Motivated by the results in the previous section, we design a computationally efficient

algorithm that approximates the stochastic optimization problem Equation (2.1) that is as

simple as solving the least squares problem; it is described in Algorithm 1. The algorithm

has two basic steps. First, we estimate the OLS coefficients, and then in the second step

we estimate the proportionality constant via a simple root-finding algorithm.

There are numerous fast optimization methods to solve the least squares problem, and

even a superficial review of these could go beyond the page limits of this chapter. We

emphasize that this step (finding the OLS estimator) does not have to be iterative and it is

the main computational cost of the proposed algorithm. We suggest using a subsampling

based estimator for βols, where we only use a subset of the observations to estimate the

covariance matrix. Let S ⊂ [n] be a random subsample and denote by XS the sub-matrix

formed by the rows of X in S. Then the subsampled OLS estimator is given as β̂ols =(
1
|S|X

T
SXS

)−1 1
nXT y. Properties of subsampling and sketching based estimators have been

well-studied [Ver10, DLFU13, EM15, PW15, RKM16]. For sub-Gaussian covariates, it

suffices to use a subsample size of O (p log(p)) [Ver10]. Hence, this step requires a single time

computational cost of O
(
|S|p2 + p3 + np

)
≈ O

(
pmax{p2 log(p), n}

)
. For other approaches,

we refer reader to [RT08, DMMS11, DLFU13, EM15] and the references therein.

The second step of Algorithm 1 involves solving a simple root-finding problem. As with
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Figure 2.1: Logistic regression with iid standard Gaussian design. The left plot shows the compu-
tational cost (time) for finding the MLE and SLS as n grows and p = 200. The right plot depicts the
accuracy of the estimators. In the regime where the MLE is expensive to compute, the SLS is found
much more rapidly and has the same accuracy. R’s built-in functions are used to find the MLE.

the first step of the algorithm, there are numerous methods available for completing this

task. Newton root-finding method with quadratic convergence or Halley’s method with

cubic convergence may be appropriate choices. We highlight that this step costs only O (n)

per-iteration and that we can attain fast convergence rates of higher order algorithms. The

resulting per-iteration cost is cheaper than other commonly used batch algorithms by at

least a factor of O (p) — indeed, the cost of computing the gradient is O (np). For simplicity,

we use Newton root-finding method.

Correct initialization of the scaling constant c depends on the optimization problem. For

example, in the case of GLM problems, assuming that the GLM is a good approximation

to the true conditional distribution, by the law of total variance and basic properties of

GLMs, we have

Var (yi) = E [Var (yi | xi)] + Var (E [yi | xi]) ≈ c−1
Ψ + Var

(
Ψ(1)(〈xi, β〉)

)
. (2.11)

It follows that the initialization c = 2/Var (yi) is reasonable as long as c−1
Ψ ≈ E [Var (yi | xi)]

is not much smaller than Var
(
Ψ(1)(〈xi, β〉)

)
. Our experiments show that SLS is very robust

to initialization.

In Figure 2.1, we compare the performance of our SLS estimator to that of the MLE

in a GLM optimization problem, when both are used to analyze synthetic data generated

from a logistic regression model under general Gaussian design with randomly generated
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covariance matrix. The left plot shows the computational cost of obtaining both estimators

as n increases for fixed p. The right plot shows the accuracy of the estimators. In the

regime n� p� 1 — where the MLE is hard to compute — the MLE and the SLS achieve

the same accuracy, yet SLS has significantly smaller computation time. We refer the reader

to Section 2.5 for theoretical results characterizing the finite sample behavior of the SLS.

2.5 Theoretical Results

In this section, we use the zero-bias transformations [GR97] to generalize the equivalence

relation given in the previous section to the settings where the covariates are non-Gaussian.

Definition 1. Let z be a random variable with mean 0 and variance σ2. Then, there exists

a random variable z∗ that satisfies E [zf(z)] = σ2E[f (1)(z∗)], for all differentiable functions

f . The distribution of z∗ is said to be the z-zero-bias distribution.

The existence of z∗ in Definition 1 is a consequence of Riesz representation theorem

[GR97]. The normal distribution is the unique distribution whose zero-bias transformation is

itself (i.e. the normal distribution is a fixed point of the operation mapping the distribution

of z to that of z∗ – which is basically Stein’s lemma).

To provide some intuition behind the usefulness of the zero-bias transformation, we refer

back to the proof of Proposition 2.3.1. For simplicity, assume that the covariate vector xi

has iid entries with mean 0, and variance 1. Then the zero-bias transformation applied to

the j-th normal equation in Equation (2.7) yields

E [yixij ] = E
[
xijΨ

(1)
(
xijβj + Σk 6=jxikβk

)]
︸ ︷︷ ︸

j-th normal equation

= βjE
[
Ψ(2)

(
x∗ijβj + Σk 6=jxikβik

)]
︸ ︷︷ ︸

Zero-bias transformation

. (2.12)

The distribution of x∗ij is the xij-zero-bias distribution and is entirely determined by the

distribution of xij ; general properties of x∗ij can be found, for example, in [CGS10]. If

β is well spread, it turns out that taken together, with j = 1, . . . , p, the far right-hand

side in Equation (2.12) behaves similar to the right side of Equation (2.8), with Σ = I;

that is, the behavior is similar to the Gaussian case, where the proportionality relationship

given in Proposition 2.3.1 holds. This argument leads to an approximate proportionality

relationship for problems with non-Gaussian predictors, which, when carried out rigorously,

yields the following result.
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Theorem 2.5.1. Suppose that the whitened covariates wi = Σ−
1/2xi are independent with

mean 0, covariance I, and have sub-Gaussian norm bounded by κ. Furthermore, wi’s

have constant first and second conditional moments, i.e., ∀j ∈ [p] and β̃ = Σ
1/2βpop,

E[wij
∣∣Σk 6=j β̃kwik] and E[w2

ij

∣∣Σk 6=j β̃kwik] are constant. Let ‖βpop‖2 = τ and assume βpop

is r-well-spread in the sense that τ/ ‖βpop‖∞ = r
√
p for some r ∈ (0, 1], and the function

Ψ(2) is Lipschitz continuous with constant k. Then, for cΨ = 1/E
[
Ψ(2)(〈xi, βpop〉)

]
, and

ρ = ρ∞(Σ1/2) denoting the condition number of Σ1/2, we have∥∥∥∥ 1

cΨ
× βpop − βols

∥∥∥∥
∞
≤ η

p
, where η = 8kκ3ρ‖Σ1/2‖∞(τ/r)2. (2.13)

Theorem 2.5.1 is proved in the Appendix. It implies that the population parameters

βols and βpop are approximately equivalent up to a scaling factor, with an error bound

of O (1/p). For the analysis above, we followed the standard convention in statistics by

assuming that the covariates have norm of order p, i.e. E
[
‖x‖22

]
= O (p), and the coefficient

vector has norm of order 1, i.e. τ2 = O (1) [DL91, HL93, HJS01]. On the other hand,

several works in machine learning literature assume that E
[
‖x‖22

]
= O (1) and that τ2 =

O (p) [KS09, KKSK11]. We note that both settings are theoretically equivalent and the

objective is to make E [〈x, βpop〉] = O (p). The assumption that βpop is well-spread can be

relaxed with minor modifications. For example, if we have a sparse coefficient vector, where

supp(βpop) = {j; βpopj 6= 0} is the support set of βpop, then Theorem 2.5.1 holds with p

replaced by the size of the support set.

The assumptions on the conditional moments are the relaxed versions of assumptions

that are commonly encountered in dimension reduction techniques. For example, sliced

inverse regression methods assume that the first conditional moment E
[
x
∣∣〈x, β〉] is linear

in x for all β [LD89, Li91], which is satisfied by elliptically distributed random vectors. An

important case that is not covered by these methods is the independent coordinate case,

i.e., when the whitened covariates have independent, but not necessarily identical entries.

It is straightforward to observe that this case satisfies the assumptions of Theorem 2.5.1.

We refer reader to [LD09], for a good review of dimension reduction techniques and their

corresponding assumptions. We also highlight that our moment assumptions can be relaxed

further, at the expense of introducing some additional complexity into the results.

An interesting consequence of Theorem 2.5.1 and the remarks following the theorem is

that whenever an entry of βpop is zero, the corresponding entry of βols has to be small, and
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conversely. For λ ≥ 0, define the lasso coefficients

βlassoλ = argmin
β∈Rp

1

2
E
[
(yi − 〈xi, β〉)2

]
+ λ ‖β‖1 . (2.14)

Corollary 2.5.2. For any λ ≥ η/|supp(βpop)|, if E [xi] = 0 and E
[
xix

T
i

]
= I, we have

supp(βlasso) ⊂ supp(βpop). Further, if λ and βpop also satisfy that ∀j ∈ supp(βpop), |βpopj | >
cΨ (λ+ η/|supp(βpop)|), then we have supp(βlasso) = supp(βpop).

So far in this section, we have only discussed properties of the population parameters,

such as βpop and βols. In the remainder of this section, we turn our attention to results for

the estimators that are the main focus of this chapter; these results ultimately build on our

earlier results, i.e. Theorem 2.5.1.

In order to precisely describe the performance of β̂ sls, we first need bounds on the OLS

estimator. The OLS estimator has been studied extensively in the literature; however, for

our purposes, we find it convenient to derive a new bound on its accuracy. While we have

not seen this exact bound elsewhere, it is very similar to Theorem 5 of [DLFU13].

Proposition 2.5.3. Assume that E [xi] = 0, E
[
xix

T
i

]
= Σ, and that Σ−

1/2xi and yi are

sub-Gaussian with norms κ and γ, respectively. For λmin denoting the smallest eigenvalue

of Σ, and |S| > ηp,

∥∥∥β̂ols − βols∥∥∥
2
≤ ηλ −

1/2

min

√
p

|S|
, (2.15)

with probability at least 1− 3e−p, where η depends only on γ and κ.

Proposition 2.5.3 is proved in the Supplementary Material. Our main result on the

performance of β̂ sls is given next.

Theorem 2.5.4. Let the assumptions of Theorem 2.5.1 and Proposition 2.5.3 hold with

E[‖Σ−1/2x‖2] = µ̃
√
p. Further assume that the function f(z) = zE

[
Ψ(2)(〈x, βols〉z)

]
satisfies

f(c̄) > 1 + δ̄
√
p for some c̄ and δ̄ such that the derivative of f in the interval [0, c̄] does

not change sign, i.e., its absolute value is lower bounded by υ > 0. Then, for n and |S|
sufficiently large, with probability at least 1− 5e−p, we have∥∥∥β̂ sls − βpop

∥∥∥
∞
≤ η1

1

p
+ η2

√
p

min {n/ log(n), |S|}
, (2.16)
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where the constants η1 and η2 are defined by

η1 =ηkc̄κ3ρ‖Σ1/2‖∞(τ/r)2 (2.17)

η2 =ηc̄λ
−1/2
min

(
1 + υ−1λ

1/2
min‖β

ols‖∞max {(b+ k/µ̃), kc̄κ}
)
, (2.18)

and η > 0 is a constant depending on κ and γ.

Note that the convergence rate of the upper bound in Equation (2.16) depends on the

sum of the two terms, both of which are functions of the data dimensions n and p. The

first term on the right in Equation (2.16) comes from Theorem 2.5.1, which bounds the

discrepancy between cΨ×βols and βpop. This term is small when p is large, and it does not

depend on the number of observations n.

The second term in the upper bound Equation (2.16) comes from estimating βols and cΨ.

This term is increasing in p, which reflects the fact that estimating βpop is more challenging

when p is large. As expected, this term is decreasing in n and |S|, i.e. larger sample size

yields better estimates. When the full OLS solution is used (|S| = n), the second term

becomes O(
√
p log(n)/n), which suggests that n/ log(n) should be at least of order p for

good performance. Also, note that there is a theoretical threshold for the subsampling size

|S|, namely O (n/ log(n)), beyond which further subsampling provides no improvement.

This suggests that the subsampling size should be smaller than O (n/ log(n)).

2.6 Converting One GLM to Another

In this section, we describe an efficient algorithm to transform a generalized linear model

to another. It is often the case that a practitioner would like to change the loss function

(equivalently the model) he/she uses based on its performance. When the dataset is large,

training a new model from the scratch is computationally inefficient and will be time con-

suming. In the following, we will use the proportionality relation to transition between

different loss functions.

Assume that a practitioner fitted a GLM using the loss function (or cumulant generating

function) Ψ1, but he/she would like to train a new model using the loss function Ψ2. Instead

of maximizing the log-likelihood based on Ψ2, one can exploit the proportionality relation

and obtain the coefficients for the new GLM problem. Denote by βpop1 and βpop2 the GLM
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Algorithm 2 Conversion from one GLM to another

Input: Data (yi, xi)
n
i=1, and β̂glm

1

Step 1. Compute ŷ = Xβ̂glm
1 , and κ = 1

n

∑n
i=1 Ψ

(2)
1 (ŷi).

Step 2. Solve the following equation for ρ ∈ R: κ = ρ
n

∑n
i=1 Ψ

(2)
2 (ŷiρ)

Use Newton root-finding method:
Initialize ρ = 1;
Repeat until convergence:

ρ← ρ−
ρ 1
n

∑n
i=1 Ψ

(2)
2 (ρ ŷi)− κ

1
n

∑n
i=1

{
Ψ

(2)
2 (ρ ŷi) + ρ ŷiΨ

(3)
2 (ρ ŷi)

}.

Output: β̂glm
2 = ρ× β̂glm

1 .

coefficients corresponding to the loss functions Ψ1 and Ψ2, respectively. We have

1

cΨ1

βpop1 =
1

cΨ2

βpop2 = βols,

that is, both coefficients are proportional to the OLS coefficients which does not depend on

the loss function. Therefore, these coefficients βpop1 and βpop2 are also proportional to each

other and we can write

βpop2 =
cΨ2

cΨ1

βpop1 := ρ βpop1 , (2.19)

where the proportionality constant between two GLM types turns out to be the ratio be-

tween cΨ1 and cΨ2 , i.e. ρ = cΨ2/cΨ1 . Using the definition of cΨ2 , we write

1 = cΨ2 E
[
Ψ

(2)
2 (〈x, βpop2 〉)

]
,

= cΨ1ρ E
[
Ψ

(2)
2 (〈x, βpop1 〉ρ)

]
.

Dividing the both sides by cΨ1 and using the equality 1/cΨ1 = E
[
Ψ

(2)
1 (〈x, βpop1 〉)

]
, we obtain

E
[
Ψ

(2)
1 (〈x, βpop1 〉)

]
= ρ E

[
Ψ

(2)
2 (〈x, βpop1 〉ρ)

]
.

The above equation only involves βpop1 as the coefficients (which is already assumed to be

known or fitted by the practitioner). Therefore, if we solve it for the ratio ρ, we can estimate
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Name Loss function: `(y; q) Weight Can. Link: q(z)

Log-loss −y log(q)− (1− y) log(1− q) 1
q(1−q)

1
1+exp(−z)

Boosting loss y(q−1 − 1)1/2+(1− y)(q−1 − 1)−1/2 1
[q(1−q)]3/2

1
2 + z/2

2(z2/4+1)1/2

Square loss y(1− q)2 + (1− y)q2 1 1+z
2

Table 2.1: Common loss functions and their canonical links

βpop2 by simply using the proportionality relation given in Equation (2.19).

The procedure described above is summarized as Algorithm 2. We emphasize that this

procedure does not require the computation of the OLS estimator which was the main cost

of SLS. The procedure only requires a per-iteration cost of O (n). In other words, conversion

from one GLM type to another is much simpler than obtaining the GLM coefficients from

the scratch.

2.7 Binary Classification with Proper Scoring Rules

In this section, we assume that for i ∈ [n], the response is binary yi ∈ {0, 1}. The binary

classification problem can be described by the following minimization of an empirical risk

minimize
β∈Rp

1

n

n∑
i=1

`(yi; q(〈xi, β〉)), (2.20)

where ` and q are referred to as the loss and the link functions, respectively. There are

various loss functions that are used in practice. Examples include log-loss, boosting loss,

square loss etc (See Table 2.1). As before, we constrain our analysis on the canonical links.

The concept of canonical links for binary classification is introduced by [BSS05], and it is

quite similar to the generalized linear problems.

For any given loss function, we define the partial losses `k(·) = `(y = k; ·) for k ∈ {0, 1}.
Since we have a binary response variable, we can write any loss in the following format

`(y; q) =y`1(q) + (1− y)`0(q),

=y (`1(q)− `0(q)) + `0(q).
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The above formulation is of the form of a generalized linear problem. Before moving forward,

we recall the concept of proper scoring in binary classification, which is sometimes referred

to as Fisher consistency.

Definition 2 (Proper scoring rules). Assume that y ∼ Bernoulli(η). If the expected loss

E [`(y, q)] is minimized by q = η for all η ∈ (0, 1), we call the loss function a proper scoring

rule.

The following theorem by [Sch89] provides a methodology for constructing a loss function

for the proper scoring rules.

Theorem 2.7.1 ([Sch89]). Let w(dt) be a positive measure on (0, 1) that is finite on interval

(ε, 1− ε) ∀ε > 0. Then the following defines a proper scoring rule

`1(q) =

∫ 1

q
(1− t)w(dt), and `0(q) =

∫ q

0
tw(dt).

The measure w(dt) uniquely defines the loss function (generally referred to as the weight

function, since all losses can be written as weighted average of cost weighted misclassification

error [BSS05, RW10]). Examples of weight functions is given in Table 2.1. The above

theorem has many interesting interpretations; one that is most useful to us is that `
(1)
0 (q) =

qw(q).

The notion of canonical links for proper scoring rules are introduced by [BSS05], which

corresponds to the notion of matching loss [HKW99, RW10]. The derivation of canonical

links stems from the Hessian of the above minimization, which remedies two potential

problems: non-convexity and asymptotic variance inflation. It turns out that by setting

w(q)q(1) as constant, one can remedy both problems [BSS05]. We will skip the derivation

and, without loss of generality, assume that the canonical link-loss pair satisfies w(q)q(1) = 1.

Note that any loss function has a natural canonical link. The following Theorem summarizes

this concept.

Theorem 2.7.2 ([BSS05]). For proper scoring rules with w > 0, there exists a canonical

link function which is unique up to addition and multiplication by constants. Conversely,

any link function is canonical for a unique proper scoring rule.

The canonical link for a given loss function can be explicitly derived from the equation

w(q)q(1) = 1. We have provided some examples in Table 2.1. Using the definition of
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canonical link for proper scoring rules, we write the normal equations d
dβE [`(y, q(〈x, β〉))] =

0 as

E
[
xq(1)(〈x, β〉)`(1)

0 (q(〈x, β〉))
]

=E
[
yxq(1)(〈x, β〉)

(
`
(1)
0 (q(〈x, β〉))− `(1)

1 (q(〈x, β〉))
)]

E [xq(〈x, β〉)]=E [yx]

ΣβE
[
q(1)(〈x, β〉)

]
=E [yx] .

The last equation provides us with the analog of the proportionality relation we observed

in generalized linear problems. In this case, we observe that the proportionality constant

becomes 1/E
[
q(1)(〈x, β〉)

]
. Therefore, our algorithm can be used to obtain a fast training

procedure for the binary classification problems under canonical links as well.

2.8 Canonicalization of the Square Loss

In this section, we present a method to approximate the square loss minimization problem

using a canonical form. Using this canonical approximation, we can use the techniques

developed in the previous sections to gain computational benefits. Consider a minimization

problem of the following form

minimize
β

1

n

n∑
i=1

[yi − f(〈xi, β〉)]2. (2.21)

The above problem is commonly encountered in many machine learning tasks – specifically,

in the context of neural networks, the function f is called the activation function. Here, we

consider a toy example to demonstrate how our methodology can be useful in a minimization

problem of the above form.

We first use Taylor series expansion around a point θ (which should be close to 〈x, β〉),
in order to approximate the function f(z) with a linear function around f(θ). We write

min
β

(y − f(〈x, β〉))2 = min
β
f(〈x, β〉)2 − 2yf(〈x, β〉) (2.22)

≈ min
β

f(〈x, β〉)2

2f ′(θ)
− y〈x, β〉.
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Then, we obtain

Ψ(z) =
f(z)2

2f ′(θ)
, (2.23)

and the proportionality relation given in previous sections would hold approximately. The

above approximation will be accurate when the activation function is smooth around the

user-specified point θ. We suggest to use θ = 0 since when p is large and β is well-spread,

the inner product 〈x, β〉 should be close to its expectation E [〈x, β〉] = 0. This method can

be used to derive proportionality relations for GLMs with non-canonical links (conditional

on the link being nice), and also may be of interest in non-convex optimization.

2.9 Experiments

This section contains the results of a variety of numerical studies, which show that the Scaled

Least Squares estimator reaches the minimum achievable test error substantially faster than

commonly used batch algorithms for finding the MLE. Both logistic and Poisson regression

models (two types of GLMs) are utilized in our analyses, which are based on several synthetic

and real datasets.

For the convenience of the reader, we briefly describe the optimization algorithms for the

MLE that were used in the experiments. For a detailed discussion, we refer to Section 1.2,

and the references there-in.

1. Newton-Raphson (NR) achieves locally quadratic convergence by scaling the gradient

by the inverse of the Hessian evaluated at the current iterate. Computing the Hessian

has a per-iteration cost of O
(
np2
)
, which makes it impractical for large-scale datasets.

2. Newton-Stein (NS) is a recently proposed second-order batch algorithm specifically

designed for GLMs [Erd15, Erd16]. The algorithm uses Stein’s lemma and subsam-

pling to efficiently estimate the Hessian with a cost of O (np) per-iteration, achieving

near quadratic rates.

3. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable quasi-

Newton method [Nes13]. At each iteration, the gradient is scaled by a matrix that is

formed by accumulating information from previous iterations and gradient computa-

tions. The convergence is locally super-linear with a per-iteration cost of O (np).
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Figure 2.2: We compared the performance of SLS to that of MLE for the logistic re-
gression problem on several datasets. MLE optimization is solved by various optimization
algorithms. SLS is represented with red straight line. The details are provided in Table 2.2.

4. Limited memory BFGS (LBFGS) is a variant of BFGS, which uses only the recent

iterates and gradients to approximate the Hessian, providing significant improvement

in terms of memory usage. LBFGS has many variants; we use the formulation given

in [Bis95].

5. Gradient descent (GD) takes a step in the opposite direction of the gradient, evaluated

at the current iterate. Its performance strongly depends on the condition number of

the design matrix. Under certain assumptions, the convergence is linear with O (np)

per-iteration cost.

6. Accelerated gradient descent (AGD) is a modified version of gradient descent with
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Figure 2.3: We compared the performance of SLS to that of MLE for the Poisson re-
gression problem on several datasets. MLE optimization is solved by various optimization
algorithms. SLS is represented with red straight line. The details are provided in Table 2.2.

an additional “momentum” term [Nes83]. Its per iteration cost is O (np) and its

performance strongly depends on the smoothness of the objective function.

For all the algorithms for computing the MLE, the step size at each iteration is chosen via

the backtracking line search [BV04].

Recall that the proposed Algorithm 1 is composed of two steps; the first finds an estimate

of the OLS coefficients. This up-front computation is not needed for any of the MLE

algorithms described above. On the other hand, each of the MLE algorithms requires

some initial value for β, but no such initialization is needed to find the OLS estimator in

Algorithm 1. This raises the question of how the MLE algorithms should be initialized, in
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Model Logistic regression Poisson regression

Dataset Σ×{Exp(1)-1} Higgs [BSW14] Σ×Ber(±1) Covertype [BD99]

Size n = 6.0× 105, p = 300 n = 1.1×107, p = 29 n = 6.0×105, p = 300 n = 5.8×105, p = 53

Init Rnd Ols Rnd Ols Rnd Ols Rnd Ols

Plot (a) (b) (c) (d) (e) (f) (g) (h)

Method Time in seconds / number of iterations (to reach min test error)

Sls 8.34/4 2.94/3 13.18/3 9.57/3 5.42/5 3.96/5 2.71/6 1.66/20

Nr 301.06/6 82.57/3 37.77/3 36.37/3 170.28/5 130.1/4 16.7/8 32.48/18

Ns 51.69/8 7.8/3 27.11/4 26.69/4 32.71/5 36.82/4 21.17/10 282.1/216

Bfgs 148.43/31 24.79/8 660.92/68 701.9/68 67.24/29 72.42/26 5.12/7 22.74/59

Lbfgs 125.33/39 24.61/8 6368.1/651 6946.1/670 224.6/106 357.1/88 10.01/14 10.05/17

Gd 669/138 134.91/25 100871/10101 141736/13808 1711/513 1364/374 14.35/25 33.58/87

Agd 218.1/61 35.97/12 2405.5/251 2879.69/277 103.3/51 102.74/40 11.28/15 11.95/25

Table 2.2: Details of the experiments shown in Figures 2.2 and 2.3.

order to compare them fairly with the proposed method. We consider two scenarios in our

experiments: first, we use the OLS estimator computed for Algorithm 1 to initialize the

MLE algorithms; second, we use a random initial value.

On each dataset, the main criterion for assessing the performance of the estimators is

how rapidly the minimum test error is achieved. The test error is measured as the mean

squared error of the estimated mean using the current parameters at each iteration on a test

dataset, which is a randomly selected (and set-aside) 10% portion of the entire dataset. As

noted previously, the MLE is more accurate for small n (see Figure 2.1). However, in the

regime considered here (n� p� 1), the MLE and the SLS perform very similarly in terms

of their error rates; for instance, on the Higgs dataset, the SLS and MLE have test error

rates of 22.40% and 22.38%, respectively. For each dataset, the minimum achievable test

error is set to be the maximum of the final test errors, where the maximum is taken over

all of the estimation methods. Let Σ(1) and Σ(2) be two randomly generated covariance

matrices. The datasets we analyzed were: (i) a synthetic dataset generated from a logistic

regression model with iid {exponential(1)−1} predictors scaled by Σ(1); (ii) the Higgs dataset

(logistic regression) [BSW14]; (iii) a synthetic dataset generated from a Poisson regression

model with iid binary(±1) predictors scaled by Σ(2); (iv) the Covertype dataset (Poisson

regression) [BD99].

In all cases, the SLS outperformed the alternative algorithms for finding the MLE by

a large margin, in terms of computation. Detailed results may be found in Figures 2.2

and 2.3, and Table 2.2. We provide additional experiments with different datasets in the

Supplementary for this chapter.
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2.10 Proof of Main Results

In this section, we provide the details and the proofs of our technical results. For conve-

nience, we briefly state the following definitions.

Definition 3 (Sub-Gaussian). For a given constant κ, a random variable x ∈ R is said to

be sub-Gaussian if it satisfies

sup
m≥1

m
−1/2E [|x|m]1/m ≤ κ.

Smallest such κ is the sub-Gaussian norm of x and it is denoted by ‖x‖ψ2. Similarly, a

random vector y ∈ Rp is a sub-Gaussian vector if there exists a constant κ′ such that

sup
v∈Sp−1

‖〈y, v〉‖ψ2 ≤ κ′.

Definition 4 (Sub-exponential). For a given constant κ, a random variable x ∈ R is called

sub-exponential if it satisfies

sup
m≥1

m−1E [|x|m]1/m ≤ κ.

Smallest such κ is the sub-exponential norm of x and it is denoted by ‖x‖ψ1. Similarly, a

random vector y ∈ Rp is a sub-exponential vector if there exists a constant κ′ such that

sup
v∈Sp−1

‖〈y, v〉‖ψ1 ≤ κ′.

2.10.1 Proof of Theorem 2.5.1

Proof. For simplicity, we denote the whitened covariate by w = Σ−1/2x. Since w is sub-

Gaussian with norm κ, its j-th entry wj has bounded third moment. That is,

κ = sup
‖u‖2=1

‖〈u,w〉‖ψ2
, (2.24)

≥‖wj‖ψ2
= sup

m≥1
m−1/2E [|wj |m]1/m ,

≥ 1√
3
E
[
|wj |3

]1/3
,
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where in the first step, we used u = ej , the j-th standard basis vector. Hence, we obtain a

bound on the third moment, i.e,

max
j

E
[
|wj |3

]
≤ 33/2κ3. (2.25)

Using the normal equations, we write

E [yx] = E
[
xΨ(1)(〈x, β〉)

]
=Σ1/2E

[
wΨ(1)(〈w,Σ1/2β〉)

]
, (2.26)

=Σ1/2E
[
wΨ(1)(〈w, β̃〉)

]
,

where we defined β̃ = Σ1/2β. By multiplying both sides with Σ−1, we obtain

βols = Σ−1/2E
[
wΨ(1)(〈w, β̃〉)

]
. (2.27)

Now we define the partial sums W−i =
∑

j 6=i β̃jwj = 〈β̃, w〉 − β̃iwi. We will focus on

the i-th entry of the above expectation given in Equation (2.27). Denoting the zero biased

transformation of wi conditioned on W−i by w∗i , we have

E
[
wiΨ

(1)(〈w, β̃〉)
]

=E
[
E
[
wiΨ

(1)
(
β̃iwi +W−i

) ∣∣W−i]] , (2.28)

=β̃iE
[
Ψ(2)(β̃iw

∗
i +W−i)

]
,

=β̃iE
[
Ψ(2)(β̃i(w

∗
i − wi) + 〈w, β̃〉)

]
,

where in the second step, we used the assumption on conditional moments. Let D be a

diagonal matrix with diagonal entries Dii = E
[
Ψ(2)(β̃i(w

∗
i − wi) + 〈w, β̃〉)

]
. Using Equa-

tion (2.27) together with Equation (2.28), we obtain the equality

βols =Σ−1/2Dβ̃, (2.29)

=Σ−1/2DΣ1/2β.

Now, using the Lipschitz continuity assumption of the variance function, we have∣∣∣E [Ψ(2)(β̃i(w
∗
i − wi) + 〈w, β̃〉)

]
− E

[
Ψ(2)(〈w, β̃〉)

]∣∣∣ ≤ k|β̃i|E [|w∗i − wi|] . (2.30)

In the following, we will use the properties of zero-biased transformations. Consider the
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quantity

r = sup
E
[
|w∗i − wi|

∣∣W−i]
E
[
|wi|3

∣∣W−i] (2.31)

where w∗i has wi-zero biased distribution (conditioned on W−i) and the supremum is taken

with respect to all random variables with mean 0, standard deviation 1 and finite third

moment, and w∗i is achieving the minimal `1 coupling to wi conditioned on W−i. It is

shown in [Gol07] that the above bound holds for r = 1.5 for the unconditional zero-bias

transformations. Here, we take a similar approach to show that the same bound holds for

the conditional case as well. By using the triangle inequality, we have

E
[
|w∗i − wi|

∣∣W−i] ≤E [|w∗i |∣∣W−i]+ E
[
|wi|
∣∣W−i]

≤1

2
E
[
|wi|3

∣∣W−i]+ E
[
|wi|3

∣∣W−i]1/3 .
Since E

[
|wi|2

∣∣W−i] is constant, it is equal to E
[
|wi|2

]
= 1. This yields that the second term

in the last line is upper bounded by E
[
|wi|3

∣∣W−i]. Consequently, by taking expectations

over both hand sides we obtain that

E [|w∗i − wi|] ≤ 1.5 E
[
|wi|3

]
.

Then the right hand side of Equation (2.30) can be upper bounded by

k|β̃i|E [|w∗i − wi|] ≤rkmax
i

{
|β̃i|E

[
|wi|3

]}
, (2.32)

≤1.5k
∥∥∥Σ1/2β

∥∥∥
∞

33/2κ3,

≤8kκ3‖Σ1/2β‖∞,

where in the second step we used the bound on the third moment given in Equation (2.25).

The last inequality provides us with the following result,

max
i

∣∣∣∣Dii −
1

cΨ

∣∣∣∣ ≤ 8kκ3‖Σ1/2β‖∞. (2.33)
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Finally, combining this with Equation (2.27) and Equation (2.29), we obtain∥∥∥∥βols − 1

cΨ
β

∥∥∥∥
∞

=

∥∥∥∥Σ−1/2DΣ1/2β − 1

cΨ
β

∥∥∥∥
∞
, (2.34)

=

∥∥∥∥Σ−1/2

(
D− 1

cΨ
I

)
Σ1/2β

∥∥∥∥
∞
,

≤max
i

∣∣∣∣Dii −
1

cΨ

∣∣∣∣ ∥∥∥Σ1/2
∥∥∥
∞

∥∥∥Σ−1/2
∥∥∥
∞
‖β‖2∞ ,

≤8kκ3ρ(Σ1/2)‖Σ1/2‖∞
τ2

r2p
,

where in the last step, we used the assumption that β is r-well-spread.

2.10.2 Proof of Proposition 2.5.3

Proof. For convenience, we denote the whitened covariates with wi = Σ−1/2xi. We have

E [wi] = 0, E
[
wiw

T
i

]
= I, and ‖wi‖ψ2

≤ κ. Also denote the subsampled covariance matrix

with Σ̂ = 1
|S|
∑

i∈S xix
T
i , and its whitened version as Σ̃ = 1

|S|
∑

i∈S wiw
T
i . Further, define

ζ̂ = 1
n

∑n
i=1wiyi and ζ = E [wy]. Then, we have

β̂ols = Σ̂
−1

Σ1/2ζ̂ and βols = Σ−1/2ζ.

For now, we work on the event that Σ̂ is invertible. We will see that this event holds

with very high probability. We write∥∥∥Σ1/2(β̂ols − βols)
∥∥∥

2
=
∥∥∥Σ1/2Σ̂

−1
Σ1/2ζ̂ −Σ−1/2ζ

∥∥∥
2
, (2.35)

=
∥∥∥Σ̃−1

{
ζ̂ − ζ +

(
I−Σ−1/2Σ̂Σ−1/2

)
ζ
}∥∥∥

2
,

≤
∥∥∥Σ̃−1

∥∥∥
2

{∥∥∥ζ̂ − ζ∥∥∥
2

+
∥∥∥I− Σ̃

∥∥∥
2
‖ζ‖2

}
,

where we used the triangle inequality and the properties of the operator norm.

For the first term on the right hand side of Equation (2.35), we write∥∥∥Σ̃−1
∥∥∥

2
=

1

λmin(Σ̃)
,

≤ 1

1− δ
,
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where we assumed that such a δ > 0 exists. In fact, when δ < 0.5, we obtain a bound of

2 on the right hand side, which also justifies the invertibility assumption of Σ̂. By Lemma

A.1.3 and the following remark, we have with probability at least 1− 2 exp {−p},

∥∥∥Σ̃− I
∥∥∥

2
≤ c
√

p

|S|
,

where c is a constant depending only on κ. When |S| > 4c2p, we obtain∣∣∣λmin(Σ̃)− 1
∣∣∣ ≤ ∥∥∥Σ̃− I

∥∥∥
2
≤ 0.5,

where the first inequality follows from the Lipschitz property of the eigenvalues.

Next, we bound the difference between ζ̂ and its expectation ζ. We write the bounds

on the sub-exponential norm

‖wy‖ψ1
= sup
‖v‖2=1

sup
m≥1

m−1E [|〈v, w〉y|m]1/m , (2.36)

≤ sup
‖v‖2=1

sup
m≥1

m−1E
[
|〈v, w〉|2m

]1/2m E
[
|y|2m

]1/2m
,

≤ sup
‖v‖2=1

sup
m≥1

m−1/2E
[
|〈v, w〉|2m

]1/2m
sup
m≥1

m−1/2E
[
|y|2m

]1/2m
,

≤2 ‖w‖ψ2
‖y‖ψ2

= 2γκ.

Hence, we have maxi ‖wiyi − E [wiyi]‖ψ1
≤ 4γκ. Further, let ej denote the j-th standard

basis, and notice that each entry of w is also sub-Gaussian with norm upper bounded by κ,

i.e.,

κ = ‖w‖ψ2
= sup
‖u‖2=1

‖〈u,w〉‖ψ2
, (2.37)

≥‖〈ej , w〉‖ψ2
= ‖wj‖ψ2

.
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Also, we can write

2γκ ≥ ‖wy‖ψ1
= sup
‖u‖2=1

sup
m≥1

m−1E [|〈u,w〉y|m]1/m , (2.38)

≥ sup
‖u‖2=1

E [|〈u,w〉y|] ,

≥ sup
‖u‖2=1

E [〈u,w〉y] ,

= sup
‖u‖2=1

〈u, ζ〉 = ‖ζ‖2 ,

where in the last step, we used the fact that dual norm of `2 norm is itself.

Next, we apply Lemma A.1.1 to ζ̂− ζ, and obtain with probability at least 1− exp {−p}

∥∥∥ζ̂ − ζ∥∥∥
2
≤ cγκ

√
p

n
,

whenever n > c2p for an absolute constant c.

Combining the above results in Equation (2.35), we obtain with probability at least

1− 3 exp {−p}

∥∥∥Σ1/2(β̂ols − βols)
∥∥∥

2
≤ 2

{
c1γκ

√
p

n
+ c2γκ

√
p

|S|

}
≤ η

√
p

|S|
(2.39)

where η depends only on κ and γ, and |S| > ηp. Finally, we write∥∥∥β̂ols − βols∥∥∥
2
≤λ−1/2

min

∥∥∥Σ1/2(β̂ols − βols)
∥∥∥

2
,

≤ηλ−1/2
min

√
p

|S|
,

with probability at least 1− 3 exp {−p}, whenever |S| > ηp.

2.10.3 Proof of Theorem 2.5.4

The following lemma – combined with the Proposition 2.5.3 – provides the necessary tools

to prove Theorem 2.5.4.
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Lemma 2.10.1. For a given function Ψ(2) that is Lipschitz continuous with k, and uni-

formly bounded by b, we define the function f : R× Rp → R as

f(c, β) = c E
[
Ψ(2)(〈x, β〉c)

]
,

and its empirical counterpart as

f̂(c, β) = c
1

n

n∑
i=1

Ψ(2)(〈xi, β〉c).

Assume that for some δ, c̄ > 0, we have f(c̄, βols) ≥ 1 + δ. Then, ∃cΨ > 0 satisfying the

equation

1 = f(cΨ, β
ols).

Further, assume that for some δ̃ > 0, we have δ = δ̃
√
p, and n and |S| sufficiently large,

i.e.,

min

{
n

log(n)
, |S|

}
> K2/δ̃2

for K = ηc̄max {b+ κ/µ̃, kc̄κ}. Then, with probability 1−5 exp {−p}, there exists a constant

ĉΨ ∈ (0, c̄) satisfying the equation

1 = ĉΨ
1

n

n∑
i=1

Ψ(2)(〈xi, β̂ols〉ĉΨ).

Moreover, if the derivative of z → f(z, βols) is bounded below in absolute value (i.e. does

not change sign) by υ > 0 in the interval z ∈ [0, c̄], then with probability 1− 5 exp {−p}, we

have

|ĉΨ − cΨ| ≤ C
√

p

min {n/ log (n) , |S|}
,

where C = K/υ.

Proof of Lemma 2.10.1. First statement is obvious. We notice that f(c, βols) is a continuous

function in its first argument with f(0, βols) = 0 and f(c̄, βols) ≥ 1 + δ. Hence, there exists
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cΨ > 0 such that f(cΨ, β
ols) = 1. If there are many solutions to the above equation, we

choose the one that is closest to zero. The condition on the derivative will guarantee the

uniqueness of the solution.

Next, we will show the existence of ĉΨ using a uniform concentration given by Lemma

A.1.2. Define the ellipsoid centered around βols with radius δ,

BδΣ(βols) =
{
β :
∥∥Σ1/2(β − βols)

∥∥
2
≤ δ
}
,

and the event E that β̂ols falls into BδΣ(βols), i.e.,

E =
{
β̂ols ∈ BδΣ(βols)

}
.

By Proposition 2.5.3 and the inequality given in Equation (2.39), whenever |S| > ηpmax
{

1, η/δ2
}

,

we obtain

P
(
EC
)
≤ 3 exp {−p} ,

where EC denotes the complement of the event E , and η is a constant depending only on κ

and γ. For any c ∈ [0, c̄], on the event E , we have∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ ≤ sup

β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ .

Hence, we obtain the following inequality

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > ε

)

≤ P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > ε; E

)
+ P

(
EC
)
,

≤ P

(
sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ > ε

)
+ 3 exp {−p} .

In the following, we will use Lemma A.1.2 for the first term in the last line above. Denoting
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by w, the whitened covariates, we have 〈x, β〉 = 〈w,Σ1/2β〉. Therefore,

sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣

≤ c̄ sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi,Σ1/2β〉c)− E
[
Ψ(2)(〈w,Σ1/2β〉c)

]∣∣∣∣∣ .
Next, define the ball centered around β̃ols = Σ1/2βols, with radius δ as Bδ(β̃ols) = Σ1/2BδΣ(βols).

We have β ∈ BδΣ(βols) if and only if Σ1/2β ∈ Bδ(β̃ols). Then, the right hand side of the

above inequality can be written as

c̄ sup
c∈[0,c̄]

sup
β∈Bδ(β̃ols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi, β〉c)− E
[
Ψ(2)(〈w, β〉c)

]∣∣∣∣∣ ,
= c̄ sup

β∈Bc̄δ(β̃ols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi, β〉)− E
[
Ψ(2)(〈w, β〉)

]∣∣∣∣∣ .
Then, by Lemma A.1.2, we obtain

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > c′c̄(b+ κ/µ̃)

√
p

n/ log (n)

)
≤ 5 exp {−p} (2.40)

whenever np > 51 max
{
χ, χ−1

}
where χ = (b+ κ/µ̃)2/(c′δ2k2c̄2µ̃2).

Also, by the Lipschitz condition for Ψ(2), we have for any c ∈ [0, c̄], and β1, β2,

|f(c, β1)− f(c, β2)| ≤kc2E
[∣∣∣〈w,Σ1/2(β1 − β2)〉

∣∣∣]
≤kc̄2κ

∥∥∥Σ1/2(β1 − β2)
∥∥∥

2
.

Applying the above bound for β1 = β̂ols and β2 = βols, we obtain with probability 1 −
3 exp {−p}

∣∣∣f(c, β̂ols)− f(c, βols)
∣∣∣ ≤ ηkc̄2κ

√
p

|S|
, (2.41)

where the last step follows from Proposition 2.5.3 and the inequality given in Equation (2.39).

Combining this with the previous bound, and taking into account that µ = µ̃
√
p, for
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any c ∈ [0, c̄], with probability 1− 5 exp {−p}, we obtain

∣∣∣f̂(c, β̂ols)− f(c, βols)
∣∣∣ ≤c′c̄(b+ κ/µ̃)

√
p

n/ log (n)
+ ηkc̄2κ

√
p

|S|

≤K
√

p

min {n/ log (n) , |S|}

where K = ηc̄max {b+ κ/µ̃, kc̄κ}. Here, η depends only on κ and γ.

In particular, for c = c̄ we observe that

f̂(c̄, β̂ols) ≥f(c̄, βols)−K
√

p

min {n/ log (n) , |S|}

≥1 + δ −K
√

p

min {n/ log (n) , |S|}
.

Therefore, for sufficiently large n and |S| satisfying

min

{
n

log(n)
, |S|

}
> K2/δ̃2

we obtain f̂(c̄, β̂ols) > 1. Since this function is continuous and f̂(0, β̂ols) = 0, we obtain the

existence of ĉΨ ∈ [0, c̄] with probability at least 1− 5 exp {−p}.
Now, since ĉΨ and cΨ satisfy the equations f̂(ĉΨ, β̂

ols) = f(cΨ, β
ols) = 1 (with high prob-

ability), by the inequality given in Equation (2.40), with probability at least 1−5 exp {−p},
we obtain ∣∣∣1− f(ĉΨ, β̂

ols)
∣∣∣ =
∣∣∣f̂(ĉΨ, β̂

ols)− f(ĉΨ, β̂
ols)
∣∣∣

≤c′c̄(b+ κ/µ̃)

√
p

n/ log(n)
.

Also, by the same argument in Equation (2.41), and Proposition 2.5.3, we get∣∣∣f(ĉΨ, β̂
ols)− f(ĉΨ, β

ols)
∣∣∣ ≤kc̄2κ

∥∥∥Σ(β̂ols − βols)
∥∥∥

2

≤ηkc̄2κ

√
p

|S|
.

Now, using the Taylor’s series expansion of c→ f(c, βols) around cΨ, and the assumption
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on the derivative of f with respect to its first argument, we obtain

υ |ĉΨ − cΨ| ≤
∣∣∣f(ĉΨ, β

ols)− f(cΨ, β
ols)
∣∣∣

≤
∣∣∣f(ĉΨ, β

ols)− f(ĉΨ, β̂
ols)
∣∣∣+
∣∣∣f(ĉΨ, β̂

ols)− 1
∣∣∣

≤ηkc̄2κ

√
p

|S|
+ c′c̄(b+ κ/µ̃)

√
p

n/ log(n)

≤K
√

p

min {n/ log (n) , |S|}

with probability at least 1− 5 exp {−p}. Here, the constant K is the same as before

K = ηc̄max {b+ κ/µ̃, kc̄κ} .

Proof of Theorem 2.5.4. We have∥∥∥β̂ sls − βpop
∥∥∥
∞

=
∥∥∥ĉΨβ̂

ols − βpop
∥∥∥
∞
, (2.42)

≤
∥∥∥cΨβ

ols − βpop
∥∥∥
∞

+
∥∥∥ĉΨβ̂

ols − cΨβ
ols
∥∥∥
∞
,

where we used the triangle inequality for the `∞ norm. The first term on the right hand

side can be bounded using Theorem 2.5.1. We write∥∥∥cΨβ
ols − βpop

∥∥∥
∞
≤ η1

1

p
, (2.43)

for η1 = 8kc̄κ3ρ(Σ1/2)‖Σ1/2‖∞(τ/r)2.

For the second term, we write∥∥∥ĉΨβ̂
ols − cΨβ

ols
∥∥∥
∞

=
∥∥∥ĉΨβ̂

ols ± ĉΨβ
ols − cΨβ

ols
∥∥∥
∞
, (2.44)

≤
∥∥∥ĉΨβ̂

ols − ĉΨβ
ols
∥∥∥
∞

+
∥∥∥ĉΨβ

ols − cΨβ
ols
∥∥∥
∞
,

≤ |ĉΨ|
∥∥∥β̂ols − βols∥∥∥

∞
+ |ĉΨ − cΨ|

∥∥∥βols∥∥∥
∞
,

where the first step follows from triangle inequality. By Lemma 2.10.1, for sufficiently large

n and |S|, with probability 1 − 5 exp {−p}, the constant ĉΨ exists and it is in the interval
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(0, c̄]. By the same lemma, with probability 1− 5 exp {−p}, we have

|ĉΨ − cΨ| ≤ η4

√
p

min {n/ log (n) , |S|}
, (2.45)

where η4 = η′υ−1c̄max {b+ κ/µ̃, kc̄κ}, for some constant η′ depending on the sub-Gaussian

norms κ and γ.

Also, by the norm equivalence and Proposition 2.5.3, we have with probability 1 −
3 exp {−p}

∥∥∥β̂ols − βols∥∥∥
∞
≤η3

√
p

|S|
, (2.46)

for η3 = η′′λ
−1/2
min , where η′′ is constant depending only on γ and κ.

Finally, combining all these inequalities with the last line of Equation (2.42), we have

with probability 1− 5 exp {−p},

∥∥∥β̂ sls − βpop
∥∥∥
∞
≤ η1

1

p
+ η3c̄

√
p

|S|
+ η4

∥∥∥βols∥∥∥
∞

√
p

min{n/ log(n), |S|}
, (2.47)

≤ η1
1

p
+
(
η3c̄+ η4

∥∥∥βols∥∥∥
∞

)√ p

min {n/ log (n) , |S|}
,

=η1
1

p
+ η2

√
p

min {n/ log (n) , |S|}
,

where

η1 =8kc̄κ3ρ(Σ1/2)‖Σ1/2‖∞(τ/r)2 (2.48)

η2 =η3c̄+ η4

∥∥∥βols∥∥∥
∞
,

=ηc̄λ
−1/2
min

(
1 + υ−1λ

1/2
min‖β

ols‖∞max {(b+ k/µ̃), kc̄κ}
)
.

2.10.4 Proof of Corollary 2.5.2

Proof. The normal equations for the lasso minimization yields

E
[
xxT

]
βlassoλ − βols + λs = 0,
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where s ∈ ∂
∥∥βlassoλ

∥∥
1
. It is well-known that under the orthogonal design where the covariates

have i.i.d. entries, the above equation reduces to

soft(βols;λ) = βlassoλ ,

where soft( · ;λ) denotes the soft thresholding operator at level λ. For any β ∈ Rp, let

supp(β) denote the support of β, i.e., the set {i ∈ [p] : βi 6= 0}. We have

supp(βlassoλ ) = {i ∈ [p] : βlassoλ,i 6= 0},

= {i ∈ [p] : |βolsi | > λ}

By Theorem 2.5.1, we have

|βolsi | ≤
1

cΨ
|βpopi |+

η

|supp(βpop)|
,

which implies that

supp(βlassoλ ) ⊂
{
i ∈ [p] :

1

cΨ
|βpopi |+

η

|supp(βpop)|
> λ

}
.

Hence, whenever λ > η/|supp(βpop)|, we have

supp(βlassoλ ) ⊂ supp(βpop).

Further, we have by Theorem 2.5.1

1

cΨ
|βpopi | ≤ |β

ols
i |+

η

|supp(βpop)|
.

Hence, whenever |βpopi | > cΨ (λ+ η/|supp(βpop)|), we get |βolsi | > λ. If this condition is

satisfied for any entry in the support of βpop, the corresponding lasso coefficient will be

non-zero. Therefore, we get

supp(βpop) ⊂ supp(βlassoλ )

under this assumption. Combining this with the previous result, we conclude the proof.
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2.11 Discussion

In this chapter, we showed that the true minimizer of a generalized linear problem and the

OLS estimator are approximately proportional under the general random design setting.

Using this relation, we proposed a computationally efficient algorithm for large-scale prob-

lems that achieves the same accuracy as the empirical risk minimizer by first estimating the

OLS coefficients and then estimating the proportionality constant through iterations that

can attain quadratic or cubic convergence rate, with only O (n) per-iteration cost.

We briefly mentioned that the proportionality between the coefficients holds even when

there is regularization in Section 2.3.1. Further pursuing this idea may be interesting for

large-scale problems where regularization is crucial. Another interesting line of research is

to find similar proportionality relations between the parameters in other large-scale opti-

mization problems such as support vector machines. Such relations may reduce the problem

complexity significantly.



Chapter 3

Second Order Stein

Approximations to Hessian

Contents of this chapter are based on the papers [Erd15, Erd16]. In this chapter, we

propose an alternative way of constructing the curvature information by formulating it

as an estimation problem and applying a Stein-type lemma to the population Hessian,

which allows further improvements through subsampling and eigenvalue thresholding. The

algorithm is called Newton-Stein method, and it enjoys fast convergence rates, resembling

that of second order methods, with modest per-iteration cost. We provide its convergence

analysis for the general case where the rows of the design matrix are samples from a sub-

Gaussian distribution. We show that the convergence has two phases, a quadratic phase

followed by a linear phase.

3.1 Introduction

In this chapter, we focus on how to solve the maximum likelihood problem efficiently in

the GLM setting when the number of observations n is much larger than the dimension of

the coefficient vector p, i.e., n � p � 1. GLM optimization task is typically expressed as

a minimization problem where the objective function is the negative log-likelihood that is

denoted by f(β) where β ∈ Rp is the coefficient vector. Many optimization algorithms are

available for such minimization problems [Bis95, BV04, Nes13]. However, only a few uses

the special structure of GLMs. In this chapter, we consider updates that are specifically

52
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designed for GLMs, which are of the from

β ← β − γQ∇βf(β) , (3.1)

where γ is the step size and Q is a scaling matrix which provides curvature information.

For the updates of the form Equation (3.1), the performance of the algorithm is mainly

determined by the scaling matrix Q. We have seen in Section 1.2 in detail that classical

Newton method and natural gradient descent can be recovered by simply taking Q to be

the inverse Hessian and the inverse Fisher’s information at the current iterate, respectively

[Ama98, Nes13]. Second order methods may achieve quadratic convergence rate, yet they

suffer from excessive cost of computing the scaling matrix at every iteration. On the other

hand, if we take Q to be the identity matrix, we recover the standard gradient descent

which has a linear convergence rate. Although the convergence rate of gradient descent is

considered slow compared to that of second order methods such as Newton method, modest

per-iteration cost makes it practical for large-scale optimization.

Section 1.1.1 briefly discusses the GLM framework and its relevant properties. The rest

of the chapter is organized as follows: Section 3.1.1 surveys the related work and Section

3.2 introduces the notations we use throughout the chapter. In Section 3.3, we introduce

Newton-Stein method, develop its intuition, and discuss the computational aspects. Section

3.4 covers the theoretical results and in Section 3.4.4 we discuss how to choose the algorithm

parameters. Section 3.5 provides the empirical results where we compare the proposed

algorithm with several other methods on four data sets. Finally, in Section 3.7, we conclude

with a brief discussion along with a few future research directions.

3.1.1 Related Work

There are numerous optimization techniques that can be used to find the maximum likeli-

hood estimator in GLMs. For moderate values of n and p, the classical second order methods

such as Newton method (also referred to as Newton-Raphson) are commonly used. In large-

scale problems, data dimensionality is the main factor while determining the optimization

method, which typically falls into one of two major categories: online and batch methods.

Online methods use a gradient (or sub-gradient) of a single, randomly selected observation

to update the current iterate [RM51]. Their per-iteration cost is independent of n, but
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the convergence rate might be extremely slow. There are several extensions of the classi-

cal stochastic descent algorithms, providing significant improvement and improved stability

[Bot10, DHS11, SLRB, KEO15].

On the other hand, batch algorithms enjoy faster convergence rates, though their per-

iteration cost may be prohibitive. In particular, second order methods enjoy quadratic

convergence, but constructing the Hessian matrix generally requires excessive amount of

computation. To remedy this issue, most research is focused on designing an approximate

and cost-efficient scaling matrix. This idea lies at the core of Quasi-Newton methods such

as BFGS [Bis95, Nes13].

Another approach to construct an approximate Hessian makes use of subsampling tech-

niques [Mar10, BCNN11, VP12, EM15, RKM16]. Many contemporary learning methods

rely on subsampling as it is simple and it provides significant boost over the first order meth-

ods. Further improvements through conjugate gradient methods and Krylov sub-spaces are

available. Subsampling can also be used to obtain an approximate solution, with certain

large deviation guarantees [DLFU13].

There are many composite variants of the aforementioned methods, that mostly com-

bine two or more techniques. Well-known composite algorithms are the combinations of

subsampling and Quasi-Newton [SYG07, BHNS14], stochastic and deterministic gradient

descent [FS12], natural gradient and Newton method [LRF10], natural gradient and low-

rank approximation [LRMB08], subsampling and eigenvalue thresholding [EM15].

Lastly, algorithms that specialize on certain types of GLMs include coordinate descent

methods for the penalized GLMs [FHT10], trust region Newton-type methods [LWK08],

and approximation methods [EBD16b, EBD16a].

3.2 Preliminaries and Notation

In this chapter, we consider a generalized linear problem in the following empirical risk form

minimize
β∈Rp

R̂(β) :=
1

n

n∑
i=1

Ψ (〈xi, β〉)− yi〈xi, β〉 . (3.2)
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The standard approach in minimizing functions of the above form is to use iterative methods.

It is straightforward to write that the gradient and the Hessian of R̂(β),

∇βR̂(β) =
1

n

n∑
i=1

[
Ψ(1)(〈xi, β〉)xi − yixi

]
, (3.3)

∇2
βR̂(β) =

1

n

n∑
i=1

Ψ(2)(〈xi, β〉)xixTi . (3.4)

For a sequence of scaling matrices {Qt}t>0 ∈ Rp×p, the traditional approach is to use

iterations of the form

β̂t+1 = β̂t − γtQt∇βR̂(β̂t)

where γt is the step size. Unlike Chapter 2, our focus in this chapter will be updates of the

above form. We will propose a new scaling matrix based on Stein’s lemma.

We let [n] = {1, 2, ..., n} and denote by |S|, the size of a set S. The gradient and

the Hessian of f with respect to β are denoted by ∇βf and ∇2
βf , respectively. The j-

th derivative of a function f(w) is denoted by f (j)(w). For a vector x and a symmetric

matrix X, ‖x‖2 and ‖X‖2 denote the `2 and spectral norms of x and X, respectively.

‖x‖ψ2 denotes the sub-Gaussian norm, which will be defined later. Sp−1 denotes the p-

dimensional sphere. PC denotes the projections onto the set C, and Bp(R) ⊂ Rp denotes

the p-dimensional ball of radius R. For a random variable x and density f , x ∼ f means

that the distribution of x follows the density f . Multivariate Gaussian density with mean

µ ∈ Rp and covariance Σ ∈ Rp×p is denoted as Np(µ,Σ). For random variables x, y, d(x, y)

and D(x, y) denote probability metrics (will be explicitly defined) measuring the distance

between the distributions of x and y. N (· · · ) and Tε denote the bracketing number and

ε-net.

3.3 Newton-Stein Method

Classical Newton-Raphson (or simply Newton) method is the standard approach for training

GLMs for moderately large date sets. However, its per-iteration cost makes it impractical

for large-scale optimization. The main bottleneck is the computation of the Hessian matrix

that requires O (()np2) flops which is prohibitive when n � p � 1. Numerous methods
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Algorithm 3 Newton-Stein Method

Input: β̂0, |S|, ε, {γt}t≥0.

1. Estimate the covariance using a random subsample S ⊂ [n]:

Σ̂S = 1
|S|
∑

i∈S xix
T
i .

2. while
∥∥β̂t+1 − β̂t

∥∥
2
> ε do

µ̂2(β̂t) = 1
n

∑n
i=1 Ψ(2)(〈xi, β̂t〉), µ̂4(β̂t) = 1

n

∑n
i=1 Ψ(4)(〈xi, β̂t〉),

Qt =
1

µ̂2(β̂t)

[
Σ̂
−1

S −
β̂t[β̂t]T

µ̂2(β̂t)/µ̂4(β̂t) + 〈Σ̂S β̂t, β̂t〉

]
,

β̂t+1 = β̂t − γt Qt∇βl(β̂t),

t← t+ 1.

3. end while

Output: β̂t.

have been proposed to achieve the fast convergence rate of Newton method while keeping

the per-iteration cost manageable. To this end, a popular approach is to construct a scaling

matrix Qt, which approximates the inverse Hessian at every iteration t.

The task of constructing an approximate Hessian can be viewed as an estimation prob-

lem. Assuming that the rows of X are i.i.d. random vectors, the Hessian of the negative

log-likelihood of GLMs with a cumulant generating function φ has the following sample

average form

[
Qt
]−1

=
1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β〉) ≈ E[xxTΨ(2)(〈x, β〉)] .

We observe that
[
Qt
]−1

is just a sum of i.i.d. matrices. Hence, the true Hessian is nothing

but a sample mean estimator to its expectation. Another natural estimator would be

the subsampled Hessian method which is extensively studied by [Mar10, BCNN11, EM15,

RKM16]. Therefore, our goal is to propose an estimator for the population level Hessian

that is also computationally efficient. Since n is large, the proposed estimator will be close

to the true Hessian.
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We use the following Stein-type lemma to find a more efficient estimator to the expec-

tation of the Hessian.

Lemma 3.3.1 (Stein-type lemma). Assume that x ∼ Np(0,Σ) and β ∈ Rp is a constant

vector. Then for any function f : R→ R that is twice “weakly” differentiable, we have

E
[
xxT f(〈x, β〉)

]
= E [f(〈x, β〉)] Σ + E

[
f (2)(〈x, β〉)

]
ΣββTΣ . (3.5)

Proof. The proof will follow from integration by parts. Let g(x|Σ) denote the density of a

multivariate normal random variable x with mean 0 and covariance Σ. We recall the basic

identity xg(x|Σ)dx = −Σdg(x|Σ) and write

E[xxT f(〈x, β〉)] =

∫
xxT f(〈x, β〉)g(x)dx,

=Σ

{∫
f(〈x, β〉)g(x|Σ)dx+

∫
βxT f (1)(〈x, β〉)g(x|Σ)dx

}
,

=Σ

{
E[f(〈x, β〉)] +

∫
ββT f (2)(〈x, β〉)g(x|Σ)dxΣ

}
,

=E[f(〈x, β〉)]Σ + E
[
f (2)(〈x, β〉)

]
ΣββTΣ.

The right hand side of Equation (3.5) is a rank-1 update to the first term. Hence, its

inverse can be computed with O(p2) cost. Quantities that change at each iteration are the

ones that depend on β, i.e.,

µ2(β) = E[Ψ(2)(〈x, β〉)], and µ4(β) = E[Ψ(4)(〈x, β〉)].

Note that µ2(β) and µ4(β) are scalar quantities and they can be estimated by their cor-

responding sample means µ̂2(β) and µ̂4(β) (explicitly defined at Step 2 of Algorithm 1)

respectively, with only O(np) computation.

To complete the estimation task suggested by Equation (3.5), we need an estimator

for the covariance matrix Σ. A natural estimator is the sample mean where, we only use

a subsample of the indices S ⊂ [n] so that the cost is reduced to O(|S|p2) from O(np2).

Subsampling based sample mean estimator is denoted by Σ̂S = 1
|S|
∑

i∈S xix
T
i , which is

widely used in large-scale problems [Ver10]. We highlight the fact that Lemma 3.3.1 replaces

O(np2) per-iteration cost of Newton method with a one-time cost of O(np2). We further
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Figure 3.1: The left plot demonstrates the accuracy of proposed Hessian estimation over
different distributions. Number of observations is set to be n = O(p log(p)). The right
plot shows the phase transition in the convergence rate of Newton-Stein method (NewSt).
Convergence starts with a quadratic rate and transitions into linear. Plots are obtained
using Covertype data set.

use subsampling to reduce this one-time cost to O(|S|p2), and obtain the following Hessian

estimator at β

[
Qt
]−1︸ ︷︷ ︸

∈ Rp×p

= µ̂2(β)︸ ︷︷ ︸
∈ R

Σ̂S︸︷︷︸
∈ Rp×p

+ µ̂4(β)︸ ︷︷ ︸
∈ R

rank-1 update︷ ︸︸ ︷
Σ̂Sββ

T Σ̂S︸ ︷︷ ︸
∈ Rp×p

(3.6)

We emphasize that any covariance estimation method can be applied in the first step of the

algorithm. There are various estimation techniques most of which rely on the concept of

shrinkage [CCS10, DGJ13]. This is because, important curvature information is generally

contained in the largest few spectral features [EM15]. In particular, for a given threshold r,

we suggest to use the largest r eigenvalues of the subsampled covariance estimator Σ̂S , and

setting rest of them to (r + 1)-th eigenvalue. This operation helps denoising and provides

additional computational benefits when inverting the covariance estimator [EM15].

Inverting the constructed Hessian estimator can make use of the low-rank structure.

First, notice that the updates in Equation (3.6) are based on rank-1 matrix additions.

Hence, we can simply apply Sherman–Morrison inversion formula to Equation (3.6) and ob-

tain an explicit equation for the scaling matrix Qt (Step 2 of Algorithm 1). This formulation

would impose another inverse operation on the covariance estimator. We emphasize that
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this operation is performed once. Therefore, instead of O(p3) per-iteration cost of Newton

method due to inversion, Newton-Stein method (NewSt ) requires O(p2) per-iteration and

a one-time cost of O(p3). Assuming that Newton-Stein and Newton methods converge in

T1 and T2 iterations respectively, the overall complexity of Newton-Stein is

O
(
npT1 + p2T1 + (|S|+ p)p2

)
≈ O

(
npT1 + p2T1 + |S|p2

)
whereas that of Newton is O(np2T2 + p3T2). We show both empirically and theoretically

that the quantities T1 and T2 are close to each other.

The convergence rate of Newton-Stein method has two phases. Convergence starts

quadratically and transitions into linear rate when it gets close to the true minimizer.

The phase transition behavior can be observed through the right plot in Figure 3.1. This

is a consequence of the bound provided in Equation (1.26), which is the main result of our

theorems on the local convergence (given in Section 3.4).

Even though Lemma 3.3.1 assumes that the covariates are multivariate Gaussian random

vectors, in Section 3.4, the only assumption we make on the covariates is either bounded

support or sub-Gaussianity, both of which cover a wide class of random variables including

Bernoulli, elliptical distributions, bounded variables etc. The left plot of Figure 3.1 shows

that the estimation is accurate for many distributions. This is a consequence of the fact that

the proposed estimator in Equation 3.6 relies on the distribution of x only through inner

products of the form 〈x, v〉, which in turn results in an approximate normal distribution

due to the central limit theorem. To provide more intuition, we explain this through zero-

biased transformations which is a general version of Stein’s lemma for arbitrary distributions

[GR97].

Definition 5. Let z be a random variable with mean 0 and variance σ2. Then, there exists

a random variable z∗ that satisfies E[zf(z)] = σ2E[f (1)(z∗)], for all differentiable functions

f . The distribution of z∗ is said to be the z-zero-bias distribution.

The normal distribution is the unique distribution whose zero-bias transformation is

itself (i.e. the normal distribution is a fixed point of the operation mapping the distribution

of z to that of z∗). The distribution of z∗ is referred to as z-zero-bias distribution and is

entirely determined by the distribution of z. Properties such as existence can be found, for

example, in [CGS10].

To provide some intuition behind the usefulness of Lemma 3.3.1 even for arbitrary
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distributions, we use zero-bias transformations. For simplicity, assume that the covariate

vector x has i.i.d. entries from an arbitrary distribution with mean 0, and variance 1. Then

the zero-bias transformation applied twice to the entry (i, j) of matrix E[xxT f(〈x, β〉)] yields

E[xixjf(〈x, β〉)] =


E[f(βix

∗
i + Σ

k 6=i
xkβk)] + β2

i E
[
f (2)(βix

∗∗
i + Σ

k 6=i
xkβk)

]
if i = j,

βiβjE
[
f (2)(βix

∗
i +βjx

∗
j+ Σ

k 6=i,j
xkβk)

]
if i 6= j,

where x∗i and x∗∗i have xi-zero-bias and x∗i -zero-bias distributions, respectively. For each

entry (i, j) at most two summands of 〈x, β〉 = Σkxkβk change their distributions. Therefore,

if β is well spread and p is sufficiently large, the sums inside the expectations will behave

similar to the inner product 〈x, β〉. Correspondingly, the above equations will be close to

their Gaussian counterpart as given in Equation (3.5).

3.4 Theoretical Results

We start by introducing the terms that will appear in the theorems. Then we will provide

two technical results on bounded and sub-Gaussian covariates. The proofs of the theorems

are technical and provided in Appendix.

3.4.1 Preliminaries

Hessian estimation described in the previous section relies on a Gaussian approximation.

For theoretical purposes, we use the following probability metric to quantify the gap between

the distribution of xi’s and that of a normal vector.

Definition 6. Given a family of functions H, and random vectors x, y ∈ Rp, for H and

any h ∈ H, define

dH(x, y) = sup
h∈H

dh(x, y) where dh(x, y) =
∣∣E [h(x)]− E [h(y)]

∣∣.
Many probability metrics can be expressed as above by choosing a suitable function

class H. Examples include Total Variation (TV), Kolmogorov and Wasserstein metrics

[GS02, CGS10]. Based on the second and the fourth derivatives of the cumulant generating
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function, we define the following function classes:

H1 =
{
h(x) = Ψ(2)(〈x, β〉) : β ∈ C

}
, H2 =

{
h(x) = Ψ(4)(〈x, β〉) : β ∈ C

}
,

H3 =
{
h(x) = 〈v, x〉2Ψ(2)(〈x, β〉) : β ∈ C, ‖v‖2 = 1

}
,

where C ∈ Rp is a closed, convex set that is bounded by the radius R. Exact calculation

of such probability metrics are often difficult. The general approach is to upper bound the

distance by a more intuitive metric. In our case, we observe that dHj (x, y) for j = 1, 2, 3,

can be easily upper bounded by dTV(x, y) up to a scaling constant, when the covariates

have bounded support.

In our theoretical results, we rely on projected updates onto a closed convex set C, which

are of the form

β̂t+1 = PtC
(
β̂t − γQt∇βl(β̂t)

)
where the projection is defined as PtC(β) = argminw∈C

1
2‖w − β‖

2
Qt−1 , with C bounded by

R. This is a special case of proximal Newton-type algorithms and further generalization is

straightforward (See [LSS14]). We will further assume that the covariance matrix has full

rank and its smallest eigenvalue is lower bounded by a positive constant.

3.4.2 Bounded Covariates

We have the following per-step bound for the iterates generated by the Newton-Stein

method, when the covariates are supported on a ball.

Theorem 3.4.1 (Local convergence). Assume that the covariates x1, x2, ..., xn are i.i.d.

random vectors supported on a ball of radius
√
K with

E[xi] = 0 and E
[
xix

T
i

]
= Σ.

Further assume that the cumulant generating function φ has bounded 2nd-5th derivatives

and that the set C is bounded by R. For
{
β̂t
}
t>0

given by the Newton-Stein method for

γ = 1, define the event

E =

{
inf
‖u‖2=1

∣∣∣µ2(β̂t)〈u,Σu〉+ µ4(β̂t)〈u,Σβ̂t〉2
∣∣∣ > 2κ−1 ∀t, β∗ ∈ C

}
(3.7)

for some positive constant κ, and the optimal value β∗. If n, |S| and p are sufficiently large,
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then there exist constants c, c1, c2 depending on the radii K,R, P (E) and the bounds on Ψ(2)

and |Ψ(4)| such that conditioned on the event E, with probability at least 1− c/p2, we have

∥∥β̂t+1 − β∗
∥∥

2
≤ τ1

∥∥β̂t − β∗∥∥2
+ τ2

∥∥β̂t − β∗∥∥2

2
, (3.8)

where the coefficients τ1 and τ2 are deterministic constants defined as

τ1 = κD(x, z) + c1κ

√
p

min {p/ log(p)|S|, n/ log(n)}
, τ2 = c2κ, (3.9)

and D(x, z) is defined as

D(x, z) = ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z) + dH3(x, z), (3.10)

for a multivariate Gaussian random variable z with the same mean and covariance as xi’s.

The bound in Equation (3.8) holds with high probability, and the coefficients τ1 and

τ2 are deterministic constants which will describe the convergence behavior of the Newton-

Stein method. Observe that the coefficient τ1 is sum of two terms: D(x, z) measures how

accurate the Hessian estimation is, and the second term depends on the subsampling size

|S| and the data dimensions n, p.

Theorem 3.4.1 shows that the convergence of Newton-Stein method can be upper bounded

by a compositely converging sequence, that is, the squared term will dominate at first pro-

viding us with a quadratic rate, then the convergence will transition into a linear phase as

the iterate gets close to the optimal value. The coefficients τ1 and τ2 govern the linear and

quadratic terms, respectively. The effect of subsampling appears in the coefficient of linear

term. In theory, there is a threshold for the subsampling size |S|, namely O(n/ log(n)), be-

yond which further subsampling has no effect. The transition point between the quadratic

and the linear phases is determined by the subsampling size and the properties of the data.

The phase transition behavior can be observed through the right plot in Figure 3.1.

Using the above theorem, we state the following corollary.

Corollary 3.4.2. Assume that the assumptions of Theorem 3.4.1 hold. For a constant

δ ≥ P
(
EC
)
, and a tolerance ε satisfying

ε ≥ 20R
{
c/p2 + δ

}
,
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and for an iterate satisfying E
[
‖β̂t−β∗‖2

]
> ε, the following inequality holds for the iterates

of Newton-Stein method,

E
[
‖β̂t+1 − β∗‖2

]
≤ τ̃1E

[
‖β̂t − β∗‖2

]
+ τ2E

[
‖β̂t − β∗‖22

]
,

where τ̃1 = τ1 + 0.1 and τ1, τ2 are as in Theorem 3.4.1.

The bound stated in the above corollary is an analogue of composite convergence (given

in Equation (3.8)) in expectation. Note that our results make strong assumptions on the

derivatives of the cumulant generating function φ. We emphasize that these assumptions

are valid for linear and logistic regressions. An example that does not fit in our scheme is

Poisson regression with φ(z) = ez. However, we observed empirically that the algorithm

still provides significant improvement.

The following theorem characterizes the local convergence behavior of a compositely

converging sequence.

Theorem 3.4.3. Assume that the assumptions of Theorem 3.4.1 hold with τ1 < 1 and for

ϑ =
∥∥β̂0 − β∗

∥∥
2

define the interval Ξ =
(

τ1ϑ
1−τ2ϑ , ϑ

)
. Conditioned on the event E ∩

{
ϑ <

(1−τ1)/τ2

}
, there exists a constant c such that with probability at least 1−c/p2, the number

of iterations to reach a tolerance of ε cannot exceed

inf
ξ∈Ξ
J (ξ) := log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
+

log(ε/ξ)

log(τ1 + τ2ξ)
, (3.11)

where the constants τ1 and τ2 are as in Theorem 3.4.1.

The expression in Equation 3.11 has two terms: the first one is due to the quadratic

phase whereas the second one is due to the linear phase. To obtain the properties of local

convergence, a locality constraint is required. We note that τ1 < 1 is a necessary assumption,

which is satisfied for sufficiently large n and |S|.
In the following, we establish the global convergence of the Newton-Stein method coupled

with a backtracking line search—which is explicitly given in Section 3.4.4.

Theorem 3.4.4 (Global Convergence). Assume that the assumptions of Theorem 3.4.1

hold and at each step, the step size γt of the Newton-Stein method is determined by the

backtracking line search with parameters a and b. Then conditioned on the event E, there

exists a constant c such that with probability at least 1−c/p2, the sequence of iterates {β̂t}t>0

generated by the Newton-Stein method converges globally.



CHAPTER 3. SECOND ORDER STEIN APPROXIMATIONS TO HESSIAN 64

3.4.3 Sub-Gaussian Covariates

In this section, we carry our analysis to the more general case, where the covariates are

sub-Gaussian vectors.

Theorem 3.4.5 (Local convergence). Assume that x1, x2, ..., xn are i.i.d. sub-Gaussian

random vectors with sub-Gaussian norm K such that

E[xi] = 0, E[‖xi‖2] = µ and E
[
xix

T
i

]
= Σ.

Further assume that the cumulant generating function φ is uniformly bounded and has

bounded 2nd-5th derivatives and that C is bounded by R. For
{
β̂t
}
t>0

given by the Newton-

Stein method and the event E in Equation (3.7), if we have n, |S| and p sufficiently large

and

n0.2/ log(n) & p,

then there exist constants c1, c2, c3, c4 depending on the eigenvalues of Σ, the radius R, µ,

P (E) and the bounds on Ψ(2) and |Ψ(4)| such that conditioned on the event E, with probability

at least 1− c1e
−c2p, the bound given in Equation 3.8 holds for constants

τ1 = κD(x, z) + c3κ

√
p

min {|S|, n0.2/ log(n)}
, τ2 = c4κp

1.5, (3.12)

where D(x, z) defined as in Equation (3.10).

The above theorem is more restrictive than Theorem 3.4.1. We require n to be much

larger than the dimension p. Also note that a factor of p1.5 appears in the coefficient of

the quadratic term. We also notice that the threshold for the subsample size reduces to

n0.2/ log(n).

We have the following analogue of Corrolary 3.4.2.

Corollary 3.4.6. Assume that the assumptions of Theorem 3.4.5 hold. For a constant

δ ≥ P
(
EC
)
, and a tolerance ε satisfying

ε ≥ 20R
√
c1e−c2p + δ,

and for an iterate satisfying E
[
‖β̂t − β∗‖2

]
> ε, the iterates of Newton-Stein method will
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satisfy,

E
[
‖β̂t+1 − β∗‖2

]
≤ τ̃1E

[
‖β̂t − β∗‖2

]
+ τ2E

[
‖β̂t − β∗‖22

]
,

where τ̃1 = τ1 + 0.1 and τ1, τ2 are as in Theorem 3.4.5.

When the covariates are in fact multivariate normal, we have D(x, z) = 0 which implies

that the coefficient τ1 is smaller. Correspondingly, the quadratic phase lasts longer providing

better performance.

We conclude this section by noting that the global convergence properties of the sub-

Gaussian case is very similar to the previous section where we had bounded covariates.

3.4.4 Algorithm Parameters

Newton-Stein method takes two input parameters and for those, we suggest near-optimal

choices based on our theoretical results. We further discuss the choice of a covariance

estimation method which provides additional improvements to the proposed algorithm.

• Subsample size: Newton-Stein method uses a subset of indices to approximate the

covariance matrix Σ. Corollary 5.50 of [Ver10] proves that a sample size of O(p) is

sufficient for sub-Gaussian covariates and that of O(p log(p)) is sufficient for arbitrary

distributions supported in some ball to estimate a covariance matrix by its sample

mean estimator. In the regime we consider, n� p, we suggest to use a sample size of

|S| = O(p log(p)) for this task.

• Covariance estimation method: Many methods have been suggested to improve the

estimation of the covariance matrix and almost all of them rely on the concept of

shrinkage [CCS10, DGJ13]. Therefore, we suggest to use a thresholding based ap-

proach suggested by [EM15]. For a given threshold r, we take the largest r eigenvalues

of the subsampled covariance estimator, setting rest of them to (r+ 1)-th eigenvalue.

Eigenvalue thresholding can be considered as a shrinkage operation which will retain

only the important second order information. Choosing the rank threshold r can be

simply done on the sample mean estimator of Σ. After obtaining the subsampled

estimate of the mean, one can either plot the spectrum and choose manually or use

an optimal technique from [DGJ13]. The suggested method requires a single time

O(rp2) computation and reduces the cost of inversion from Ons(p3) to Ons(rp2). We
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highlight that the Newton-Stein method was originally presented with the eigenvalue

thresholding in an early version of this chapter [Erd15].

• Step size: Step size choices for the Newton-Stein method are quite similar to those

of Newton-type methods (i.e., see [BV04]). In the damped phase, one should use a

line search algorithm such as backtracking with parameters a ∈ (0, 0.5) and b ∈ (0, 1).

Defining the modified gradient (or composite gradient [LSS14]) Dγ(β̂t) = 1
γ

{
β̂t −

PtC(β̂t − γQt∇l(β̂t))
}

, we compute the step size via

γ = γ̄; while: l
(
β̂t − γDγ(β̂t)

)
> l(β̂t)− aγ〈∇l(β̂t), Dγ(β̂t)〉, γ ← γb.

The above line search algorithm leads to global convergence with high probability as

stated in Theorem 3.4.4.

The step size choice for the local phase depends on the use of eigenvalue thresholding.

If no shrinkage method is applied, line search algorithm should be initialized with

γ̄ = 1. If a shrinkage method (e.g. eigenvalue thresholding) is applied, then choosing

a larger local step size may provide faster convergence. If the data follows the r-spiked

model, the optimal step size will be close to 1 if there is no subsampling. However,

due to fluctuations resulting from subsampling, starting with γ̄ = 1.2 will provide

faster local rates. This case has been explicitly studied in a preliminary version of

this work [Erd15]. A heuristic derivation and a detailed discussion can also be found

in Section B.3 in the Appendix.

3.5 Experiments

In this section, we validate the performance of Newton-Stein method through extensive

numerical studies. We experimented on two commonly used GLM optimization prob-

lems, namely, Logistic Regression (LR) and Linear Regression (OLS). LR minimizes Equa-

tion (1.8) for the logistic function φ(z) = log(1 + ez), whereas OLS minimizes the same

equation for φ(z) = z2/2. In the following, we briefly describe the algorithms that are used

in the experiments:

• Newton Method (NM) uses the inverse Hessian evaluated at the current iterate, and

may achieve local quadratic convergence. NM steps require O(np2 + p3) computation

which makes it impractical for large-scale data sets.
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• Broyden-Fletcher-Goldfarb-Shanno (BFGS) forms a curvature matrix by cultivating

the information from the iterates and the gradients at each iteration. Under certain

assumptions, the convergence rate is locally super-linear and the per-iteration cost is

comparable to that of first order methods.

• Limited Memory BFGS (L-BFGS) is similar to BFGS, and uses only the recent few

iterates to construct the curvature matrix, gaining significant performance in terms

of memory usage.

• Gradient Descent (GD) update is proportional to the negative of the full gradient

evaluated at the current iterate. Under smoothness assumptions, GD achieves a locally

linear convergence rate, with O(np) per-iteration cost.

• Accelerated Gradient Descent (AGD) is proposed by Nesterov [Nes83], which improves

over the gradient descent by using a momentum term. Performance of AGD strongly

depends of the smoothness of the function.

For all the algorithms, we use a constant step size that provides the fastest convergence.

We use the Newton-Stein method with eigenvalue thresholding as described in Section

3.4.4. The parameters such as subsample size |S|, and rank r are selected by following

the guidelines described in Section 3.4.4. The rank threshold r (which is an input to the

eigenvalue thresholding) is specified at the title of each plot.

3.5.1 Simulations With Synthetic Data Sets

Synthetic data sets, S3, S10, and S20 are generated through a multivariate Gaussian dis-

tribution where the covariance matrix follows r-spiked model, i.e., r = 3 for S3 and r = 20

for S20. To generate the covariance matrix, we first generate a random orthogonal matrix,

say M. Next, we generate a diagonal matrix Λ that contains the eigenvalues, i.e., the first

r diagonal entries are chosen to be large, and rest of them are equal to 1. Then, we let

Σ = MΛMT . For dimensions of the data sets, see Table 3.2. We also emphasize that the

data dimensions are chosen so that Newton method still does well.

The simulation results are summarized in Figure 3.2. Further details regarding the

experiments can be found in Table 3.1. We observe that Newton-Stein method (NewSt)

provides a significant improvement over the classical techniques.
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Figure 3.2: Performance of various optimization methods on two different simulated data
sets. Red straight line represents the Newton-Stein method (NewSt ). y and x axes denote
log10(‖β̂t − β∗‖2) and time elapsed in seconds, respectively.

Observe that the convergence rate of NewSt has a clear phase transition point in the top

left plot in Figure 3.2. As argued earlier, this point depends on various factors including

subsampling size |S| and data dimensions n, p, the rank threshold r and structure of the

covariance matrix. The prediction of the phase transition point is an interesting line of

research. However, our convergence guarantees are conservative and we believe that they

cannot be used for this purpose.

3.5.2 Experiments With Real Data Sets

We experimented on two real data sets where the data sets are downloaded from UCI

repository [Lic13]. Both data sets satisfy n � p, but we highlight the difference between
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Figure 3.3: Performance of various optimization methods on two different real data sets
obtained from [Lic13]. Red straight line represents the Newton-Stein method (NewSt ). y
and x axes denote log10(‖β̂t − β∗‖2) and time elapsed in seconds, respectively.

the proportions of dimensions n/p. See Table 3.2 for details.

We observe that Newton-Stein method performs better than classical methods on real

data sets as well. More specifically, the methods that come closer to NewSt is Newton

method for moderate n and p and BFGS when n is large.

The optimal step-size for Newton-Stein method will typically be larger than 1 which is

mainly due to eigenvalue thresholding operation. This feature is desirable if one is able to

obtain a large step-size that provides convergence. In such cases, the convergence is likely

to be faster, yet more unstable compared to the smaller step size choices. We observed

that similar to other second order algorithms, Newton-Stein method is also susceptible to

the step size selection. If the data is not well-conditioned, and the subsample size is not
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sufficiently large, algorithm might have poor performance. This is mainly because the

subsampling operation is performed only once at the beginning. Therefore, it might be

good in practice to subsample once in every few iterations.

Data set S3 S20

Type LR LS LR LS

Method Time(sec) Iter Time(sec) Iter Time(sec) Iter Time(sec) Iter

NewSt 10.637 2 8.763 4 23.158 4 16.475 10

BFGS 22.885 8 13.149 6 40.258 17 54.294 37

LBFGS 46.763 19 19.952 11 51.888 26 33.107 20

Newton 55.328 2 38.150 1 47.955 2 39.328 1

GD 865.119 493 155.155 100 1204.01 245 145.987 100

AGD 169.473 82 65.396 42 182.031 83 56.257 38

Data set CT Slices Covertype

Type LR LS LR LS

Method Time(sec) Iter Time(sec) Iter Time(sec) Iter Time(sec) Iter

NewSt 4.191 32 1.799 11 16.113 31 2.080 5

BFGS 4.638 35 4.525 37 21.916 48 2.238 3

LBFGS 26.838 217 22.679 180 30.765 69 2.321 3

Newton 5.730 3 1.937 1 122.158 40 2.164 1

GD 96.142 1156 61.526 721 194.473 446 22.738 60

AGD 96.142 880 45.864 518 80.874 186 32.563 77

Table 3.1: Details of the experiments presented in Figures 3.2 and 3.3.

3.5.3 Analysis of Number of Iterations

We provide additional plots to better understand the convergence behavior of the algo-

rithms. Plots in Figure 3.4 show the decrease in log10(‖β̂t − β0‖2) error over iterations

(instead of time elapsed).

We observe from the plots that Newton method enjoys the fastest convergence rate as

expected. The one that is closest to Newton method is the Newton-Stein method. This is

because the Hessian estimator used by Newton-Stein method better approximates the true

Hessian as opposed to Quasi-Newton methods. We emphasize that x axes in Figure 3.4

denote the number of iterations whereas in figures shown previously in this section x axes

were the time elapsed.
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Figure 3.4: Figure shows the convergence behavior over the number of iterations. y and x
axes denote log10(‖β̂t − β∗‖2) and the number iterations, respectively.

3.6 Proof of Main Results

3.6.1 Proofs of Theorems 3.4.1 and 3.4.5

We will provide the proofs of Theorems 3.4.1 and 3.4.5 in parallel as they follow from similar

steps. The only difference is the application of the lemmas that are provided in the previous

sections. On the event E , we write,

β̂t − β∗ − γQt∇βl(β̂t) = β̂t − β∗ − γQt

∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ(β̂t − β∗), (3.13)

=

(
I − γQt

∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

)
(β̂t − β∗) .

In the following, we will work on the event that Σ̂S is invertible and that [Qt]−1 is positive

definite. We later show that conditioned on E , this event holds with very high probability

when |S| is sufficiently large.

Data set n p Reference, UCI repo [Lic13]

CT slices 53500 386 [GKS+11]

Covertype 581012 54 [BD99]

HIGGS 11000000 28 [BSW14]

S3 500000 300 3-spiked model, [DGJ13]

S10 500000 300 10-spiked model, [DGJ13]

S20 500000 300 20-spiked model, [DGJ13]

Table 3.2: Data sets used in the experiments.
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We use the nonexpensiveness of the projection PtC , i.e., for any u, u′ ∈ Rp and v = PtC(u),

v′ = PtC(u′) we have 〈u − u′, [Qt]−1(u − u′)〉 ≥ 〈v − v′, [Qt]−1(v − v′)〉. This simply means

that the projection decreases the distance. Therefore, we can write∥∥∥β̂t+1 − β∗
∥∥∥

Qt−1
≤
∥∥∥β̂t − β∗ − γQt∇βl(β̂t)

∥∥∥
Qt−1

≤
∥∥∥∥[Qt]−1/2 − γ[Qt]1/2

∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

∥∥∥β̂t − β∗∥∥∥
2
. (3.14)

The coefficient of ‖β̂t − β∗‖2 in Equation 3.14 determines the convergence behavior of

the algorithm. Switching back to l2 norm, we obtain an upper bounded of the form

∥∥∥β̂t+1 − β∗
∥∥∥

2
≤
∥∥Qt

∥∥
2

∥∥∥∥[Qt]−1 −
∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

∥∥∥β̂t − β∗∥∥∥
2
,

where we have set step size γ = 1. First, we will bound the second term on the right hand

side. We define the following,

E(β) = E
[
Ψ(2)(〈x, β〉)

]
Σ + E

[
Ψ(4)(〈x, β〉)

]
ΣββTΣ .

Note that for a function f and fixed β, E[f(〈x, β〉)] = h(β) is a function of β. With a slight

abuse of notation, we write E[f(〈x, β̂〉)] = h(β̂) as a random variable. We have

∥∥∥[Qt]−1−
∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2
≤
∥∥∥[Qt]−1 − E(β̂t)

∥∥∥
2

(3.15)

+
∥∥∥[E[xxTΨ(2)(〈x, β̂t〉)]− E(β̂t)

∥∥∥
2

+

∥∥∥∥∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ − E

[
xxT

∫ 1

0
Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

+

∥∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

.

For the first term on the right hand side, we state the following lemma.

Lemma 3.6.1. When the covariates are sub-Gaussian, there exist constants C1, C2 such

that, with probability at least 1− C1/p
2,
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∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2
≤ C2

√
p

min {|S|p/ log(p), n/ log(n)}
.

Similarly, when the covariates are sampled from a distribution with bounded support, there

exist constants C ′1, C
′
2, C

′
3 such that, with probability 1− C ′1e−C

′
2p,

∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2
≤ C ′3

√
p

min {|S|, n/ log(n)}
,

where the constants depend on K, B and the radius R.

Proof. In the following, we will only provide the proof for the bounded support case. The

proof for the sub-Gaussian covariates follows from the same steps, by only replacing Lemma

B.1.2 with Lemma B.1.1, and Lemma B.2.1 with Lemma B.2.3.

Using a uniform bound on the feasible set, we write∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2

≤ sup
β∈C

∥∥∥µ̂2(β)Σ̂S + µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − E[Ψ(2)(〈x, β〉)]Σ− E[Ψ(4)(〈x, β〉)]ΣββTΣ
∥∥∥

2
.

We will find an upper bound for the quantity inside the supremum. By denoting the

expectations of µ̂2(β) and µ̂4(β), with µ2(β) and µ4(β) respectively, we write∥∥∥µ̂2(β)Σ̂S + µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − E[Ψ(2)(〈x, β〉)]Σ− E[Ψ(4)(〈x, β〉)]Σβ(Σβ)T
∥∥∥

2

≤
∥∥∥µ̂2(β)Σ̂S − µ2(β)Σ

∥∥∥
2

+
∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T

∥∥∥
2
.

For the first term on the right hand side, we have∥∥∥µ̂2(β)Σ̂S − µ2(β)Σ
∥∥∥

2
≤|µ̂2(β)|

∥∥∥Σ̂S −Σ
∥∥∥

2
+ ‖Σ‖2 |µ̂2(β)− µ2(β)| ,

≤B2

∥∥∥Σ̂S −Σ
∥∥∥

2
+K |µ̂2(β)− µ2(β)| .
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By the Lemmas B.1.2 and B.2.1, for an absolute constant c, we have with probability

1− 1/p2,

sup
β∈C

∥∥∥µ̂2(β)ζr(Σ̂S)− µ2(β)Σ
∥∥∥

2
≤B2c

√
K‖Σ‖2

√
log(p)

|S|
+ 3B2K

√
p log(n)

n
,

≤3cB2K

√
p

min {p/ log(p)|S|, n/ log(n)}
,

=O
(√

p

min {p/ log(p)|S|, n/ log(n)}

)
.

For the second term, we have

∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T
∥∥∥

2

≤ |µ̂4(β)|
∥∥∥Σ̂Sββ

T Σ̂S −ΣββTΣ
∥∥∥

2
+ |µ̂4(β)− µ4(β)|

∥∥ΣββTΣ
∥∥

2
,

≤ B4R
2
{
‖Σ̂S‖2 + ‖Σ‖2

}∥∥∥Σ̂S −Σ
∥∥∥

2
+R2‖Σ‖22|µ̂4(β)− µ4(β)|,

≤ B4R
2
{
‖Σ̂S‖2 +K

}∥∥∥Σ̂S −Σ
∥∥∥

2
+R2K2|µ̂4(β)− µ4(β)|.

Again, by the Lemmas B.1.2 and B.2.1, for an absolute constant c, we have with prob-

ability 1− 1/p2,

B4R
2
{
‖Σ̂S‖2 +K

}∥∥∥Σ̂S −Σ
∥∥∥

2
≤cKB4R

2

{
2K + cK

√
log(p)

|S|

}√
log(p)

|S|
,

≤2cK2B4R
2

√
log(p)

|S|
+ c2K2B4R

2 log(p)

|S|
,

≤2cK2B4R
2

(
1 + c

√
log(p)

|S|

)√
log(p)

|S|
,

≤4cK2B4R
2

√
log(p)

|S|
,

=O

(√
log(p)

|S|

)
,
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for sufficiently large |S|, i.e., |S| ≥ c2 log(p).

Further, by Lemma B.2.1, we have with probability 1− 2e−p,

sup
β∈C
|µ̂4(β)− µ4(β)| ≤ 3B4

√
p log(n)

n
= O

(√
p log(n)

n

)
.

Combining the above results, for sufficiently large p, |S|, we have with probability at least

1− 1/p2 − 2e−p,

sup
β∈C

∥∥∥µ̂2(β)ζr(Σ̂S)− µ2(β)Σ
∥∥∥

2
+ sup

β∈C

∥∥∥µ̂4(β)Σ̂Sβ(Σ̂Sβ)T − µ4(β)Σβ(Σβ)T
∥∥∥

2

≤ 3B2Kc

√
p

min {p/ log(p)|S|, n/ log(n)}

+ 4cK2B4R
2

√
log(p)

|S|
+ 3B4R

2K2

√
p log(n)

n
,

≤ 3B2Kc

√
p

min {p/ log(p)|S|, n/ log(n)}

+ 4cK2B4R
2

√
p

min {p/ log(p)|S|, n/ log(n)}
,

≤ CK max{B2, B4KR
2}
√

p

min {p/ log(p)|S|, n/ log(n)}
,

= O
(√

p

min {|S|p/ log(p), n/ log(n)}

)
.

Hence, for some constants C1, C2, with probability 1− C1/p
2, we have

∥∥∥[Qt]−1 − E(β̂t)
∥∥∥

2
≤ C2

√
p

min {|S|p/ log(p), n/ log(n)}
,

where the constants depend on K,B = max{B2, B4} and the radius R.

Lemma 3.6.2. The bias term can be upper bounded by∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2
≤ dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z),

for both sub-Gaussian and bounded support cases.
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Proof. For a random variable z ∼ Np(0,Σ), by the triangle inequality, we write∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2

≤
∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E[zzTΨ(2)(〈z, β̂t〉)]

∥∥∥
2

+
∥∥∥E[zzTΨ(2)(〈z, β̂t〉)]− E(β̂t)

∥∥∥
2

For the first term on the right hand side, we have∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E[zzTΨ(2)(〈z, β̂t〉)]
∥∥∥

2

≤ sup
β∈C

sup
‖v‖2=1

∣∣∣E [〈v, x〉2Ψ(2)(〈x, β〉)
]
− E

[
〈v, z〉2Ψ(2)(〈z, β〉)

]∣∣∣ ,
≤ dH3(x, z).

For the second term, we write∥∥∥[E[zzTΨ(2)(〈z, β̂t〉)]− E(β̂t)
∥∥∥

2

≤ sup
β∈C

∥∥∥E[zzTΨ(2)(〈z, β〉)]− E[Ψ(2)(〈x, β〉)]Σ + E
[
Ψ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ sup
β∈C

∥∥∥E[Ψ(2)(〈z, β〉)]Σ + E
[
Ψ(4)(〈z, β〉)

]
ΣββTΣ

− E[Ψ(2)(〈x, β〉)]Σ− E
[
Ψ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ sup
β∈C

∥∥∥E[Ψ(2)(〈z, β〉)]Σ− E[Ψ(2)(〈x, β〉)]Σ
∥∥∥

2
,

+ sup
β∈C

∥∥∥E [Ψ(4)(〈z, β〉)
]

ΣββTΣ− E
[
Ψ(4)(〈x, β〉)

]
ΣββTΣ

∥∥∥
2
,

≤ ‖Σ‖2 sup
β∈C

∣∣∣E[Ψ(2)(〈z, β〉)]− E[Ψ(2)(〈x, β〉)]
∣∣∣

+ ‖Σ‖22R2 sup
β∈C

∣∣∣E[Ψ(4)(〈z, β〉)]− E[Ψ(4)(〈x, β〉)]
∣∣∣ ,

≤ ‖Σ‖2dH1(x, z) + ‖Σ‖22R2dH2(x, z).

Hence, we conclude that∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E(β̂t)
∥∥∥

2
≤ dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z).
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Lemma 3.6.3. There exists constants c1, c2, c3 depending on the eigenvalues of Σ, B,L

and R such that, with probability at least 1− c2e
−c3p∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∫ 1

0
Ψ(2)(〈xi, β∗+ξ(β̂t−β∗)〉)dξ −E

[
xxT
∫ 1

0
Ψ(2)(〈x, β∗+ξ(β̂t−β∗)〉)dξ

]∥∥∥∥∥
2

≤ δ

where δ = c1

√
p
n0.2 log (n) for sub-Gaussian covariates, and δ = c1

√
p
n log (n) for covariates

with bounded support.

Proof. We provide the proof for bounded support case. The proof for sub-Gaussian case

can be carried by replacing Lemma B.2.2 with Lemma B.2.5.

By the Fubini’s theorem, we have

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∫ 1

0
Ψ(2)(〈xi, β∗+ξ(β̂t−β∗)〉)dξ−E

[
xxT

∫ 1

0
Ψ(2)(〈x, β∗+ξ(β̂t−β∗)〉)dξ

]∥∥∥∥∥
2

=

∥∥∥∥∥
∫ 1

0

{
1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β∗+ξ(β̂t−β∗)〉)−E

[
xxTΨ(2)(〈x, β∗+ξ(β̂t−β∗)〉)

]}
dξ

∥∥∥∥∥
2

≤
∫ 1

0

∥∥∥∥∥
{

1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β∗+ξ(β̂t−β∗)〉)−E

[
xxTΨ(2)(〈x, β∗+ξ(β̂t−β∗)〉)

]}∥∥∥∥∥
2

dξ

≤ sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β〉)−E

[
xxTΨ(2)(〈x, β〉)

]∥∥∥∥∥
2

.

Using the properties of operator norm, the above bound can be written as

sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β〉)− E

[
xxTΨ(2)(〈x, β〉)

]∥∥∥∥∥
2

= sup
β∈C

sup
v∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi, v〉2 − E
[
Ψ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ ,
where Sp−1 denotes the p-dimensional unit sphere.

For ∆ = 0.25, let T∆ be an ∆-net over Sp−1. Using Lemma B.4.4, we obtain
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P

(
sup
β∈C

sup
v∈Sp−1

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi, v〉2 − E
[
Ψ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε

)
,

≤ P

(
sup
β∈C

sup
v∈T∆

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi, v〉2 − E
[
Ψ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
,

≤ |T∆|P

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi, v〉2 − E
[
Ψ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
,

= 9pP

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi, v〉2 − E
[
Ψ(2)(〈x, β〉)〈x, v〉2

]∣∣∣∣∣ > ε/2

)
.

By applying Lemma B.2.2 to the last line above, we obtain

P

(
sup
β∈C

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)〈xi,v〉2−E[Ψ(2)(〈x, β〉)〈x,v〉2]

∣∣∣∣∣>4B2K

√
p

n
log (n)

)
≤2e−3.2p.

Notice that 3.2 − log(9) > 1. Therefore, by choosing n large enough, on the set E , we

obtain that with probability at least 1− 2e−p

sup
β∈C

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β〉)− E

[
xxTΨ(2)(〈x, β〉)

]∥∥∥∥∥
2

≤ 8B2K

√
p

n
log (n).

Lemma 3.6.4. There exists a constant C depending on K and L such that,

∥∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

≤ C̃‖β̂t − β∗‖2,

where C̃ = C for the bounded support case and C̃ = Cp1.5 for the sub-Gaussian case.

Proof. By the Fubini’s theorem, we write
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∥∥∥∥E[xxTΨ(2)(〈x, β̂t〉)]− E
[
xxT

∫ 1

0
Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)dξ

]∥∥∥∥
2

,

=

∥∥∥∥∫ 1

0
E
[
xxT

{
Ψ(2)(〈x, β̂t〉)−Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)

}]
dξ

∥∥∥∥
2

.

Moving the integration out, right hand side of the above equation is smaller than∫ 1

0

∥∥∥E [xxT {Ψ(2)(〈x, β̂t〉)−Ψ(2)(〈x, β∗ + ξ(β̂t − β∗)〉)
}]∥∥∥

2
dξ,

≤
∫ 1

0

∥∥∥E [xxTL|〈x, (1− ξ)(β̂t − β∗)〉|]∥∥∥
2
dξ,

≤ E
[
‖x‖32‖β̂t − β∗‖2

]
L

∫ 1

0
(1− ξ)dξ,

=
LE[‖x‖32]

2
‖β̂t − β∗‖2.

We observe that, when the covariates are supported in the ball of radius
√
K, we have

E[‖x‖32] ≤ K3/2. When they are sub-Gaussian random variables with norm K, we have

E[‖x‖32] ≤ K361.5p1.5.

By combining the above results, for bounded covariates we obtain

∥∥∥[Qt]−1 −
∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2

≤ D(x, z) + c1

√
p

min {|S|p/ log(p), n/ log(n)}
+ c2‖β̂t − β∗‖2 ,

and for sub-Gaussian covariates, we obtain

∥∥∥[Qt]−1 −
∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥
2

≤ D(x, z) + c1

√
p

min {|S|, n0.2/ log(n)}
+ c2p

1.5‖β̂t − β∗‖2 ,

where

D(x, z) = dH3(x, z) + ‖Σ‖2 dH1(x, z) + ‖Σ‖22R2 dH2(x, z) .
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In the following, we will derive an upper bound for
∥∥Qt

∥∥
2
, which is equivalent to proving

the positive definiteness of [Qt]−1 and finding a lower bound for ‖[Qt]−1‖2. The sub-

Gaussian case is more restrictive than the bounded support case. Therefore we derive the

bound for the sub-Gaussian case. We have

λmin

(
[Qt]−1

)
= inf
‖u‖2=1

{
µ̂2(β̂t)〈u, Σ̂Su〉+ µ̂4(β̂t)〈u, Σ̂S β̂

t〉2
}
,

≥ inf
‖u‖2=1

{
µ̂2(β̂t)〈u,Σu〉+ µ̂4(β̂t)〈u,Σβ̂t〉2

}
−B2‖Σ̂S −Σ‖2 −B4R

2‖Σ̂S −Σ‖2‖Σ̂S + Σ‖2.

On the event E , the first term on the right hand side is lower bounded by κ−1. For the

other terms, we use Lemma B.1.1 and write

λmin

(
[Qt]−1

)
≤2κ−1 − ‖Σ̂S −Σ‖2

{
B2 +B4R

2‖Σ̂S −Σ‖2 + 2B4R
2‖Σ‖2

}
,

≤2κ−1 − C
√

p

|S|

{
B2 +B4R

2C

√
p

|S|
+ 2B4R

2‖Σ‖2
}

with probability 1 − 2e−cp. When |S| > 4pC2 max
{

1, 2C(B2 + 3B4R
2λmax(Σ))κ

}2
, with

probability 1− 2e−cp, we obtain

λmin

(
[Qt]−1

)
≥ κ−1.

This proves that, with high probability, on the event E , [Qt]−1 is positive definite and

consequently we obtain

‖Qt‖2 ≤ κ.

Finally, we take into account the conditioning on the event E . Since we worked on the event

E , the probability of a desired outcome is at least P(E) − δ, where δ is either c/p2 or ce−p

depending on the distribution of the covariates. Hence, conditioned on the event E , the

probability becomes 1− δ/P(E), which completes the proof.
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3.6.2 Proofs of Corollaries 3.4.2 and 3.4.6

In the following, we provide the proof for Corollary 3.4.2. The proof for Corollary 3.4.6

follows from the exact same steps.

The statement of Theorem 3.4.1 holds on the probability space with a probability lower

bounded by P(E)− c/p2 for some constant c (See previous section). Let Q denote this set,

on which the statement of the theorem holds without the conditioning on the event E . Note

that Q ⊂ E and we also have

P(E) ≥ P(Q) ≥ P(E)− c/p2. (3.16)

This suggests that the difference between Q and E is small. By taking expectations on both

sides over the set Q, we obtain,

E
[
‖β̂t+1 − β∗‖2;Q

]
≤ κ

{
D(x, z) + c1

√
p

min {p/ log(p)|S|, n/ log(n)}

}
E
[
‖β̂t − β∗‖2

]
+ κc2E

[
‖β̂t − β∗‖22

]

where we used

E
[
‖β̂t − β∗‖l2;Q

]
≤ E

[
‖β̂t − β∗‖l2

]
, l = 1, 2.
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Similarly for the iterate β̂t+1, we write

E
[
‖β̂t+1 − β∗‖2

]
=E

[
‖β̂t+1 − β∗‖2;Q

]
+ E

[
‖β̂t+1 − β∗‖2;QC

]
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+ 2RP(QC),

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+ 2R

(
P(EC) +

c

p2

)
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+

ε

10
,

≤E
[
‖β̂t+1 − β∗‖2;Q

]
+

E
[
‖β̂t − β∗‖2

]
10

.

Combining these two inequalities, we obtain

E
[
‖β̂t+1 − β∗‖2

]
≤
{

0.1 + κD(x, z) + c1κ

√
p

min {p/ log(p)|S|, n/ log(n)}

}
E
[
‖β̂t − β∗‖2

]
+ c2κE

[
‖β̂t − β∗‖22

]
.

Hence the proof follows.

3.6.3 Proof of Theorem 3.4.3

The iterates generated by the Newton-Stein method satisfy the following inequality,

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

on the event Q where Q is defined in the previous section. We have observed that P(Q) ≥
P(E) − c/p2 in Equation 3.16. Since the coefficients τ1 and τ2 are obtained by uniform

bounds on the feasible set, the above inequality holds for every t on Q. On the event we

consider, Q∩ {ϑ < (1− τ1)/τ2}, the starting point satisfies the following

τ1 + τ2‖β̂0 − β∗‖2 < 1, (3.17)
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which implies that the sequence of iterates converges. Let ξ ∈ (ε, ϑ) and tξ be the last

iteration that ‖β̂t − β∗‖2 > ξ. Then, for t > tξ

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

≤ (τ1 + τ2ξ) ‖β̂t − β∗‖2.

This convergence behavior describes a linear rate and requires at most

log(ε/ξ)

log(τ1 + τ2ξ)

iterations to reach a tolerance of ε. For t ≤ tξ, we have

‖β̂t+1 − β∗‖2 ≤
(
τ1 + τ2‖β̂t − β∗‖2

)
‖β̂t − β∗‖2,

≤ (τ1/ξ + τ2) ‖β̂t − β∗‖22.

This describes a quadratic rate and the number of iterations to reach a tolerance of ξ can

be upper bounded by

log2

(
log (ξ (τ1/ξ + τ2))

log (τ1/ξ + τ2) ‖β̂0 − β∗‖2

)
≤ log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
.

Therefore, the overall number of iterations to reach a tolerance of ε is upper bounded by

log2

(
log (τ1 + τ2ξ)

log ((τ1/ξ + τ2)(1− τ1)/τ2)

)
+

log(ε/ξ)

log(τ1 + τ2ξ)

which is a function of ξ. Therefore, we take the minimum over the feasible set and conclude

that on E ∩ {ϑ < (1 − τ1)/τ2}, the number of iterations to reach a tolerance of ε is upper

bounded by infξ J (ξ) with a bad event probability of c/p2. By conditioning on the event

E ∩ {ϑ < (1 − τ1)/τ2}, we conclude that with probability at least 1 − c′/p2, the statement

of the theorem holds for c′ = c/P(E ∩ {ϑ < (1− τ1)/τ2}).
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3.6.4 Proof of Theorem 3.4.4

We have the following projected updates

β̂t+1 =PC
(
β̂t − γtQt∇l(β̂t); Qt

)
= β̂t − γtDγt(β̂

t),

where we define

Dγ(β̂t) =
1

γ

(
β̂t − PC(β̂t − γQt∇l(β̂t); Qt)

)
.

For simplicity, we only consider the projection onto a convex set, i.e.,

PtC(β+) = PC(β+; Qt) =argmin
w∈C

1

2
‖w − β+‖2

Qt−1 , (3.18)

=argmin
w∈Rp

1

2
‖w − β+‖2

Qt−1 + 1C(w),

where 1C(w) is the indicator function for the convex set C, i.e.

1C(w) =

0 if w ∈ C,

∞ otherwise.

We note that other projection methods (such as proximal mappings) are also applicable to

our update rule.

Defining the decrement λt = 〈∇l(β̂t), Dγ(β̂t)〉, we consider the following form of back-

tracking line search with update parameters a ∈ (0, 0.5) and b ∈ (0, 1):

γ = γ̄; while: l
(
β̂t − γDγ(β̂t)

)
> l(β̂t)− aγλt, γ ← γb.

Depending on the projection choice, there are various other search methods that can be

applied. Before we move on to the convergence analysis, we first establish some properties

of the modified gradient Dγ .

For a given point w ∈ C, the sub-differential of the indicator function is the normal cone.

This together with Equation 3.18 implies that

β̂t − γQt∇l(β̂t)− PtC(β̂t − γQt∇l(β̂t)) ∈ Qt ∂1C(PtC(β̂t − γQt∇l(β̂t))),
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which in turn implies

γ[Qt]−1
{
Dγ(β̂t)−Qt∇l(β̂t),

}
∈ ∂1C(PtC(β̂t − γQt∇l(β̂t))),

and correspondingly for any β ∈ C

〈[Qt]−1Dγ(β̂t)−∇l(β̂t),PtC(β̂t − γQt∇l(β̂t))− β〉 ≥ 0.

For β = β̂t ∈ C, this yields

κ−1‖Dγ(β̂t)‖22 ≤ 〈Dγ(β̂t), [Qt]−1Dγ(β̂t)〉 ≤ 〈∇l(β̂t), Dγt(β̂
t)〉, (3.19)

with probability at least P (E)− c/p2. Also note that the Hessian of the GLM problem can

be upper bounded by∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i Ψ(2)(〈xi, β̂t)

∥∥∥∥∥
2

≤ B2

∥∥∥∥∥ 1

n

n∑
i=1

xix
T
i

∥∥∥∥∥
2

≤ B2K.

Now we move to the convergence analysis. For a step size γ, by the convexity of the

negative log-likelihood, we can write almost surely

l(β̂t − γDγ(β̂t)) ≤l(β̂t)− γ〈∇l(β̂t), Dγ(β̂t)〉+
γ2B2K

2
‖Dγ(β̂t)‖22,

≤l(β̂t)− γ〈∇l(β̂t), Dγ(β̂t)〉
{

1− γ

2
B2Kκ

}
and notice that the exit condition for the backtracking line search algorithm is satisfied

when γ ≤ (κB2K)−1. Hence, the line search returns a step size satisfying

γt ≥ min{γ̄, b/(κB2K)}.

Using the line search condition, we have

l
(
β̂t − γtDγt(β̂

t)
)
− l(β̂t) ≤− aγtλt,

with probability at least P(E)− c/p2 which implies that the sequence {l(β̂t)}t is decreasing.

We note that this event is independent of the iteration number due to uniform positive

definite condition given in E . Since l is continuous and C is closed, l is a closed function.
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Hence, the sequence {l(β̂t)}t must converge to a limit. This implies that aγtλ
t → 0. But

we have a > 0 and γt > min{γ̄, b/(κB2K)} > 0. Therefore, we conclude that λt → 0. Using

the inequality provided in Equation 3.19, we conclude that ‖Dγ(β̂t)‖2 converges to 0 which

implies that the algorithm converges with probability at least 1− c
P(E)p

−2, where in the last

step we conditioned on E .

3.7 Discussion

In this chapter, we proposed an efficient algorithm for training GLMs. We call our algorithm

Newton-Stein method (NewSt ) as it takes a Newton-type step at each iteration relying on

a Stein-type lemma. The algorithm requires a one time O(|S|p2) cost to estimate the co-

variance structure and O(np) per-iteration cost to form the update equations. We observe

that the convergence of Newton-Stein method has a phase transition from quadratic rate

to linear rate. This observation is justified theoretically along with several other guaran-

tees for the bounded as well as the sub-Gaussian covariates such as per-step convergence

bounds, conditions for local rates and global convergence with line search, etc. Parame-

ter selection guidelines of Newton-Stein method are based on our theoretical results. Our

experiments show that Newton-Stein method provides significant improvement over the

classical optimization methods.

Relaxing some of the theoretical constraints is an interesting line of research. In partic-

ular, strong assumptions on the cumulant generating functions might be loosened. Another

interesting direction is to determine when the phase transition point occurs, which would

provide a better understanding of the effects of subsampling and eigenvalue thresholding.



Chapter 4

Subsampled Newton Methods

Contents of this chapter are based on the paper [EM15]. In this chapter, we consider the

problem of minimizing a sum of n functions via projected iterations onto a convex parameter

set C ⊂ Rp, where n � p � 1. In this regime, algorithms which utilize subsampling tech-

niques are known to be effective. In this chapter, we use subsampling techniques together

with low-rank approximation to design a new randomized batch algorithm which possesses

comparable convergence rate to Newton method, yet has much smaller per-iteration cost.

Our theoretical results can be used to obtain convergence rates of previously proposed

subsampling based algorithms as well.

4.1 Introduction

In this chapter, we consider the more general problem of minimizing an average of n func-

tions fi : Rp → R,

minimize
β

f(β) :=
1

n

n∑
i=1

fi(β) , (4.1)

in a batch setting, where n is assumed to be much larger than p. Most machine learning

models can be expressed as above, where each function fi corresponds to an observation.

Examples include logistic regression, support vector machines, neural networks and graph-

ical models.

Many optimization algorithms have been developed to solve the above minimization

problem using iterative methods [Bis95, BV04, Nes13]. In this chapter, we consider the

87
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iterations of the following form

βt+1 = βt − γtQt∇βf(βt), (4.2)

where γt is the step size and Qt is a suitable scaling matrix that provides curvature infor-

mation (For simplicity, we drop the projection throughout the introduction, i.e., we assume

C = Rp).
Updates of the form Equation (4.2) have been extensively studied in the optimization

literature. We have seen first order, second order, and Quasi-Newton methods using the

iterations of the above form in Section 1.2. An alternative approach is to use subsampling

techniques, where scaling matrix Qt is based on randomly selected set of data points [Mar10,

BCNN11, VP12]. Subsampling is widely used in the first order methods, but is not as well

studied for approximating the scaling matrix. In particular, theoretical guarantees are still

missing.

A key challenge is that the subsampled Hessian is close to the actual Hessian along the

directions corresponding to large eigenvalues (large curvature directions in f(β)), but is a

poor approximation in the directions corresponding to small eigenvalues (flatter directions in

f(β)). In order to overcome this problem, we use low-rank approximation. More precisely,

we treat all the eigenvalues below the r-th as if they were equal to the (r + 1)-th. This

yields the desired stability with respect to the subsample. We call our algorithm NewSamp

which is short for Newton-Sampling.

The rest of the chapter is organized as follows: Section 4.1.1 surveys the related work.

In Section 4.2, we describe the proposed algorithm and provide the intuition behind it.

Next, we present our theoretical results in Section 4.3, i.e., convergence rates corresponding

to different subsampling schemes, followed by a discussion on how to choose the algorithm

parameters. Two applications of the algorithm are discussed in Section 4.4. We compare

our algorithm with several existing methods on various datasets in Section 4.5. Finally, in

Section 4.7, we conclude with a brief discussion.

4.1.1 Related Work

Even a synthetic review of optimization algorithms for large-scale machine learning would

go beyond the page limits of this chapter. Here, we emphasize that the method of choice
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depends crucially on the amount of data to be used, and their dimensionality (i.e., respec-

tively, on the parameters n and p). In this chapter, we focus on a regime in which p is large

but not so large as to make matrix manipulations (of order p2 to p3) impossible. Also n

is large but not so large as to make batch gradient computation (of order np) prohibitive.

On the other hand, our aim is to avoid O(np2) calculations required by standard Newton

method. Examples of this regime are given in Section 4.4.

In contrast, online algorithms are the option of choice for very large n since the compu-

tation per update is independent of n. In the case of Stochastic Gradient Descent (SGD),

the descent direction is formed by a randomly selected gradient [RM51]. Improvements to

SGD have been developed by incorporating the previous gradient directions in the current

update [SLRB, SHY+13, Bot10, DHS11].

Batch algorithms, on the other hand, can achieve faster convergence and exploit sec-

ond order information. They are competitive for intermediate n. Several methods in this

category aim at quadratic, or at least super-linear convergence rates. In particular, Quasi-

Newton methods have proven effective [Bis95, Nes13]. Another approach towards the same

goal is to utilize subsampling to form an approximate Hessian [Mar10, BCNN11, VP12,

EM15, Erd15]. If the subsampled Hessian is close to the true Hessian, these methods can

approach NM in terms of convergence rate, nevertheless, they enjoy much smaller complex-

ity per update. No convergence rate analysis is available for these methods: this analysis

is the main contribution of our chapter. To the best of our knowledge, the best result

in this direction is proven in [BCNN11] that estabilishes asymptotic convergence without

quantitative bounds (exploiting general theory from [GNS09]).

Further improvements have been suggested either by utilizing Conjugate Gradient (CG)

methods and/or using Krylov subspaces [Mar10, BCNN11, VP12]. Subsampling can be

also used to obtain an approximate solution, if an exact solution is not required [DLFU13].

Lastly, there are various hybrid algorithms that combine two or more techniques to gain im-

provement. Examples include, subsampling and Quasi-Newton [SYG07, SDPG13, BHNS14],

SGD and GD [FS12], NGD and NM [LRF10], NGD and low-rank approximation [LRMB08].
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Algorithm 4 NewSamp

Input: β̂0, r, ε, {γt, |St|}t, t = 0.

1. Define: PC(β) = argminβ′∈C ‖β − β′‖2 is the Euclidean projection onto C,
[Uk,Λk] = TruncatedSVDk(H) is the rank-k truncated SVD of H with

(Λk)ii = λi.

2. while ‖β̂t+1 − β̂t‖2 > ε do
Subsample a set of indices St ⊂ [n].
HSt = 1

|St|
∑

i∈St ∇
2
βfi(β̂

t), and [Ur+1,Λr+1] = TruncatedSVDr+1(HSt),

Qt = λ−1
r+1Ip + Ur

(
Λ−1
r − λ−1

r+1Ir
)
UT
r ,

β̂t+1 = PC
(
β̂t − γtQt∇βf(β̂t)

)
,

t← t+ 1.

3. end while

Output: β̂t.

4.2 NewSamp: A Newton method via subsampling and eigen-

value thresholding

In the regime we consider, n � p � 1, there are two main drawbacks associated with the

classical second order methods such as Newton method. The predominant issue in this

regime is the computation of the Hessian matrix, which requires O(np2) operations, and

the other issue is finding the inverse of the Hessian, which requires O(p3) computation.

Subsampling is an effective and efficient way of addressing the first issue, by forming an

approximate Hessian to exploit curvature information. Recent empirical studies show that

subsampling the Hessian provides significant improvement in terms of computational cost,

yet preserves the fast convergence rate of second order methods [Mar10, VP12, Erd16]. If

a uniform subsample is used, the subsampled Hessian will be a random matrix with ex-

pected value at the true Hessian, which can be considered as a sample estimator to the

mean. Recent advances in statistics have shown that the performance of various estimators

can be significantly improved by simple procedures such as shrinkage and/or thresholding

[CCS10, DGJ13, GD14, GD14]. To this extent, we use a specialized low-rank approxima-

tion as the important second order information is generally contained in the largest few

eigenvalues/vectors of the Hessian. We will see in Section 4.3, how this procedure provides

faster convergence rates compared to the bare subsampling methods.
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NewSamp is presented as Algorithm 4. At iteration step t, the subsampled set of in-

dices, its size and the corresponding subsampled Hessian is denoted by St, |St| and HSt ,

respectively. Assuming that the functions fi’s are convex, eigenvalues of the symmetric ma-

trix HSt are non-negative. Therefore, singular value (SVD) and eigenvalue decompositions

coincide. The operation TruncatedSVDk(HSt) = [Uk,Λk] is the best rank-k approxima-

tion, i.e., takes HSt as input and returns the largest k eigenvalues in the diagonal matrix

Λk ∈ Rk×k with the corresponding k eigenvectors Uk ∈ Rp×k. This procedure requires

O(kp2) computation using a standard method, though there are faster randomized algo-

rithms which provide accurate approximations to the truncated SVD problem with much

less computational cost [HMT11]. To construct the curvature matrix [Qt]−1, instead of us-

ing the basic rank-r approximation, we fill its 0 eigenvalues with the (r+1)-th eigenvalue of

the subsampled Hessian which is the largest eigenvalue below the threshold. If we compute

a truncated SVD with k = r+1 and (Λk)ii = λi, the described operation can be formulated

as the following,

Qt = λ−1
r+1Ip + Ur

(
Λ−1
r − λ−1

r+1Ir
)
UT
r , (4.3)

which is simply the sum of a scaled identity matrix and a rank-r matrix. Note that the low-

rank approximation that is suggested to improve the curvature estimation has been further

utilized to reduce the cost of computing the inverse matrix. Final per-iteration cost of

NewSamp will be O
(
np+ (|St|+ r)p2

)
≈ O

(
np+ |St|p2

)
. NewSamp takes the parameters

{γt, |St|}t and r as inputs. We discuss in Section 4.3.4, how to choose these parameters

near-optimally, based on the theory we develop in Section 4.3.

Operator PC projects the current iterate to the feasible set C using Euclidean projec-

tion. Throughout, we assume that this projection can be done efficiently. In general, most

unconstrained optimization problems do not require this step, and can be omitted. The

purpose of projected iterations in our algorithm is mostly theoretical, and will be clear in

Section 4.3.

By the construction of Qt, NewSamp will always be a descent algorithm. It enjoys a

quadratic convergence rate at start which transitions into a linear rate in the neighborhood

of the minimizer. This behavior can be observed in Figure 4.1. The left plot in Figure 1

shows the convergence behavior of NewSamp over different subsample sizes. We observe

that large subsamples result in better convergence rates as expected. As the subsample size
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Figure 4.1: Left plot demonstrates convergence rate of NewSamp , which starts with a
quadratic rate and transitions into linear convergence near the true minimizer. The right
plot shows the effect of eigenvalue thresholding on the convergence coefficients. x-axis shows
the number of kept eigenvalues. Plots are obtained using Covertype dataset.

increases, slope of the linear phase decreases, getting closer to that of quadratic phase at the

transition point. This phenomenon will be explained in detail in Section 4.3, by Theorems

4.3.2 and 4.3.4. The right plot in Figure 4.1 demonstrates how the coefficients of linear and

quadratic phases depend on the thresholded rank. Note that the coefficient of the quadratic

phase increases with the rank threshold, whereas for the linear phase, relation is reversed.

4.3 Theoretical results

In this section, we provide the convergence analysis of NewSamp based on two different

subsampling schemes:

S1: Independent subsampling: At each iteration t, St is uniformly sampled from [n] =

{1, 2, ..., n}, independently from the sets {Sτ}τ<t, with or without replacement.

S2: Sequentially dependent subsampling: At each iteration t, St is sampled from [n],

based on a distribution which might depend on the previous sets {Sτ}τ<t, but not on

any randomness in the data.

The first subsampling scheme is simple and commonly used in optimization. One draw-

back is that the subsampled set at the current iteration is independent of the previous

subsamples, hence does not consider which of the samples were previously used to form
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the approximate curvature information. In order to prevent cycles and obtain better per-

formance near the optimum, one might want to increase the sample size as the iteration

advances [Mar10], including previously unused samples. This process results in a sequence

of dependent subsamples which falls into the subsampling scheme S2. In our theoretical

analysis, we make the following assumptions:

Assumption 1 (Lipschitz continuity). For any subset S ⊂ [n], there exists a constant M|S|

depending on the size of S, such that ∀β, β′ ∈ C,

∥∥HS(β)−HS(β′)
∥∥

2
≤M|S| ‖β − β′‖2.

Assumption 2 (Bounded Hessian). ∀i = 1, 2, ..., n, the Hessian of the function fi(β),

∇2
βfi(β), is upper bounded by an absolute constant K, i.e.,

max
i≤n

∥∥∇2
βfi(β)

∥∥
2
≤ K.

4.3.1 Independent subsampling

In this section, we assume that St ⊂ [n] is sampled according to the subsampling scheme

S1. In fact, many stochastic algorithms assume that St is a uniform subset of [n], because

in this case the subsampled Hessian is an unbiased estimator of the full Hessian. That is,

∀β ∈ C, E [HSt(β)] = H[n](β), where the expectation is over the randomness in St. We next

show that for any scaling matrix Qt that is formed by the subsamples St, iterations of the

form Equation (4.2) will have a composite convergence rate, i.e., combination of a linear

and a quadratic phases.

Lemma 4.3.1. Assume that the parameter set C is convex and St ⊂ [n] is based on sub-

sampling scheme S1. Further, let the Assumptions 1 and 2 hold and β∗ ∈ C. Then, for

an absolute constant c > 0, with probability at least 1− 2/p, the updates of the form Equa-

tion (4.2) satisfy

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2 + ξt2‖β̂t − β∗‖22,



CHAPTER 4. SUBSAMPLED NEWTON METHODS 94

for coefficients ξt1 and ξt2 defined as

ξt1 =
∥∥∥I − γtQtHSt(β̂

t)
∥∥∥

2
+ γtcK

∥∥Qt
∥∥

2

√
log(p)

|St|
,

ξt2 =γt
Mn

2

∥∥Qt
∥∥

2
.

Remark 1. If the initial point β̂0 is close to β∗, the algorithm will start with a quadratic

rate of convergence which will transform into linear rate later in the close neighborhood of

the optimum.

The above lemma holds for any matrix Qt. In particular, if we choose Qt = H−1
St

, we

obtain a bound for the simple subsampled Hessian method. In this case, the coefficients

ξt1 and ξt2 depend on ‖Qt‖2 = 1/λtp where λtp is the smallest eigenvalue of the subsampled

Hessian. Note that λtp can be arbitrarily small which might blow up both of the coefficients.

In the following, we will see how NewSamp remedies this issue.

Theorem 4.3.2. Let the assumptions in Lemma 4.3.1 hold. Denote by λti, the i-th eigen-

value of HSt(β̂
t) where β̂t is given by NewSamp at iteration step t. If the step size satisfies

γt ≤
2

1 + λtp/λ
t
r+1

, (4.4)

then we have, with probability at least 1− 2/p,

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2 + ξt2‖β̂t − β∗‖22,

for an absolute constant c > 0, for the coefficients ξt1 and ξt2 are defined as

ξt1 =1− γt
λtp
λtr+1

+ γt
cK

λtr+1

√
log(p)

|St|
,

ξt2 =γt
Mn

2λtr+1

.

NewSamp has a composite convergence rate where ξt1 and ξt2 are the coefficients of the

linear and the quadratic terms, respectively (See the right plot in Figure 4.1). We observe

that the subsampling size has a significant effect on the linear term, whereas the quadratic

term is governed by the Lipschitz constant. We emphasize that the case γt = 1 is feasible
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for the conditions of Theorem 4.3.2. In the case of quadratic functions, since the Lipschitz

constant is 0 , we obtain ξt2 = 0 and the algorithm converges linearly. Following corollary

summarizes this case.

Corollary 4.3.3 (Quadratic functions). Let the assumptions of Theorem 4.3.2 hold. Fur-

ther, assume that ∀i ∈ [n], the functions β : Rp → fi(β) are quadratic. Then, for β̂t given

by NewSamp at iteration step t, for the coefficient ξt1 defined as in Theorem 4.3.2, with

probability at least 1− 2/p, we have

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2. (4.5)

4.3.2 Sequentially dependent subsampling

Here, we assume that the subsampling scheme S2 is used to generate {Sτ}τ≥1. Distribution

of subsampled sets may depend on each other, but not on any randomness in the dataset.

Examples include fixed subsamples as well as subsamples of increasing size, sequentially

covering unused data. In addition to Assumptions 1-2, we assume the following.

Assumption 3 (i.i.d. observations). Let z1, z2, ..., zn ∈ Z be i.i.d. observations from a

distribution D. For a fixed β ∈ Rp and ∀i ∈ [n], we assume that the functions {fi}ni=1

satisfy fi(β) = ϕ(zi, β), for some function ϕ : Z× Rp → R.

Most statistical learning algorithms can be formulated as above, e.g., in classification

problems, one has access to i.i.d. samples {(yi, xi)}ni=1 where yi and xi denote the class label

and the covariate, and ϕ measures the classification error (See Section 4.4 for examples). For

the subsampling scheme S2, an analogue of Lemma 4.3.1 is stated in Appendix as Lemma

4.6.1, which immediately leads to the following theorem.

Theorem 4.3.4. Assume that the parameter set C is convex and St ⊂ [n] is based on

the subsampling scheme S2. Further, let the Assumptions 1, 2 and 3 hold, almost surely.

Conditioned on the event E = {β∗ ∈ C}, if the step size satisfies Equation (4.4), then for β̂t

given by NewSamp at iteration t, with probability at least 1 − cE e−p for cE = c/P (E), we

have

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2 + ξt2‖β̂t − β∗‖22,
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for the coefficients ξt1 and ξt2 defined as

ξt1 = 1− γt
λtp
λtr+1

+ γt
c′K

λtr+1

√
p

|St|
log

(
diam(C)2 (Mn +M|St|

)2 |St|
K2

)
,

ξt2 = γt
Mn

2λtr+1

,

where c, c′ > 0 are absolute constants and λti denotes the i-th eigenvalue of HSt(β̂
t).

Compared to the Theorem 4.3.2, we observe that the coefficient of the quadratic term

does not change. This is due to Assumption 1. However, the bound on the linear term is

worse, since we use the uniform bound over the convex parameter set C. The same order

of magnitude is also observed by [Erd16], which relies on a similar proof technique. Similar

to Corollary 4.3.3, we have the following result for the quadratic functions.

Corollary 4.3.5 (Quadratic functions). Let the assumptions of Theorem 4.3.4 hold. Fur-

ther assume that ∀i ∈ [n], the functions β → fi(β) are quadratic. Then, conditioned on the

event E, with probability at least 1− cE e−p, NewSamp iterates satisfy

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2,

for coefficient ξt1 defined as in Theorem 4.3.4.

4.3.3 Dependence of coefficients on t and convergence guarantees

The coefficients ξt1 and ξt2 depend on the iteration step which is an undesirable aspect of

the above results. However, these constants can be well approximated by their analogues

ξ∗1 and ξ∗2 evaluated at the optimum which are defined by simply replacing λtj with λ∗j in

their definition, where the latter is the j-th eigenvalue of full-Hessian at θ∗. For the sake of

simplicity, we only consider the case where the functions β → fi(β) are quadratic.

Theorem 4.3.6. Assume that the functions fi(β) are quadratic, St is based on scheme

S1 and γt = 1. Let the full Hessian at β∗ be lower bounded by a constant k. Then for

sufficiently large |St|, we have, with probability 1− 2/p

∣∣ξt1 − ξ∗1∣∣ ≤ c1K
√

log(p)/|St|
k
(
k − c2K

√
log(p)/|St|

) := δ,
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for some absolute constants c1, c2.

Theorem 4.3.6 implies that, when the subsampling size is sufficiently large, ξt1 will con-

centrate around ξ∗1 . Generalizing the above theorem to non-quadratic functions is straight-

forward, in which case, one would get additional terms involving the difference ‖β̂t − β∗‖2.

In the case of scheme S2, if one uses fixed subsamples, i.e., ∀t, St = S, then the coefficient

ξt1 does not depend on t. The following corollary gives a sufficient condition for conver-

gence. A detailed discussion on the number of iterations until convergence and further local

convergence properties can be found in Appendix C.1.

Corollary 4.3.7. Assume that ξt1 and ξt2 are well-approximated by ξ∗1 and ξ∗2 with an error

bound of δ, i.e., ξti ≤ ξ∗i + δ for i = 1, 2, as in Theorem 4.3.6. For the initial point β̂0, a

sufficient condition for convergence is

‖β̂0 − β∗‖2 <
1− ξ∗1 − δ
ξ∗2 + δ

.

4.3.4 Choosing the algorithm parameters

Algorithm parameters play a crucial role in most optimization methods. Based on the

theoretical results from previous sections, we discuss procedures to choose the optimal

values for the step size γt, subsample size |St| and rank threshold.

• Step size: For the step size of NewSamp at iteration t, we suggest

γt(γ) =
2

1 + λtp/λ
t
r+1 + γ

. (4.6)

where γ = O(log(p)/|St|). Note that γt(0) is the upper bound in Theorems 4.3.2 and

4.3.4 and it minimizes the first component of ξt1. The other terms in ξt1 and ξt2 linearly

depend on γt. To compensate for that, we shrink γt(0) towards 1. Contrary to most

algorithms, optimal step size of NewSamp is larger than 1. See Appendix C.2 for a

rigorous derivation of Equation (4.6).

• Sample size: By Theorem 4.3.2, a subsample of size O((K/λ∗p)
2 log(p)) should be

sufficient to obtain a small coefficient for the linear phase. Also note that subsample

size |St| scales quadratically with the condition number.
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• Rank threshold: For a full-Hessian with effective rank R (trace divided by the largest

eigenvalue), it suffices to use O(R log(p)) samples [Ver10, Ver12]. Effective rank is up-

per bounded by the dimension p. Hence, one can use p log(p) samples to approximate

the full-Hessian and choose a rank threshold which retains the important curvature

information.

4.4 Examples

4.4.1 Generalized Linear Models

Finding the maximum likelihood estimator in Generalized Linear Models (GLMs) is equiv-

alent to minimizing the negative log-likelihood f(β),

minimize
β

f(β) =
1

n

n∑
i=1

[Φ(〈xi, β〉)− yi〈xi, β〉] , (4.7)

where Φ is the cumulant generating function, yi ∈ R denotes the observations, xi ∈ Rp

denotes the rows of design matrix X ∈ Rn×p, and β ∈ Rp is the coefficient vector. Note

that this formulation only considers GLMs with canonical links. Here, 〈x, β〉 denotes the

inner product between the vectors x, β. The function Φ defines the type of GLM. Well

known examples include ordinary least squares (OLS) with Φ(z) = z2, logistic regression

(LR) with Φ(z) = log(1 + ez), and Poisson regression (PR) with Φ(z) = ez.

The gradient and the Hessian of the above function can be written as:

∇βf(β) =
1

n

n∑
i=1

[
Ψ(1)(〈xi, β〉)xi − yixi

]
, (4.8)

∇2
βf(β) =

1

n

n∑
i=1

Ψ(2)(〈xi, β〉)xixTi . (4.9)

We note that the Hessian of the GLM problem is always positive definite. This is because

the second derivative of the cumulant generating function is simply the variance of the

observations. Using the results from Section 4.3, we perform a convergence analysis of our

algorithm on a GLM problem.

Corollary 4.4.1. Let St ⊂ [n] be a uniform subsample, and C be a convex parameter set.

Assume that the second derivative of the cumulant generating function, Ψ(2) is bounded
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by 1, and it is Lipschitz continuous with Lipschitz constant L. Further, assume that the

covariates are contained in a ball of radius
√
Rx, i.e. maxi∈[n] ‖xi‖2 ≤

√
Rx. Then, for β̂t

given by NewSamp with constant step size γt = 1 at iteration t, with probability at least

1− 2/p, we have

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2 + ξt2‖β̂t − β∗‖22,

for constants ξt1 and ξt2 defined as

ξt1 =1− λti
λtr+1

+
cRx
λtr+1

√
log(p)

|St|
,

ξt2 =
LR

3/2
x

2λtr+1

,

where c > 0 is an absolute constant and λti is the ith eigenvalue of HSt(β̂
t).

Proof of Corollary 4.4.1 can be found in Appendix 4.6. Note that the bound on the

second derivative is quite loose for Poisson regression due to exponentially fast growing

cumulant generating function.

4.4.2 Support Vector Machines

A linear Support Vector Machine (SVM) provides a separating hyperplane which maximizes

the margin, i.e., the distance between the hyperplane and the support vectors. Although

the vast majority of the literature focuses on the dual problem [Vap98, SS02], SVMs can

be trained using the primal as well. Since the dual problem does not scale well with the

number of data points (some approaches get O(n3) complexity, [WG11]), the primal might

be better-suited for optimization of linear SVMs [KD05, Cha07].

The primal problem for the linear SVM can be written as

minimize
β∈C

f(β) =
1

2
‖β‖22 +

1

2
C

n∑
i=1

`(yi, 〈β, xi〉) (4.10)

where (yi, xi) denote the data samples, β defines the separating hyperplane, C > 0 and `

could be any loss function. The most commonly used loss functions include Hinge-p loss,

Huber loss and their smoothed versions [Cha07]. Smoothing or approximating such losses
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with more stable functions is sometimes crucial in optimization. In the case of NewSamp

which requires the loss function to be twice differentiable (almost everywhere), we suggest

either smoothed Huber loss, i.e.,

`(y, 〈β, x〉) =


0, if y〈β, x〉 > 3/2,

(3/2−y〈β,x〉)2

2 , if |1− y〈β, x〉| ≤ 1/2,

1− y〈β, x〉, otherwise.

or Hinge-2 loss, i.e.,

`(y, 〈β, x〉) = max {0, 1− y〈β, x〉}2 .

For the sake of simplicity, we will focus on Hinge-2 loss. Denote by SVt, the set of indices

of all the support vectors at iteration t, i.e.,

SVt = {i : yi〈βt, xi〉 < 1}.

When the loss is set to be the Hinge-2 loss, the Hessian of the SVM problem, normalized

by the number of support vectors, can be written as

∇2
βf(β) =

1

|SVt|

{
I + C

∑
i∈SVt

xix
T
i

}
.

When |SVt| is large, the problem falls into our setup and can be solved efficiently using

NewSamp . Note that unlike the GLM setting, Lipschitz condition of our Theorems do not

apply here. However, we empirically demonstrate that NewSamp works regardless of such

assumptions.

4.5 Experiments

In this section, we validate the performance of NewSamp through extensive numerical stud-

ies. We experimented on two optimization problems, namely, Logistic Regression (LR) and

Support Vector Machines (SVM) with quadratic loss. LR minimizes Equation (4.7) for the

logistic function, whereas SVM minimizes Equation (4.10) for the Hinge-2 loss.

For the convenience of the reader, we briefly describe the algorithms that are used in
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Figure 4.2: Performance of various optimization methods on different datasets. NewSamp
is represented with red color .

the experiments below:

1. Gradient Descent (GD), at each iteration, takes a step proportional to negative of the

full gradient evaluated at the current iterate. Under certain regularity conditions, GD

exhibits a linear convergence rate.

2. Accelerated Gradient Descent (AGD) is proposed by Nesterov [Nes83], which improves

over the gradient descent by using a momentum term. Performance of AGD strongly

depends of the smoothness of the function f and decreasing step size adjustments may

be necessary for convergence.

3. Newton Method (NM) achieves a quadratic convergence rate by utilizing the inverse

Hessian evaluated at the current iterate. However, the computation of Hessian makes

it impractical for large-scale datasets.

4. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable Quasi-

Newton method. Scaling matrix is formed by accumulating the information from

iterates and gradients, satisfying Quasi-Newton rule. The convergence rate is locally

super-linear and per-iteration cost is comparable to first order methods.
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5. Limited Memory BFGS (L-BFGS) is a variant of BFGS, which uses only the recent

iterates and gradients to form the approximate Hessian, providing significant improve-

ment in terms of memory usage.

6. Stochastic Gradient Descent (SGD) is a simplified version of GD where, at each iter-

ation, instead of the full gradient, a randomly selected gradient is used. Per-iteration

cost is independent of n, yet the convergence rate is significantly slower compared to

batch algorithms. We follow the guidelines of [Bot10, SHY+13] for the step size,, i.e.,

γt =
γ

1 + t/c
,

for constants γ, c > 0.

7. Adaptive Gradient Scaling (AdaGrad) is an online algorithm which uses an adaptive

learning rate based on the previous gradients. AdaGrad significantly improves the

performance and stability of SGD [DHS11]. This is achieved by scaling each entry of

gradient differently. , i.e., at iteration step t, step size for the j-th coordinate is

(γt)j =
γ√

δ +
∑t

τ=1(∇βf(β̂t))j

,

for constants δ, γ > 0.

For each of the batch algorithms, we used constant step size, and for all the algorithms, we

choose the step size that provides the fastest convergence. For the stochastic algorithms,

we optimized over the parameters that define the step size. Parameters of NewSamp are

selected following the guidelines described in Section 4.3.4.

We experimented over various datasets that are given in Table 4.1. The real datasets

are downloaded from the UCI repository [Lic13]. Each dataset consists of a design matrix

X ∈ Rn×p and the corresponding observations (classes) y ∈ Rn. Synthetic data is generated

through a multivariate Gaussian distribution with a randomly generated covariance matrix.

As a methodological choice, we selected moderate values of p, for which Newton Method

can still be implemented, and nevertheless we can demonstrate an improvement. For larger

values of p, comparison is even more favorable to our approach.

The effects of subsampling size |St| and rank threshold are demonstrated in Figure

4.1. A thorough comparison of the aforementioned optimization techniques is presented in
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Figure 4.2. In the case of LR, we observe that stochastic algorithms enjoy fast convergence

at start, but slows down later as they get close to the true minimizer. The algorithm that

comes close to NewSamp in terms of performance is BFGS. In the case of SVM, Newton

method is the closest algorithm to NewSamp, yet in all scenarios, NewSamp outperforms

its competitors. Note that the global convergence of BFGS is not better than that of GD

[Nes13]. The condition for super-linear rate is
∑

t ‖βt−β∗‖2 <∞ for which, an initial point

close to the optimum is required [DM77]. This condition can be rarely satisfied in practice,

which also affects the performance of the other second order methods. For NewSamp , even

though the rank thresholding provides a certain level of robustness, we observed that the

choice of a good starting point is still an important factor. Details about Figure 4.2 can be

found in Table C.2 in Appendix. For additional experiments and a detailed discussion, see

Appendix C.3.

Dataset n p r Reference

CT slices 53500 386 60 [GKS+11]

Covertype 581012 54 20 [BD99]

MSD 515345 90 60 [MEWL11]

Synthetic 500000 300 3 -

Table 4.1: Datasets used in the experiments.

4.6 Proof of Main Results

4.6.1 Proofs of Lemma 4.3.1 and Theorem 4.3.2

Proof of Lemma 4.3.1. We write,

β̂t − β∗ − γtQt∇βf(β̂t) = β̂t − β∗ − γtQt

∫ 1

0
∇2
βf(β∗ + τ(β̂t − β∗))(β̂t − β∗) dτ,

=

(
I − γtQt

∫ 1

0
∇2
βf(β∗ + τ(β̂t − β∗))dτ

)
(β̂t − β∗) .
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Since the projection PC in step 2 of NewSamp can only decrease the `2 distance, we obtain

‖β̂t+1 − β∗‖2 ≤
∥∥∥∥I − γtQt

∫ 1

0
∇2
βf(β∗ + τ(β̂t − β∗))dτ

∥∥∥∥
2

‖β̂t − β∗‖2.

Note that the first term on the right hand side governs the convergence behavior of the

algorithm.

Next, for an index set S ⊂ [n], define the matrix HS(β) as

HS(β) =
1

|S|
∑
i∈S

Hi(β)

where |S| denotes the size of the set. Denote the integral in the above equation by H̃, that

is,

H̃ =

∫ 1

0
∇2
βf(β∗ + τ(β̂t − β∗))dτ.

By the triangle inequality, the governing term that determines the convergence rate can

be bounded as∥∥∥I − γtQtH̃
∥∥∥

2
≤
∥∥∥I − γtQtHS(β̂t)

∥∥∥
2

(4.11)

+γt
∥∥Qt

∥∥
2

{∥∥∥HS(β̂t)−H[n](β̂
t)
∥∥∥

2
+
∥∥∥H[n](β̂

t)− H̃
∥∥∥

2

}
,

which holds, regardless of the choice of Qt.

In the following, we will use some matrix concentration results to bound the right hand

side of Equation (4.11). The result for sampling with replacement can be obtained by matrix

Hoeffding’s inequality given in [Tro12]. Note that this explicitly assumes that the samples

are independent. For the concentration bounds under sampling without replacement (see

i.e. [GN10, Gro11, MJC+14]), we will use the Operator-Bernstein inequality given in [GN10]

which is provided in Section C.4 as Lemma C.4.2 for convenience.

Using any indexing over the elements of subsample S, we denote the each element in S

by si, i.e.,

S = {s1, s2, ..., s|S|}.
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For β ∈ C, we define the centered Hessians, Wi(β) as

Wi(β) = Hsi(β)− E [Hsi(β)] ,

where the E [Hsi(β)] is just the full Hessian at β.

By the Assumption (2), we have

max
i≤n
‖Hi(β)‖2 =

∥∥∇2
βfi(β)

∥∥
2
≤ K, (4.12)

max
i≤n
‖Wi‖2 ≤ 2K := γ, max

i≤n

∥∥W2
i

∥∥
2
≤ 4K2 := σ2.

Next, we apply the matrix Bernstein’s inequality given in Lemma C.4.2. For ε ≤ 4K, and

β ∈ C,

P
(∥∥HS(β)−H[n](β)

∥∥
2
> ε
)
≤ 2p exp

{
− ε

2|S|
16K2

}
. (4.13)

Therefore, to obtain a convergence rate of O(1/p), we let

ε = C

√
log(p)

|S|
,

where C = 6K is sufficient. We also note that the condition on ε is trivially satisfied by our

choice of ε in the target regime.

For the last term, we may write,

∥∥∥H[n](θ̂
t)− H̃

∥∥∥
2

=

∥∥∥∥H[n](θ̂
t)−

∫ 1

0
∇2
θf(θ∗ + τ(θ̂t − θ∗))dτ

∥∥∥∥
2

,

≤
∫ 1

0

∥∥∥H[n](θ̂
t)−∇2

θf(θ∗ + τ(θ̂t − θ∗))
∥∥∥

2
dτ,

≤
∫ 1

0
Mn(1− τ)‖θ̂t − θ∗‖2dτ,

=
Mn

2
‖θ̂t − θ∗‖2.

First inequality follows from the fact that norm of an integral is less than or equal to

the integral of the norm. Second inequality follows from the Lipschitz property.
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Combining the above results, we obtain the following for the governing term in Equa-

tion (4.11): For some absolute constants c, C > 0, with probability at least 1 − 2/p, we

have ∥∥∥I − γtQtH[n](β̃
t)
∥∥∥

2

≤
∥∥∥I − γtQtHS(β̂t)

∥∥∥
2

+ γt
∥∥Qt

∥∥
2

{
6K

√
log(p)

|S|
+
Mn

2
‖β̂t − β∗‖2

}
.

Hence, the proof is completed.

Proof of Theorem 4.3.2. Using the definition of Qt in NewSamp, we immediately obtain

that ∥∥∥I − γtQtHSt(β̂
t)
∥∥∥

2
= max

i>r

{∣∣∣∣1− γt λti
λtr+1

∣∣∣∣} , (4.14)

and that
∥∥Qt

∥∥
2

= 1/λtr+1. Then the proof follows from Lemma 4.3.1 and by the assumption

on the step size.

4.6.2 Proof of Theorem 4.3.6

Lemma 4.6.1. Assume that the parameter set C is convex and St ⊂ [n] is based on sub-

sampling scheme S2. Further, let the Assumptions 1, 2 and 3 hold, almost surely. Then,

for some absolute constants c, C > 0, with probability at least 1 − e−p, the updates of the

form stated in Equation (4.2) satisfy

‖β̂t+1 − β∗‖2 ≤ ξt1‖β̂t − β∗‖2 + ξt2‖β̂t − β∗‖22,

for coefficients ξt1, ξ
t
2 defined as

ξt1 =
∥∥∥I − γtQtHSt(β̂

t)
∥∥∥

2
+γt

∥∥Qt
∥∥

2
cK

√√√√ p

|St|
log

(
diam(C)2 (Mn +M|St|

)2 |St|
K2

)

ξt2 =γt
Mn

2

∥∥Qt
∥∥

2
.

Proof of Lemma 4.6.1. The first part of the proof is the same as Lemma 4.3.1. We carry

our analysis from Equation (4.11). Note that in this general set-up, the iterates are random
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variables that depend on the random functions. Therefore, we use a uniform bound for the

right hand side in Equation (4.11). That is,

∥∥∥I − γtQtH̃
∥∥∥

2
≤
∥∥∥I − γtQtHS(β̂t)

∥∥∥
2

+γt
∥∥Qt

∥∥
2

{
sup
β∈C

∥∥HS(β)−H[n](β)
∥∥

2
+
Mn

2
‖θ̂t − θ∗‖2

}
.

By the Assumption 1, given β, β′ ∈ C such that ‖β − β′‖2 ≤ ∆, we have,

∥∥HS(β)−H[n](β)
∥∥

2
≤
∥∥HS(β′)−H[n](β

′)
∥∥

2
+
(
Mn +M|S|

)
‖β − β′‖2

≤
∥∥HS(β′)−H[n](β

′)
∥∥

2
+
(
Mn +M|S|

)
∆.

Next, we will use a covering net argument to obtain a bound on the matrix empirical

process. Note that similar bounds on the matrix forms can be obtained through other

approaches like chaining as well [DE17]. Let T∆ be a ∆-net over the convex set C. By the

above inequality, we obtain

sup
β∈C

∥∥HS(β)−H[n](β)
∥∥

2
≤ max

β′∈T∆

∥∥HS(β′)−H[n](β
′)
∥∥

2
+
(
Mn +M|S|

)
∆. (4.15)

Now we will argue that the right hand side is small with high probability using the

matrix Hoeffding’s inequality from [Tro12]. By the union bound over T∆, we have

P
(

max
β′∈T∆

∥∥HS(β′)−H[n](β
′)
∥∥

2
> ε

)
≤|T∆| P

(∥∥HS(β′)−H[n](β
′)
∥∥

2
> ε
)
.

For the first term on the right hand side, by Lemma C.4.1, we write:

|T∆| ≤
(

diam(C)
2∆/
√
p

)p
.

As before, let S = {s1, s2, ..., s|S|}, that is, si denote the different indices in S. For any
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β ∈ C and i = 1, 2, ..., n, we define the centered Hessians Wi(β) as

Wi(β) = Hsi(β)−H[n](β).

By the Assumption (2), we have the same bounds as in Equation (4.12). Hence, for

ε > 0 and β ∈ C, by the matrix Hoeffding’s inequality [Tro12],

P
(∥∥HS(β)−H[n](β)

∥∥
2
> ε
)
≤ 2p exp

{
− |S|ε

2

32K2

}
.

We would like to obtain an exponential decay with a rate of at least O(p). Hence, we

require,

p log

(
diam(C)√p

2∆

)
+ log(2p) + p ≤ p log

(
4diam(C)√p

∆

)
,

≤ |S|ε
2

32K2
,

which gives the optimal value of ε as

ε ≥

√
32K2p

|S|
log

(
4diam(C)√p

∆

)
.

Therefore, we conclude that for the above choice of ε, with probability at least 1− e−p, we

have

max
β∈T∆

∥∥HS(β)−H[n](β)
∥∥

2
<

√
32K2p

|S|
log

(
4diam(C)√p

∆

)
.

Applying this result to the inequality in Equation (4.15), we obtain that with probability

at least 1− e−p,

sup
β∈C

∥∥HS(β)−H[n](β)
∥∥

2
≤

√
32K2p

|S|
log

(
4diam(C)√p

∆

)
+
(
Mn +M|S|

)
∆.

The right hand side of the above inequality depends on the net covering diameter ∆.

We optimize over ∆ using Lemma B.4.6 which provides for
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∆ = 4

√√√√ K2p(
Mn +M|S|

)2 |S| log

(
diam(C)2 (Mn +M|S|

)2 |S|
K2

)
,

we obtain that with probability at least 1− e−p,

sup
β∈C

∥∥HS(β)−H[n](β)
∥∥

2
≤ 8K

√√√√ p

|S|
log

(
diam(C)2 (Mn +M|S|

)2 |S|
K2

)
.

Combining this with the bound stated in Equation (4.11), we conclude the proof.

4.6.3 Proofs of Theorem 4.3.6 and Corollary 4.4.1

Proof of Theorem 4.3.6.

∣∣ξt1 − ξ∗1∣∣ =

∣∣∣∣∣ λtpλtr+1

−
λ∗p
λ∗r+1

∣∣∣∣∣+ cK

√
log(p)

|St|

∣∣∣∣ 1

λtr+1

− 1

λ∗r+1

∣∣∣∣
≤
K|λtr+1 − λ∗r+1|+K|λtp − λ∗p|

λ∗r+1λ
t
r+1

+ cK

√
log(p)

|St|
|λtr+1 − λ∗r+1|
λ∗r+1λ

t
r+1

By the Weyl’s and matrix Hoeffding’s [Tro12] inequalities (See Equation (4.13) for details),

we can write

|λtj − λ∗j | ≤
∥∥∥HSt(β̂

t)−H[n](β∗)
∥∥∥

2
≤ cK

√
log(p)

|St|
,

with probability 1− 2/p. Then,

∣∣ξt1 − ξ∗1∣∣ ≤c′K
√

log(p)
|St|

λ∗r+1λ
t
r+1

+
c′′K2 log(p)

|St|

λ∗r+1λ
t
r+1

,

≤
c′′′K

√
log(p)
|St|

k
(
k − cK

√
log(p)
|St|

) ,
for some constants c and c′′′.
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Proof of Corollary 4.4.1. Observe that fi(β) = Φ(〈xi, β〉)−yi〈xi, β〉, and ∇2
βfi(β) = xix

T
i Ψ(2)(〈xi, β〉).

For an index set S, we have ∀β, β′ ∈ C

∥∥HS(β)−HS(β′)
∥∥

2
=

∥∥∥∥∥ 1

|S|
∑
i∈S

xix
T
i

[
Ψ(2)(〈xi, β〉)−Ψ(2)(〈xi, β′〉)

]∥∥∥∥∥
2

,

≤ Lmax
i∈S
‖xi‖32 ‖β − β′‖2 ≤ LR3/2

x ‖β − β′‖2.

Therefore, the Assumption 1 is satisfied with the Lipschitz constant M|St| := LR
3/2
x . More-

over, by the inequality

∥∥∇2
βfi(β)

∥∥
2

= ‖xi‖22 Ψ(2)(〈xi, β〉) ≤ Rx,=
∥∥∥xixTi Ψ(2)(〈xi, β〉)

∥∥∥
2

the Assumption 2 is satisfied for K := Rx. We conclude the proof by applying Theorem

4.3.2.

4.7 Discussion

In this chapter, we proposed a subsampling based second order method utilizing low-

rank Hessian estimation. The proposed method has the target regime n � p and has

O
(
np+ |S|p2

)
complexity per-iteration. We showed that the convergence rate of NewSamp

is composite for two widely used subsampling schemes, i.e., starts as quadratic convergence

and transforms to linear convergence near the optimum. Convergence behavior under other

subsampling schemes is an interesting line of research. Numerical experiments on both real

and synthetic datasets demonstrate the performance of the proposed algorithm which we

compared to the classical optimization methods.



Chapter 5

Conclusion

Methods and techniques that we have presented in this dissertation rely on a broad range

of topics from statistics, optimization, machine learning, and applied probability. The con-

nections among these fields have become more essential lately, mainly because of the recent

advances in computational resources, the availability of large amount of data, and the con-

sequent growing interest in statistical and machine learning algorithms. More specifically,

our focus was on designing computationally efficient estimation and prediction techniques

for various statistical learning problems in large-scale and/or high-dimensional settings.

Using tools from statistics and probability theory such as Stein’s lemma, subsampling and

shrinkage techniques, we developed scalable algorithms for various data science problems,

and understood their theoretical guarantees and statistical limitations.

Recent advances in computational resources introduced many challenges to modern

statistical sciences. However, we have seen in this dissertation that there are many strong

tools in statistics that can be used to remedy these issues. Our main tool, Stein’s lemma,

has been at the focus of statisticians since Charles Stein’s seminal work in 1981 [Ste81]. It is

fascinating that despite its simplicity, Stein’s lemma has countless applications in statistical

estimation, and probability theory. Yet for another application of Stein’s lemma, we have

seen that it can be very useful in designing optimization algorithms for large-scale problems.

In this dissertation, we have reversed the classical arrangement between statistics and

optimization, and argued that optimization algorithms can also immensely benefit from the

classical results from statistical estimation theory as well.
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Appendix A

Supplement for Chapter 2

A.1 Auxiliary Lemmas

Lemma A.1.1 (Sub-exponential vector concentration). Let x1, x2, ..., xn be independent

centered sub-exponential random vectors with maxi ‖xi‖ψ1 = κ. Then we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2

> cκ

√
p

n

)
≤ exp {−p} . (A.1)

whenever n > 4c2p for an absolute constant c.

Proof of Lemma A.1.1. For a vector z ∈ Rp, we have ‖z‖2 = sup‖u‖2=1 〈u, z〉 since the dual

of `2 norm is itself. Therefore, we write

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2

> t

)
=P

(
sup
‖u‖2=1

1

n

n∑
i=1

〈u, xi〉 > t

)
.

Now, let Nε be an ε-net over Sp−1 = {u ∈ Rp : ‖u‖2 = 1}, and observe that

max
u∈Nε

〈u, x〉 ≥(1− ε) sup
‖u‖2=1

〈u, x〉,

=(1− ε)‖x‖2,

112
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with |Nε| ≤ (1 + 2/ε)p. Hence, we may write

P

(
sup
‖u‖2=1

1

n

n∑
i=1

〈u, xi〉 > t

)
≤P

(
max
u∈Nε

1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
,

≤ |Nε|P

(
1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
.

For any u ∈ Sp−1, we have ‖〈u, xi〉‖ψ1
≤ κ. Then, by the Bernstein-type inequality for

sub-exponential random variables [Ver10], we have

P

(
1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
≤ exp

{
−cnmin

{
t2(1− ε)2

κ2
,
t(1− ε)

κ

}}
,

for an absolute constant c. Therefore, the probability on the left hand side of Equation (A.1)

can be bounded by(
1 +

2

ε

)p
exp

{
−cnt

2(1− ε)2

κ2

}
= exp

{
−cnt

2(1− ε)2

κ2
+ p log

(
1 +

2

ε

)}
,

whenever t < κ/(1 − ε). Choosing ε = 0.5 and for an absolute constant c′ > 3.24/c and

letting

t = c′κ

√
p

n
,

we conclude the proof.

Lemma A.1.2. Let B(β̃) denote the ball centered around β̃ with radius δ, i.e.,

B(β̃) =
{
β :
∥∥β − β̃∥∥

2
≤ δ
}
.

For i = 1, ..., n, let xi ∈ Rp be i.i.d. centered sub-Gaussian random vectors with norm

bounded by κ and E [‖x‖2] = µ̃
√
p. Given a function g : R → R that is uniformly bounded

by b > 0, and Lipschitz continuous with k,

P

(
sup
β∈B

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > c(b+ κ/µ̃)

√
p

n/ log(n)

)
≤ 2 exp {−p} ,
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whenever np > 51 max{χ, χ−1} for χ = (b + κ/µ̃)2/(cδ2k2µ̃2). Above, c is an absolute

constant.

Proof of Lemma A.1.2. Let E [‖x‖2] = µ = µ̃
√
p and for ε > 0, β ∈ B(β̃) and w ∈ Rp define

the bounding functions

lβ(w) =g(〈w, β〉)− ε‖w‖2/4µ,

uβ(w) =g(〈w, β〉) + ε‖w‖2/4µ.

Let N∆ be a net over B(β̃) in the sense that for any β1 ∈ B(β̃), ∃β2 ∈ N∆ such that

‖β1 − β2‖2 ≤ ∆. We fix ∆∗ = ε/(4kµ) and write ∀β1 ∈ B, ∃β2 ∈ N∆∗ ,

1. an upper bound of the form:

g(〈w, β1〉) ≤g(〈w, β2〉) + k |〈w, β1 − β2〉| ,

≤g(〈w, β2〉) + k ‖w‖2 ∆∗,

=uβ2(w),

2. and a lower bound of the form:

g(〈w, β1〉) ≥g(〈w, β2〉)− k |〈w, β1 − β2〉| ,

≥g(〈w, β2〉)− k ‖w‖2 ∆∗,

=lβ2(w),

where the second steps in the above inequalities follow from the Cauchy-Schwarz inequality.

These functions are called bracketing functions in the context of empirical process theory.

Hence, we can write that ∀β1 ∈ B(β̃), ∃β2 ∈ N∆∗ such that

1

n

n∑
i=1

lβ2(xi)− E [lβ2(x)]− ε/2 ≤ 1

n

n∑
i=1

g(〈xi, β1〉)− E [g(〈x, β1〉)] ,

≤ 1

n

n∑
i=1

uβ2(xi)− E [uβ2(x)] + ε/2.

The above inequalities translate to the following conclusion: Whenever the following
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event happens, {∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β1〉)− E [g(〈x, β1〉)]

∣∣∣∣∣ > ε

}
,

at least one of the following events happens{
1

n

n∑
i=1

uβ2(xi)− E [uβ2(x)] > ε/2

}
or

{
1

n

n∑
i=1

lβ2(xi)− E [lβ2(x)] < −ε/2

}
.

Therefore, using the union bound on the above events, we may obtain

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > ε

)
(A.2)

≤ P

(
max
β∈N∆∗

1

n

n∑
i=1

uβ(xi)− E [uβ(x)] > ε/2

)

+ P

(
max
β∈N∆∗

1

n

n∑
i=1

lβ(xi)− E [lβ(x)] < −ε/2

)
.

Note that the right hand side of the above inequality has two terms both of which are

of the same form. For simplicity, we bound only the first one. The bound for the second

one follows from the exact same steps.

The relation between sub-Gaussian and sub-exponential norms [Ver10] allows us to write

‖‖x‖2‖2ψ2
≤ ‖‖x‖22‖ψ1 ≤

p∑
i=1

‖x2
i ‖ψ1 ,≤ 2

p∑
i=1

‖xi‖2ψ2
≤ 2κ2p, (A.3)

where the second step follows from the triangle inequality. Hence, we conclude that ‖x‖2−
E [‖x‖2] is a centered sub-Gaussian random variable with norm upper bounded by 3κ

√
p.

For ε < 4/3, we notice that the random variable uβ(x) = g(〈x, β〉) + ε‖x‖2/4µ is also

sub-Gaussian with norm

‖uβ(x)‖ψ2 ≤ b+
ε

4µ̃
3κ ≤ b+ κ/µ̃,

and consequently, the centered random variable uβ(x) − E [uβ(x)] has the sub-Gaussian

norm upper bounded by 2b+ 2κ/µ̃.
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Then, by the Hoeffding-type inequality for the sub-Gaussian random variables, we obtain

P

(
1

n

n∑
i=1

uβ(xi)− E [uβ(x)] > ε/2

)
≤ exp

{
−cn ε2

(b+ κ/µ̃)2

}

for an absolute constant c > 0.

By the same argument above, one can obtain the same result for the function lβ(x).

Using Hoeffding bounds in Equation (A.2) along with the union bound over the net, we

immediately obtain

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 2 |N∆∗ | exp

{
−cn ε2

(b+ κ/µ̃)2

}

for some absolute constant c.

Using a standard covering argument over the net N∆∗ as given in Lemma C.4.1, we have

|N∆∗ | ≤
(
δ
√
p

∆∗

)p
=

(
4δkµ̃p

ε

)p
.

Combining this with the previous bound, and choosing

ε2 =
p

n

(b+ κ/µ̃)2

2c
log

(
32cδ2k2µ̃2pn

(b+ κ/µ̃)2

)
we get

2

(
4δkµ̃p

ε

)p
exp

{
−cn ε2

(b+ κ/µ̃)2

}
= 2 exp

{
−p

2
log log

(
32cδ2k2µ̃2pn

(b+ κ/µ̃)2

)}
≤ 2 exp {−p} ,

whenever np > 51 max{χ, χ−1} for χ = (b+ κ/µ̃)2/(cδ2k2µ̃2).

Lemma A.1.3 (Corollary 5.50 of [Ver10]). Let w1, w2, ..., wn be isotropic random vectors

with sub-Gaussian norm upper bounded by κ. Then for every t > 0, with probability at least

1− 2 exp
{
−c1t

2
}

, the empirical covariance Σ̃ satisfies,

∥∥∥Σ̃− I
∥∥∥

2
≤ max{δ, δ2} where δ = c2

√
p

n
+

t√
n
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where c1, c2 are constants depending only on κ.

Remark 2. For t =
√
p/c1, we get with probability at least 1− 2 exp {−p},

∥∥∥Σ̃− I
∥∥∥

2
≤ C

√
p

n

where C =
{
c2 + 1√

c1

}
, and n > C2p. Here, C only depends on κ.

Lemma A.1.4 (Corollary 5.52 of [Ver10]). Let x1, x2, ..., xn be random vectors with mean

0 and covariance Σ supported on a centered Euclidean ball of radius
√
R, i.e., ‖xi‖2 ≤

√
R.

For ε ∈ (0, 1) and c > 0 an absolute constant, with probability at least 1 − 1/p2, for n >

cR log(p)/(ε2 ‖Σ‖2) the empirical covariance matrix satisfies∥∥∥Σ̂−Σ
∥∥∥

2
≤ ε ‖Σ‖2 .

A.2 Additional Experiments

In this section, we provide additional experiments. The overall setting is the same as

Section 2.9. The only difference is that we change the sampling distribution of the datasets,

which are stated in the title of each plot. As in Section 2.9, SLS estimator outperforms its

competitors by a large margin in terms of the computation time.

The results are provided in Figures A.1 and A.2, and Table A.1.

Model Logistic Regression Poisson Regression

Dataset Σ×Ber(±1) Σ×Norm(0,1) Σ×{Exp(1)-1} Σ×Norm(0,1)

Size n = 6.0×105, p=300 n = 6.0×105, p=300 n = 6.0×105, p=300 n = 6.0×105, p=300
Initialize Rnd Ols Rnd Ols Rnd Ols Rnd Ols
Plot (a) (b) (c) (d) (e) (f) (g) (h)
Method↓ Time in Seconds / Number of Iterations (to reach min test error)
Sls 6.61/3 2.97/3 9.38/5 4.25/4 14.68/4 2.99/4 6.66/10 4.13/10

Nr 222.21/6 84.08/3 186.33/6 115.76/4 218.1/6 218.9/4 364.63/9 363.4/9

Ns 40.68/10 11.57/3 53.06/9 19.52/4 39.22/6 59.61/4 51.48/10 39.8/10

Bfgs 125.83/33 35.41/9 155.3/48 24.78/8 46.61/20 48.71/12 92.84/36 74.22/38

LBfgs 142.09/38 44.41/12 444.62/143 21.79/7 96.53/39 50.56/12 296.4/111 228.1/117

Gd 409.9/134 79.45/22 1773.1/509 135.62/44 569.1/211 124.31/48 792.3/344 1041.1/366

Agd 177.3/159 43.76/12 359.56/95 53.73/18 157.9/57 63.16/16 74.74/32 62.21/32

Table A.1: Details of the experiments shown in Figures A.1 and A.2.
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Figure A.1: Additional experiments comparing the performance of SLS to that of MLE
obtained with various optimization algorithms on several datasets. SLS is represented with
red straight line. The details are provided in Table A.1
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Figure A.2: Additional experiments comparing the performance of SLS to that of MLE
obtained with various optimization algorithms on several datasets. SLS is represented with
red straight line. The details are provided in Table A.1
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Supplement for Chapter 3

B.1 Preliminary Concentration Inequalities

In this section, we provide several concentration bounds that will be useful throughout the

proofs.

We state the following Lemmas from [Ver10] for the convenience of the reader (i.e., See

Theorem 5.39 and the following remark for sub-Gaussian distributions, and Theorem 5.44

for distributions with arbitrary support):

Lemma B.1.1 ([Ver10]). Let S be an index set and xi ∈ Rp for i ∈ S be i.i.d. sub-Gaussian

random vectors with

E[xi] = 0, E[xix
T
i ] = Σ, ‖xi‖ψ2 ≤ K.

There exists constants c, C depending only on the sub-Gaussian norm K such that with

probability 1− 2e−ct
2
,∥∥∥Σ̂S −Σ

∥∥∥
2
≤ max

(
δ, δ2

)
where δ = C

√
p

|S|
+

t√
|S|

.

Remark 3. We are interested in the case where δ < 1, hence the right hand side becomes

max
(
δ, δ2

)
= δ. In most cases, we will simply let t =

√
p and obtain a bound of order√

p/|S| on the right hand side. For this, we need |S| = O(C2p) which is a reasonable

assumption in the regime we consider.

120
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The following lemma is an analogue of Lemma B.1.1 for covariates sampled from arbi-

trary distributions with bounded support.

Lemma B.1.2 ([Ver10]). Let S be an index set and xi ∈ Rp for i ∈ S be i.i.d. random

vectors with

E[xi] = 0, E
[
xix

T
i

]
= Σ, ‖xi‖2 ≤

√
K a.s.

Then, for some absolute constant c, with probability 1− pe−ct2, we have

∥∥Σ̂S −Σ
∥∥

2
≤ max

(
‖Σ‖1/22 δ, δ2

)
where δ = t

√
K

|S|
.

Remark 4. We will choose t =
√

3 log(p)/c which will provide us with a probability of

1− 1/p2. Therefore, if the sample size is sufficiently large, i.e.,

|S| ≥ 3K log(p)

c‖Σ‖2
= O(K log(p)/‖Σ‖2),

we can estimate the true covariance matrix quite well for arbitrary distributions with bounded

support. In particular, with probability 1− 1/p2, we obtain

∥∥Σ̂S −Σ
∥∥

2
≤ c′

√
log(p)

|S|
,

where c′ =
√

3K‖Σ‖2/c.

In the following, we will focus on empirical processes and obtain uniform bounds for

proposed Hessian approximation. To that extent, we provide a few basic definitions which

will be useful later in the proofs. For a more detailed discussion on the machinery used

throughout the next section, we refer reader to [VdV00].

Definition 7. On a metric space (X, d), for ε > 0, Tε ⊂ X is called an ε-net over X if

∀x ∈ X, ∃t ∈ Tε such that d(x, t) ≤ ε.

In the following, we will use L1 distance between two functions f and g, namely d(f, g) =∫
|f −g|. Note that the same distance definition can be carried to random variables as they

are simply real measurable functions. The integral takes the form of expectation.
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Definition 8. Given a function class F , and any two functions l and u (not necessarily

in F), the bracket [l, u] is the set of all f ∈ F such that l ≤ f ≤ u. A bracket satisfying

l ≤ u and
∫
|u − l| ≤ ε is called an ε-bracket in L1. The bracketing number N (ε,F , L1) is

the minimum number of different ε-brackets needed to cover F .

The preliminary tools presented in this section will be utilized to obtain the concentra-

tion results in Section B.2.

B.2 Main Lemmas

B.2.1 Concentration of Covariates With Bounded Support

Lemma B.2.1. Let xi ∈ Rp, for i = 1, 2, ..., n, be i.i.d. random vectors supported on a

ball of radius
√
K, with mean 0, and covariance matrix Σ. Further, let f : R → R be a

uniformly bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz

continuous with constant L. Then, for sufficiently large n, there exist constants c1, c2, c3

such that

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where the constants depend only on the bound B.

Proof. We start by using the Lipschitz property of the function f , i.e., ∀β, β′ ∈ Bp(R),

∣∣f(〈x, β〉)− f(〈x, β′〉)
∣∣ ≤L‖x‖2‖β − β′‖2,
≤L
√
K‖β − β′‖2,

where the first inequality follows from Cauchy-Schwartz. Now let T∆ be a ∆-net over Bp(R).

Then ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that the right hand side of the above inequality is smaller

than ∆L
√
K. Then, we can write∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β′〉)− E[f(〈x, β′〉)]

∣∣∣∣∣+ 2∆L
√
K. (B.1)

By choosing

∆ =
ε

4L
√
K
,
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and taking supremum over the corresponding β sets on both sides, we obtain the following

inequality

sup
β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ ≤ max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣+
ε

2
.

Now, since we have ‖f‖∞ ≤ B and for a fixed β and i = 1, 2, ..., n, the random variables

f(〈xi, β〉) are i.i.d., by the Hoeffding’s concentration inequality, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε/2

)
≤ 2 exp

(
− nε

2

8B2

)
.

Combining Equation (B.1) with the above result and a union bound, we easily obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)

≤ P

(
max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε/2

)
≤ 2|T∆| exp

(
− nε

2

8B2

)
,

where ∆ = ε/4L
√
K.

Next, we apply Lemma B.4.5 and obtain that

|T∆| ≤
(
R
√
p

∆

)p
=

(
R
√
p

ε/4L
√
K

)p
.

We require that the probability of the desired event is bounded by a quantity that

attains an exponential decay with rate O(p). This can be attained if

ε2 ≥ 8B2p

n
log
(

4eLR
√
K
√
p/ε
)
.

Assuming that n is sufficiently large, and using Lemma B.4.6 with a = 8B2p/n and b =

4eLR
√
Kp, we obtain that ε should be

ε =

√
4B2p

n
log

(
30L2R2Kn

B2

)
= O

(√
p log(n)

n

)
.
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When n > 30L2R2K/B2, we obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > 3B

√
p log(n)

n

)
≤2e−p.

In the following, we state similar bounds on functions of the following form

x→ f(〈x, β〉)〈x, v〉2,

which appear in the summation that form the Hessian matrix.

Lemma B.2.2. Let xi ∈ Rp, for i = 1, ..., n, be i.i.d. random vectors supported on a ball

of radius
√
K, with mean 0, and covariance matrix Σ. Also let f : R → R be a uniformly

bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz con-

tinuous with constant L. Then, for v ∈ Sp−1 and sufficiently large n, there exist constants

c1, c2, c3 such that

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > c1

√
p log (n)

n

)
≤ c2e

−c3p,

where the constants depend only on the bound B and the radius
√
K.

Proof. As in the proof of Lemma B.2.1, we start by using the Lipschitz property of the

function f , i.e., ∀β, β′ ∈ Bp(R),

‖f(〈x, β〉)〈x, v〉2 − f(〈x, β′〉)〈x, v〉2‖2 ≤L‖x‖32‖β − β′‖2,

≤LK1.5‖β − β′‖2.

For a net T∆, ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that right hand side of the above inequality
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is smaller than ∆LK1.5. Then, we can write∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2−E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β′〉)〈xi, v〉2− E[f(〈x, β′〉)〈x, v〉2]

∣∣∣∣∣ (B.2)

+ 2∆LK1.5. (B.3)

This time, we choose

∆ =
ε

4LK1.5
,

and take the supremum over the corresponding feasible β-sets on both sides,

sup
β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣
≤ max

β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣+
ε

2
.

Now, since we have ‖f‖∞ ≤ B and for fixed β and v, i = 1, 2, ..., n, f(〈xi, β〉)〈xi, v〉2 are

i.i.d. random variables. By the Hoeffding’s concentration inequality, we write

P

(∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε/2

)
≤ 2 exp

(
− nε2

8B2K2

)
.

Using Equation (B.2) and the above result combined with the union bound, we easily obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)

≤ P

(
max
β∈T∆

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε/2

)

≤ 2|T∆| exp

(
− nε2

8B2K2

)
,

where ∆ = ε/4LK1.5. Using Lemma B.4.5, we have

|T∆| ≤
(
R
√
p

∆

)p
=

(
R
√
p

ε/4LK1.5

)p
.
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As before, we require that the right hand side of above inequality gets a decay with rate

O(p). Using Lemma B.4.6 with a = 8B2K2p/n and b = 100LRK1.5√p, we obtain that ε

should be

ε =

√
4B2K2p

n
log

(
502L2R2Kn

B2

)
= O

(√
p log(n)

n

)
.

When n > 50LRK1/2/B, we obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2−E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣>4BK

√
p log(n)

n

)
≤ 2e−3.2p.

The rate −3.2p will be important later.

B.2.2 Concentration of Sub-Gaussian Covariates

In this section, we derive the analogues of the Lemmas B.2.1 and B.2.2 for sub-Gaussian

covariates. Note that the Lemmas in this section are more general in the sense that they

also cover the case where the covariates have bounded support. As a result, the resulting

convergence coefficients are worse compared to the previous section.

Lemma B.2.3. Let xi ∈ Rp, for i = 1, ..., n, be i.i.d. sub-Gaussian random vectors with

mean 0, covariance matrix Σ and sub-Gaussian norm K. Also let f : R → R be a uni-

formly bounded function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz

continuous with constant L. Then, there exists absolute constants c1, c2, c3 such that

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where the constants depend only on the eigenvalues of Σ, bound B and radius R and sub-

Gaussian norm K.

Proof. We start by defining the brackets of the form

lβ(x) =f(〈x, β〉)− ε ‖x‖2
4E [‖x‖2]

,

uβ(x) =f(〈x, β〉) + ε
‖x‖2

4E [‖x‖2]
.
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Observe that the size of bracket [lβ, uβ] is ε/2, i.e., E[uβ − lβ] = ε/2. Now let T∆ be a

∆-net over Bp(R) where we use ∆ = ε/(4LE [‖x‖2]). Then ∀β ∈ Bp(R), ∃β′ ∈ T∆ such

that f(〈·, β〉) falls into the bracket [lβ′ , uβ′ ]. This can be seen by writing out the Lipschitz

property of the function f . That is,

|f(〈x, β〉)− f(〈x, β′〉)| ≤L‖x‖2‖β − β′‖2,

≤∆L‖x‖2,

where the first inequality follows from Cauchy-Schwartz. Therefore, we conclude that

N (ε/2,F , L1) ≤ |T∆|

for the function class F = {f(〈·, β〉) : β ∈ Bp(R)}. We further have ∀β ∈ Bp(R), ∃β′ ∈ T∆

such that

1

n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)] ≤ 1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)] +
ε

2
,

1

n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)] ≥ 1

n

n∑
i=1

lβ′(xi)− E[lβ′(x)]− ε

2
.

Using the above inequalities, we have, ∀β ∈ Bp(R), ∃β′ ∈ T∆{[
1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)]

]
> ε/2

}
∪

{[
− 1

n

n∑
i=1

lβ′(xi) + E[lβ′(x)]

]
> ε/2

}
⊃{∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

}
.

By the union bound, we obtain

P

(
max
β∈T∆

[
1

n

n∑
i=1

uβ(xi)−E[uβ(x)]

]
>ε/2

)
+P

(
max
β∈T∆

[
− 1

n

n∑
i=1

lβ(xi)+E[lβ(x)]

]
>ε/2

)

≥ P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)−E[f(〈x, β〉)]

∣∣∣∣∣>ε
)
. (B.4)

In order to complete the proof, we need concentration inequalities for uβ and lβ. We state

the following lemma.
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Lemma B.2.4. There exists a constant C depending on the eigenvalues of Σ and B such

that, for each β ∈ Bp(R) and for some 0 < ε < 1, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

uβ(xi)− E[uβ(x)]

∣∣∣∣∣ > ε/2

)
≤ 2e−Cnε

2
,

P

(∣∣∣∣∣ 1n
n∑
i=1

lβ(xi)− E[lβ(x)]

∣∣∣∣∣ > ε/2

)
≤ 2e−Cnε

2
,

where

C =
c(

B +
√

2K
4µ/
√
p

)2

for an absolute constant c.

Remark 5. Note that µ = E[‖x‖2] = O(
√
p) and hence µ/

√
p = O(1).

Proof. By the relation between sub-Gaussian and sub-exponential norms, we have

‖‖x‖2‖2ψ2
≤ ‖‖x‖22‖ψ1 ≤

p∑
i=1

‖x2
i ‖ψ1 , (B.5)

≤2

p∑
i=1

‖xi‖2ψ2
,

≤2K2p.

Therefore ‖x‖2 − E[‖x‖2] is a centered sub-Gaussian random variable with sub-Gaussian

norm bounded above by 2K
√

2p. We have,

E[‖x‖2] = µ.

Note that µ is actually of order
√
p. Assuming that the left hand side of the above equality

is equal to
√
pK ′ for some constant K ′ > 0, we can conclude that the random variable
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uβ(x) = f(〈x, β〉) + ε ‖x‖2
4E[‖x‖2] is also sub-Gaussian with

‖uβ(x)‖ψ2 ≤B +
ε

4E [‖x‖2]
‖‖x‖2‖ψ2

≤ B +
ε

4
√
pK ′

K
√

2p

≤ B + C ′

where C ′ =
√

2K/4K ′ is a constant and we also assumed ε < 1. Now, define the function

gβ(x) = uβ(x)− E[uβ(x)].

Note that gβ(x) is a centered sub-Gaussian random variable with sub-Gaussian norm

‖gβ(x)‖ψ2 ≤ 2B + 2C ′.

Then, by the Hoeffding-type inequality for the sub-Gaussian random variables, we obtain

P

(∣∣∣∣∣ 1n
n∑
i=1

gβ(xi)

∣∣∣∣∣ > ε/2

)
≤2e−cnε

2/(B+C′)2

where c is an absolute constant. The same argument also holds for lβ(x).

Using the above lemma with the union bound over the set T∆, we can write

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 4|T∆|e−Cnε

2
.

Since we can also write, by Lemma B.4.5

|T∆| ≤
(
R
√
p

∆

)p
≤
(

4RLE[‖x‖2]
√
p

ε

)p
,

≤

(
4
√

2RLKp

ε

)p
,
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and we observe that, for the constant c′ = 4
√

2RLK,

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 4

(
4
√

2RLKp

ε

)p
e−Cnε

2
,

= 4 exp
{
p log(c′p/ε)− Cnε2

}
.

We will obtain an exponential decay of order p on the right hand side. For some constant

h depending on n and p, if we choose ε = hp, we need

h2 ≥ 1

Cnp
log(c′/h).

By the Lemma B.4.6, choosing h2 = log(2c′2Cnp)/(2Cnp), we satisfy the above requirement.

Note that for n large enough, the condition of the lemma is easily satisfied. Hence, for

ε2 =
p log(2c′2Cnp)

2Cn
= O

(
p log(n)

n

)
,

we obtain that there exists constants c1, c2, c3 such that

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)− E[f(〈x, β〉)]

∣∣∣∣∣ > c1

√
p log(n)

n

)
≤ c2e

−c3p,

where

c1 =

3

(
B +

√
2K

4
√

Tr(Σ)/p−16K2

)2

2c
,

c2 =4,

c3 =
1

2
log(7) ≤ 1

2
log(log(64R2L2K2C) + 6 log(p)).

when p > e and 64R2L2K2C > e.

In the following, we state the concentration results on the unbounded functions of the

form

x→ f(〈x, β〉)〈x, v〉2.

Functions of this type form the summands of the Hessian matrix in GLMs.
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Lemma B.2.5. Let xi, for i = 1, ..., n, be i.i.d sub-Gaussian random variables with mean 0,

covariance matrix Σ and sub-Gaussian norm K. Also let f : R→ R be a uniformly bounded

function such that for some B > 0, we have ‖f‖∞ < B and f is Lipschitz continuous with

constant L. Further, let v ∈ Rp such that ‖v‖2 = 1. Then, for n, p sufficiently large

satisfying

n0.2/ log(n) & p,

there exist constants c1, c2 depending on L,B,R and the eigenvalues of Σ such that, we

have

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2−E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣>c1

√
p

n0.2
log (n)

)
≤ c2e

−p.

Proof. We define the brackets of the form

lβ(x) =f(〈x, β〉)〈x, v〉2 − ε ‖x‖32
4E
[
‖x‖32

] ,
uβ(x) =f(〈x, β〉)〈x, v〉2 + ε

‖x‖32
4E
[
‖x‖32

] , (B.6)

and we observe that the bracket [lβ, uβ] has size ε/2 in L1, that is,

E [|uβ(x)− lβ(x)|] = ε/2.

Next, for the following constant

∆ =
ε

4LE
[
‖x‖32

] ,
we define a ∆-net over Bp(R) and call it T∆. Then, ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that

f(〈·, β〉)〈·, v〉2 belongs to the bracket [lβ′ , uβ′ ]. This can be seen by writing the Lipschitz



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 132

continuity of the function f , i.e.,

∣∣f(〈x, β〉)〈x, v〉2 − f(〈x, β′〉)〈x, v〉2
∣∣ =〈x, v〉2

∣∣{f(〈x, β〉)− f(〈x, β′〉)
}∣∣ ,

≤L‖x‖22 ‖v‖22
∣∣〈x, β − β′〉∣∣ ,

≤L‖x‖32‖β − β′‖2,

≤∆L‖x‖32,

where we used Cauchy-Schwartz to obtain the above inequalities. Hence, we may conclude

that for the bracketing functions given in Equation (B.6), the corresponding bracketing

number of the function class

F = {f(〈·, β〉)〈·, v〉2 : β ∈ Bp(R)}

is bounded above by the covering number of the ball of radius R for the given scale ∆ =

ε/(4LE
[
‖x‖32

]
), i.e.,

N (ε/2,F , L1) ≤ |T∆|.

Next, we will upper bound the target probability using the bracketing functions uβ, lβ.

We have ∀β ∈ Bp(R), ∃β′ ∈ T∆ such that

1

n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2] ≤ 1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)] +
ε

2
,

1

n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2] ≥ 1

n

n∑
i=1

lβ′(xi)− E[lβ′(x)]− ε

2
.

Using the above inequalities, ∀β ∈ Bp(R), ∃β′ ∈ T∆, we can write{[
1

n

n∑
i=1

uβ′(xi)− E[uβ′(x)]

]
> ε/2

}
∪

{[
− 1

n

n∑
i=1

lβ′(xi) + E[lβ′(x)]

]
> ε/2

}
⊃{∣∣∣∣∣ 1n

n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

}
.
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Hence, by the union bound, we obtain

P

(
max
β∈T∆

[
1

n

n∑
i=1

uβ(xi)−E[uβ(x)]

]
> ε/2

)
+P

(
max
β∈T∆

[
− 1

n

n∑
i=1

lβ(xi)+E[lβ(x)]

]
>ε/2

)

≥ P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)
. (B.7)

In order to complete the proof, we need one-sided concentration inequalities for uβ and lβ.

Handling these functions is somewhat tedious since ‖x‖32 terms do not concentrate nicely.

We state the following lemma.

Lemma B.2.6. For given α, ε > 0, and n sufficiently large such that,

ν(nα, p, ε, B,K,Σ) < ε/4

where

ν(nα, p, ε, B,K,Σ) =:2

(
nα +

6BK2p

c

)
exp

(
−c nα

6BK2p

)
+2

{
nα +

3K2p

cTr (Σ)
nα/3ε2/3

+
3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

Then, there exists constants c′, c′′, c′′′ depending on the eigenvalues of Σ, B and K such

that ∀β, we have,

P

(
1

n

n∑
i=1

uβ(xi)− E[uβ(x)] > ε/2

)
≤2 exp

(
−c′nα/p

)
+ 2 exp

(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
,

and

P

(
− 1

n

n∑
i=1

lβ(xi) + E[lβ(x)] > ε/2

)
≤2 exp

(
−c′nα/p

)
+

2 exp
(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
.
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Proof. For the sake of simplicity, we define the functions

ũβ(w) = uβ(w)− E[uβ(x)],

l̃β(w) = lβ(w)− E[lβ(x)].

We will derive the result for the upper bracket, ũ, and skip the proof for the lower bracket

l̃ as it follows from the same steps. We write,

P

(
1

n

n∑
i=1

ũβ(xi) > ε/2

)
≤P

(
1

n

n∑
i=1

ũβ(xi) > ε/2, max
1≤i≤n

|ũβ(xi)| < nα

)

+ P
(

max
1≤i≤n

|ũβ(xi)| ≥ nα
)
. (B.8)

We need to bound the right hand side of the above equation. For the second term, since

ũβ(xi)’s are i.i.d. centered random variables, we have

P
(

max
1≤i≤n

|ũβ(xi)| ≥ nα
)

=1− P
(

max
1≤i≤n

|ũβ(xi)| < nα
)
,

=1− P (|ũβ(x)| < nα)n ,

=1− (1− P (|ũβ(x)| ≥ nα))n ,

≤nP (|ũβ(x)| ≥ nα) .

Also, note that

|ũβ(x)| ≤B‖x‖22 + ε
‖x‖32

4E
[
‖x‖32

] + E[uβ(x)],

≤B‖x‖22 + ε
‖x‖32

4E
[
‖x‖32

] +Bλmax(Σ) + ε/4.

Therefore, if t > 3Bλmax(Σ) and for ε small, we can write

{|ũβ(x)| > t} ⊂
{
B‖x‖22 > t/3

}
∪

{
ε
‖x‖32

4E
[
‖x‖32

] > t/3

}
. (B.9)
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Since x is a sub-Gaussian random variable with ‖x‖ψ2 = K, we have

K = sup
w∈Sp−1

‖〈w, x〉‖ψ2 = ‖x‖ψ2 .

Using this and the relation between sub-Gaussian and sub-exponential norms as in Equa-

tion (B.5), we have ‖‖x‖2‖2ψ2
≤ 2K2p. This provides the following tail bound for ‖x‖2,

P (‖x‖2 > s) ≤ 2 exp

(
− cs2

2pK2

)
, (B.10)

where c is an absolute constant. Using the above tail bound, we can write,

P
(
‖x‖22 >

1

3B
t

)
≤ 2 exp

(
−c t

6BK2p

)
.

For the next term in Equation (B.9), we need a lower bound for E
[
‖x‖32

]
. We use a

modified version of the Hölder’s inequality and obtain

E
[
‖x‖32

]
≥ E

[
‖x‖22

]3/2
= Tr(Σ)3/2.

Using the above inequality, we can write

P

(
ε
‖x‖32

4E
[
‖x‖32

] > t/3

)
≤P
(
‖x‖32 >

4

3ε
Tr(Σ)3/2t

)
,

=P

(
‖x‖2 >

(
4t

3ε

)1/3

Tr(Σ)1/2

)
,

≤2 exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
,

where c is the same absolute constant as in Equation (B.10).

Now for α > 0 such that t = nα > 3Bλmax(Σ) (we will justify this assumption for a

particular choice of α later), we combine the above results,

P (|ũβ(x)| > t) ≤ 2 exp

(
−c t

6BK2p

)
+ 2 exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
. (B.11)

Next, we focus on the first term in Equation (B.8). Let µ = E[ũβ(x)1{|ũβ(x)|<nα}], and
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write

P

(
1

n

n∑
i=1

ũβ(xi) >
ε

2
; max

1≤i≤n
|ũβ(xi)| < nα

)

≤ P

(
1

n

n∑
i=1

ũβ(xi)1{|ũβ(xi)|<nα} >
ε

2

)
,

= P

(
1

n

n∑
i=1

ũβ(xi)1{|ũβ(xi)|<nα} − µ >
ε

2
− µ

)

≤ exp

{
−n

1−2α

2

( ε
2
− µ

)2
}
,

where we used the Hoeffding’s concentration inequality for the bounded random variables.

Further, note that

0 = E[ũβ(x)] = µ+ E
[
ũβ(x)1{|ũβ(x)|>nα}

]
.

By Lemma B.4.2, we can write

|µ| =
∣∣∣E [ũβ(x)1{|ũβ(x)|>nα}

]∣∣∣ ≤nαP(|ũβ(x)| > nα) +

∫ ∞
nα

P(|ũβ(x)| > t)dt.

The first term on the right hand side can be easily bounded by using Equation (B.11), i.e.,

nαP(|ũβ(x)| > nα) ≤ 2nα exp

(
−c nα

6BK2p

)
+ 2nα exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

For the second term, using Equation (B.11) once again, we obtain

∫ ∞
nα

P(|ũβ(x)| > t)dt

≤2

∫ ∞
nα

exp

(
−c t

6BK2p

)
dt+ 2

∫ ∞
nα

exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt,

=
12BK2p

c
exp

(
−c nα

6BK2p

)
+ 2

∫ ∞
nα

exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt.

Next, we apply Lemma B.4.3 to bound the second term on the right hand side. That is, we
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have ∫ ∞
nα

exp

(
−cTr(Σ)(t/ε)2/3

2K2p

)
dt

≤
{

3K2p

cTr (Σ)
nα/3ε2/3 +

3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
.

Combining the above results, we can write

|µ| ≤2

(
nα +

6BK2p

c

)
exp

(
−c nα

6BK2p

)
+ 2

{
nα +

3K2p

cTr (Σ)
nα/3ε2/3 +

3K4p2

c2Tr(Σ)2
ε4/3n−α/3

}
exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
,

=:ν(nα, p, ε, B,K,Σ).

Notice that, the upper bound on |µ|, namely ν(nα, p, ε, B,K,Σ), is close to 0 when n is

large. This is because of exponentially decaying functions that dominates the other terms.

We assume that n is sufficiently large that the upper bound for |µ| is less than ε/4. For the

value of α, we will choose α = 0.4 later in the proof.

Applying this bounds in Equation (B.8), we obtain

P

(
1

n

n∑
i=1

ũβ(xi) > ε/2

)

≤ 2 exp

(
−c nα

6BK2p

)
+ 2 exp

(
−cTr(Σ)(nα/ε)2/3

2K2p

)
+ exp

(
−n

1−2α

32
ε2
)
,

= 2 exp
(
−c′nα/p

)
+ 2 exp

(
−c′′n2α/3ε−2/3

)
+ exp

(
−c′′′n1−2αε2

)
,

where

c′ =
c

6BK2
,

c′′ =
cTr(Σ)/p

2K2
≥ cλmin(Σ)

2K2
,

c′′′ =
1

32
.
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Hence, the proof is completed for the upper bracket.

The proof for the lower brackets lβ(x) follows from exactly the same steps and omitted

here.

Applying the above lemma on Equation (B.7), for α > 0, we obtain

P

(
sup

β∈Bn(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2 − E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > ε

)
(B.12)

≤ 4|T∆| exp
(
−c′nα/p

)
+ 4|T∆| exp

(
−c′′n2α/3ε−2/3

)
+ 2|T∆| exp

(
−c′′′n1−2αε2

)
.

Observe that we can write, by Lemma B.4.5

|T∆| ≤
(
R
√
p

∆

)p
=

(
4
√
pRLE[‖x‖32]

ε

)p
.

Also, recall that ‖x‖2 was a sub-Gaussian random variable with ‖‖x‖2‖ψ2 ≤ K
√

2p. Using

the definition of sub-Gaussian norm, we have

1√
3
E[‖x‖32]1/3 ≤‖‖x‖2‖ψ2 ≤

√
2pK,

=⇒ E[‖x‖32] ≤ 15K3p3/2.

Therefore, we have E[‖x‖32] = O(p3/2) (recall that we had a lower bound of the same order).

We define a constant K ′, and as ε is small, we have

|T∆| ≤
(

60RLK3p2

ε

)p
=

(
K ′p2

ε

)p
,

where we let K ′ = 60RLK3. We will show that each term on the right hand side of

Equation (B.12) decays exponentially with a rate of order p. For the first term, for s > 0,

we write

|T∆| exp
(
−c′nα/p

)
= exp

(
−c′nα/p+ p log(K ′) + 2p log(p) + p log(ε−1)

)
,

≤ exp
(
−c′nα/p+ 2p log(K ′p/ε)

)
. (B.13)
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Similarly for the second and third terms, we write

|T∆| exp
(
−c′′n2α/3ε−2/3

)
≤ exp

(
−c′′n2α/3ε−2/3 + 2p log(K ′p/ε)

)
, (B.14)

|T∆| exp
(
−c′′′n1−2αε2

)
≤ exp

(
−c′′′n1−2αε2 + 2p log(K ′p/ε)

)
.

We will seek values for ε and α to obtain an exponential decay with rate p on the right sides

of Equations B.13 and B.14. That is, we need

c′nα/p ≥2p log(K ′′p/ε), (B.15)

c′′n2α/3 ≥2p log(K ′′p/ε)ε2/3,

c′′′n1−2αε2 ≥2p log(K ′′p/ε),

where K ′′ = eK ′.

We apply Lemma B.4.6 for the last inequality in Equation (B.15). That is,

ε2 =
p

c′′′n1−2α
log
(
c′′′K ′′

2
pn1−2α

)
, (B.16)

=O
( p

n1−2α
log (n)

)
.

where we assume that n is sufficiently large. The above statement holds for α < 1/2.

In the following, we choose α = 0.4 and use the assumption that

n0.2/ log(n) & p, (B.17)

which provides ε < 1. Note that this choice of α also justifies the assumption used to derive

Equation (B.11). One can easily check that α = 0.4 implies that the first and the second

statements in Equation (B.15) are satisfied for sufficiently large n.

It remains to check whether ν(nα, p, ε, B,K,Σ) < ε/4 (in Lemma B.2.6) for this partic-

ular choice of α and ε. It suffices to consider only the dominant terms in the definition of
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ν. We use the assumption on n, p and write

ν(n0.4, p, ε, B,K,Σ) .n0.4 exp

(
− cn0.4

6BK2p

)
+ n0.4 exp

(
−cTr(Σ)/p n0.8/3

2K2

)
, (B.18)

.n0.4 exp
(
− c

6BK2
n0.2

)
+ n0.4 exp

(
−cλmin(Σ)

2K2
n0.8/3

)
.

For n sufficiently large, due to exponential decay in n0.2, the above quantity can be made

arbitrarily small. Hence, for some constants c1, c2, we obtain

P

(
sup

β∈Bp(R)

∣∣∣∣∣ 1n
n∑
i=1

f(〈xi, β〉)〈xi, v〉2−E[f(〈x, β〉)〈x, v〉2]

∣∣∣∣∣ > c1

√
p

n0.2
log (n)

)
≤ c2e

−p.

B.3 Local Step Size Selection

This section provides a heuristic calculation for choosing a local step size when eigenvalue

thresholding is applied to the Newton-Stein method. We carry our analysis from Equa-

tion (3.14). The optimal local step size would be

γ∗ = argmin
γ

∥∥∥∥I − γQt

∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ

∥∥∥∥
2

. (B.19)

Defining the following matrix,

∇2
β

˜̀(β̂t) =

∫ 1

0
∇2
βl(β∗ + ξ(β̂t − β∗))dξ, (B.20)

and we write the governing term as∥∥∥I − γQt∇2
β

˜̀(β̂t)
∥∥∥

2
. (B.21)

The above function is piecewise linear in γ and it can be minimized by setting

γ∗ =
2

λ1

(
Qt∇2

β
˜̀(β̂t)

)
+ λp

(
Qt∇2

β
˜̀(β̂t)

) . (B.22)
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Since we don’t have access to the optimal value β∗, we cannot determine the exact value

of ∇2
β

˜̀(β̂t). Hence, we will assume that ∇2
β

˜̀(β̂t) and the current estimate are close.

In the regime n� p, and by our construction of the scaling matrix Qt, we have

Qt ≈
[
E[xxTΨ(2)(〈x, β̂t〉)]

]−1
and

∇2
β`(β̂

t) ≈ E[xxTΨ(2)(〈x, β̂t〉)].

The crucial observation is that the eigenvalue thresholding suggested in [EM15] estimates

the smallest eigenvalue with (r + 1)-th eigenvalue (say σ̂2) which overestimates true value

(say σ2) in general. Even though the largest eigenvalue of Qt∇2
β

˜̀(β̂t) will be close to 1, the

smallest value will be σ2/σ̂2. This will make the optimal step size larger than 1. Hence, we

suggest

γ =
2

1 + σ2/σ̂2
, (B.23)

if σ2 were known. We also have, by the Weyl’s inequality,

∣∣σ̂2 − σ2
∣∣ ≤ ∥∥∥Σ̂−Σ

∥∥∥
2
≤ C

√
p

|S|
, (B.24)

with high probability. Whenever r is less than p/2, we suggest to use

γ =
2

1 +
σ̂2−O(

√
p/|S|)

σ̂2

, (B.25)

if σ2 is unknown.

B.4 Useful Lemmas

Lemma B.4.1. Let Γ denote the Gamma function. Then, for r ∈ (0, 1), we have

z1−r <
Γ(z + 1)

Γ(z + r)
< (1 + z)1−r.

Lemma B.4.2. Let Z be a random variable with a density function f and cumulative



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 142

distribution function F . If FC = 1− F , then,

∣∣E[Z1{|Z|>t}]
∣∣ ≤ tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz.

Proof. We write,

E[Z1{|Z|>t}] =

∫ ∞
t

zf(z)dz +

∫ −t
−∞

zf(z)dz. (B.26)

Using integration by parts, we obtain∫
zf(z)dz =− zFC(z) +

∫
FC(z)dz,

=zF (z)−
∫
F (z)dz.

Since limz→∞ zF
C(z) = limz→−∞ zF (z) = 0, we have∫ ∞

t
zf(z)dz =tFC(t) +

∫ ∞
t

FC(z)dz,∫ −t
−∞

zf(z)dz =− tF (−t)−
∫ −t
−∞

F (z)dz,

=− tF (−t)−
∫ ∞
t

F (−z)dz.

Hence, we obtain the following bound,

∣∣E[Z1{|Z|>t}]
∣∣ =

∣∣∣∣tFC(t) +

∫ ∞
t

FC(z)dz − tF (−t)−
∫ ∞
t

F (−z)dz
∣∣∣∣ ,

≤t
(
FC(t) + F (−t)

)
+

(∫ ∞
t

FC(z) + F (−z)dz
)
,

≤tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz.

Lemma B.4.3. For positive constants c1, c2, we have

∫ ∞
c1

e−c2t
2/3
dt ≤

{
3c

1/3
1

2c2
+

3

4c2
2c

1/3
1

}
e−c2c

2/3
1 (B.27)
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Proof. By the change of variables t2/3 = x2, we get∫ ∞
c1

e−c2t
2/3
dt = 3

∫ ∞
c
1/3
1

x2e−c2x
2
dx. (B.28)

Next, we notice that

de−c2x
2

= −2c2xe
−c2x2

dx. (B.29)

Hence, using the integration by parts, we have

∫ ∞
c1

e−c2t
2/3
dt =

3

2c2

{
c

1/3
1 e−c2c

2/3
1 +

∫ ∞
c
1/3
1

e−c2x
2
dx

}
. (B.30)

We will find an upper bound on the second term. Using the change of variables, x = y+c
1/3
1 ,

we obtain ∫ ∞
c
1/3
1

e−c2x
2
dx =

∫ ∞
0

e
−c2

(
y+c

1/3
1

)2

dy,

≤e−c2c
2/3
1

∫ ∞
0

e−2c2yc
1/3
1 dy,

=
e−c2c

2/3
1

2c2c
1/3
1

.

Combining the above results, we complete the proof.

Lemma B.4.4 ([Ver10]). Let X be a symmetric p× p matrix, and let Tε be an ε-net over

Sp−1. Then,

‖X‖2 ≤
1

1− 2ε
sup
v∈Tε
|〈Xv, v〉| . (B.31)

Lemma B.4.5. Let Bp(R) ⊂ Rp be the ball of radius R centered at the origin and Tε be an

ε-net over Bp(R). Then,

|Tε| ≤
(
R
√
p

ε

)p
. (B.32)
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Proof. A similar proof appears in [VdV00]. The set Bp(R) can be contained in a p-

dimensional cube of size 2R. Consider a grid over this cube with mesh width 2ε/
√
p.

Then Bp(R) can be covered with at most (2R/(2ε/
√
p))p many cubes of edge length 2ε/

√
p.

If ones takes the projection of the centers of such cubes onto Bp(R) and considers the

circumscribed balls of radius ε, we may conclude that Bp(R) can be covered with at most(
2R

2ε/
√
p

)p
many balls of radius ε.

Lemma B.4.6. For a, b > 0, and ε satisfying

ε =

{
a

2
log

(
2b2

a

)}1/2

and
2

a
b2 > e, (B.33)

we have ε2 ≥ a log(b/ε). Moreover, the gap in the inequality can be written as

ε2 − a log(b/ε) =
a

2
log log

(
2b2

a

)
. (B.34)

Proof. Since a, b > 0 and x → ex is a monotone increasing function, the above inequality

condition is equivalent to

2ε2

a
e

2ε2

a ≥ 2b2

a
. (B.35)

Now, we use the function f(w) = wew for w > 0 (in fact this function is well-known by the

name Lambert W function). f is continuous and invertible on [0,∞). Note that f−1 is also

a continuous and increasing function for w > 0. Therefore, we have

ε2 ≥ a

2
f−1

(
2b2

a

)
(B.36)

Observe that the smallest possible value for ε would be simply the square root of af−1
(
2b2/a

)
/2.

For simplicity, we will obtain a more interpretable expression for ε. By the definition of

f−1, we have

log(f−1(y)) + f−1(y) = log(y). (B.37)



APPENDIX B. SUPPLEMENT FOR CHAPTER 3 145

Since the condition on a and b enforces f−1(y) to be larger than 1, we obtain the following

simple inequality that

f−1(y) ≤ log(y). (B.38)

Using the above inequality, if ε satisfies

ε2 =
a

2
log

(
2b2

a

)
, (B.39)

we obtain the desired result,

ε2 ≥ a log(b/ε). (B.40)



Appendix C

Supplement for Chapter 4

C.1 Properties of composite convergence

In the previous sections, we showed that NewSamp gets a composite convergence rate, i.e.,

the `2 distance from the current iterate to the optimal value can be bounded by the sum of

a linearly and a quadratically converging term. We study such convergence rates assuming

the coefficients do not change at each iteration t. Denote by ∆t, the aforementioned `2

distance at iteration step t, i.e.,

∆t = ‖β̂t − θ∗‖2, (C.1)

and assume that the algorithm gets a composite convergence rate as

∀t ≥ 0, ∆t+1 ≤ ξ1∆t + ξ2∆2
t , (C.2)

where ξ1, ξ2 > 0 denote the coefficients of linearly and quadratically converging terms,

respectively.

C.1.1 Local asymptotic rate

We state the following theorem on the local convergence properties of compositely converg-

ing algorithms.

146
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Lemma C.1.1. For a compositely converging algorithm as in Equation (C.1) with coeffi-

cients 1 > ξ1, ξ2 > 0, if the initial distance ∆0 satisfies ∆0 < (1− ξ1)/ξ2, then we have

lim sup
t→∞

−1

t
log(∆t) ≤ − log(ξ1). (C.3)

The above theorem states that the local convergence of a compositely converging algo-

rithm will be dominated by the linear term.

Proof of Lemma C.1.1. The condition on the initial point implies that ∆t → 0 as t → ∞.

Hence, for any given δ > 0, there exists a positive integer T such that ∀t ≥ T , we have

∆t < δ/ξ2. For such values of t, we write

ξ1 + ξ2∆t < ξ1 + δ, (C.4)

and using this inequality we obtain

∆t+1 < (ξ1 + δ)∆t. (C.5)

The convergence of above recursion gives

−1

t
log(∆t) < − log(ξ1 + δ)− 1

t
log(∆0). (C.6)

Taking the limit on both sides concludes the proof.

C.1.2 Number of iterations

The total number of iterations, combined with the per-iteration cost, determines the total

complexity of an algorithm. Therefore, it is important to derive an upper bound on the

total number of iterations of a compositely converging algorithm.

Lemma C.1.2. For a compositely converging algorithm as in Equation (C.1) with coeffi-

cients ξ1, ξ2 ∈ (0, 1), assume that the initial distance ∆0 satisfies ∆0 < (1− ξ1)/ξ2 and for

a given tolerance ε, define the interval

D =

(
max

{
ε,

ξ1∆0

1− ξ2∆0

}
,∆0

)
. (C.7)
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Then the total number of iterations needed to approximate the true minimizer with ε toler-

ance is upper bounded by T (δ∗), where

δ∗ = argmin
δ∈D

T (δ) (C.8)

and

T (δ) = log2

(
log (ξ1 + δξ2)

log
(

∆0
δ (ξ1 + δξ2)

))+
log
(
ε
δ

)
log(ξ1 + ξ2δ)

. (C.9)

Proof of Lemma C.1.2. We have ∆t → 0 as t → ∞ by the condition on initial point ∆0.

Let δ ∈ D be a real number and t1 be the last iteration step such that ∆t > δ. Then

∀t ≥ t1,

∆t+1 ≤ξ1∆t + ξ2∆2
t , (C.10)

≤
(
ξ1

δ
+ ξ2

)
∆2
t .

Therefore, in this regime, the convergence rate of the algorithm is dominated by a quadrat-

ically converging term with coefficient (ξ1/δ + ξ2). The total number of iterations needed

to attain a tolerance of δ is upper bounded by

t1 ≤ log2

(
log (ξ1 + δξ2)

log
(

∆0
δ (ξ1 + δξ2)

)) . (C.11)

When ∆t < δ, namely t > t1, we have

∆t+1 ≤ξ1∆t + ξ2∆2
t , (C.12)

≤ (ξ1 + ξ2δ) ∆t.

In this regime, the convergence rate is dominated by a linearly converging term with coef-

ficient (ξ1 + ξ2δ). Therefore, the total number of iterations since t1 until a tolerance of ε is

reached can be upper bounded by

t2 ≤
log
(
ε
δ

)
log(ξ1 + ξ2δ)

. (C.13)
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Hence, the total number of iterations needed for a composite algorithm as in Equation (C.1)

to reach a tolerance of ε is upper bounded by

T (δ) = t1 + t2 = log2

(
log (ξ1 + δξ2)

log
(

∆0
δ (ξ1 + δξ2)

))+
log
(
ε
δ

)
log(ξ1 + ξ2δ)

. (C.14)

The above statement holds for any δ ∈ D. Therefore, we minimize T (δ) over the set D.

C.2 Choosing the step size

In most optimization algorithms, step size plays a crucial role. If the dataset is so large that

one cannot try out many values of the step size. In this section, we describe an efficient

and adaptive way for this purpose by using the theoretical results derived in the previous

sections.

In the proof of Lemma 4.3.1, we observe that the convergence rate of NewSamp is

governed by the term∥∥∥I− γtQtH[n](β̃)
∥∥∥

2
≤
∥∥∥I− γtQtH[n](β̂

t)
∥∥∥

2
+ γt

∥∥Qt
∥∥

2

∥∥∥H[n](β̂
t)−H[n](β̃)

∥∥∥
2

(C.15)

where Qt is defined as in Algorithm 1. The right hand side of the above equality has a

linear dependence on γt. We will see later that this term has no effect in choosing the right

step size. On the other hand, the first term on the right hand size can be written as,∥∥∥I− γtQtH[n](β̂
t)
∥∥∥

2
= max

{
1− γtλmin(QtH[n](β̂

t)), γtλmax(QtH[n](β̂
t))− 1

}
. (C.16)

If we optimize the above quantity over γt, we obtain the optimal step size as

γt =
2

λmin(QtH[n](β̂t)) + λmax(QtH[n](β̂t))
. (C.17)

It is worth mentioning that for the Newton method where Qt = H[n](β̂
t)−1, the above

quantity is equal to 1.

Since NewSamp does not compute the full Hessian H[n](β̂
t) (which would take O(np2)

computation), we will relate the quantity in Equation (C.17) to the first few eigenvalues of

Qt. Therefore, our goal is to relate the eigenvalues of QtH[n](β̂
t) to that of Qt.
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By the Lipschitz continuity of eigenvalues , we write∣∣∣1− λmax(QtH[n](β̂
t))
∣∣∣ ≤∥∥Qt

∥∥
2

∥∥∥HS(β̂t)−H[n](β̂
t)
∥∥∥

2
,

=
1

λtr+1

O

(√
log(p)

|S|

)
. (C.18)

Similarly, for the minimum eigenvalue, we can write∣∣∣∣∣ λtpλtr+1

− λmin(QtH[n](β̂
t))

∣∣∣∣∣ ≤ 1

λr+1
O

(√
log(p)

|S|

)
. (C.19)

One might be temped to use 1 and λtp/λ
t
r+1 for the minimum and the maximum eigen-

values of QtH[n](β̂
t), but the optimal values might be slightly different from these values if

the sample size is chosen to be small. On the other hand, the eigenvalues λtr+1 and λtp can

be computed with O(p2) cost and we already know the order of the error term. That is,

one can calculate λtr+1 and λtp and use the error bounds to correct the estimate.

The eigenvalues of the sample covariance matrix will concentrate around the true values,

spreading to be larger for large eigenvalues and smaller for the small eigenvalues. That is,

if we will we will overestimate if we estimate λ1 with λt1. Therefore, if we use 1, we will

always underestimate the value of λmax(QtH[n](β̂
t)), which, based on Equation (C.18) and

Equation C.19, suggests a correction term of O
(√

log(p)/|S|
)

. Further, the top r + 1

eigenvalues of [Qt]−1 are close to the eigenvalues of H[n](β̂
t), but shifted upwards if p/2 > r.

When p/2 < r, we see an opposite behavior. Hence, we add or subtract a correction term of

order O
(√

log(p)/|S|
)

to λtp/λ
t
r+1 whether p/2 > r or p/2 < r, respectively. The corrected

estimators could be written as

λ̂max

(
QtH[n](β̂

t)
)

= 1 +O

(√
log(p)

|S|

)
,

λ̂min

(
QtH[n](β̂

t)
)

=
λp
λr+1

+O

(√
log(p)

|S|

)
if p/2 > r,

=
λp
λr+1

−O

(√
log(p)

|S|

)
if p/2 < r.

We are more interested in the case where p/2 > r. In this case, we suggest the step size
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Figure C.1: The plots demonstrate the behavior of several optimization methods on a
synthetic data set for training SVMs. The elapsed time in seconds versus log of `2-distance
to the true minimizer is plotted. Red color represents the proposed method NewSamp .

for the iteration step t as

γt =
2

1 +
λtp
λtr+1

+O
(√

log(p)
|S|

) (C.20)

which uses the eigenvalues that are already computed to construct Qt. Contrary to the

most algorithms, the optimal step size of NewSamp is generally larger than 1.

C.3 Further experiments and details

In this section, we present the details of the experiments presented in Figure 4.2 and provide

additional simulation results.

We first start with additional experiments. The goal of this experiment is to further

analyze the effect of rank in the performance of NewSamp . We experimented using r-

spiked model for r = 3, 10, 20. The case r = 3 was already presented in Figure 4.2, which

is included in Figure C.1 to ease the comparison. The results are presented in Figures C.1

and the details are summarized in Table C.1. In the case of LR optimization, we observe
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Logistic Regression

Rank=3 Rank=10 Rank=20

Method Elapsed(sec) Iter Elapsed(sec) Iter Elapsed(sec) Iter

NewSamp 26.412 12 32.059 15 55.995 26

BFGS 50.699 22 54.756 31 56.606 34

LBFGS 103.590 47 64.617 37 107.708 67

Newton 18235.842 449 35533.516 941 31032.893 777

GD 345.025 198 322.671 198 311.946 197

AGD 449.724 233 436.282 272 450.734 290

Support Vector Machines

Rank=3 Rank=10 Rank=20

Method Elapsed(sec) Iter Elapsed(sec) Iter Elapsed(sec) Iter

NewSamp 47.755 8 52.767 9 124.989 22

BFGS 13352.254 2439 10672.657 2219 21874.637 4290

LBFGS 326.526 67 218.706 44 275.991 55

Newton 775.191 16 734.480 16 4159.486 106

GD 1512.305 238 1089.413 237 1518.063 269

AGD 1695.44 239 1066.484 238 1874.75 294

Table C.1: Details of the simulations presented in Figures C.1.

through Figure C.1 that stochastic algorithms enjoy fast convergence in the beginning but

slows down later as they get close to the true minimizer. The algorithms that come closer

to NewSamp in terms of performance are BFGS and LBFGS. Especially when r = 20,

performance of BFGS and that of NewSamp are similar, yet NewSamp still does better.

In the case of SVM optimization, the algorithm that comes closer to NewSamp is Newton

method.

We further demonstrate how the algorithm coefficients ξ1 and ξ2 between datasets in

Figure C.2.
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CT Slices Dataset

LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter

NewSamp 9.488 19 22.228 33

BFGS 9.568 38 2094.330 5668

LBFGS 51.919 217 165.261 467

Newton 14.162 5 58.562 25

GD 350.863 2317 1660.190 4828

AGD 176.302 915 1221.392 3635

MSD Dataset

LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter

NewSamp 25.770 38 71.755 49

BFGS 43.537 75 9063.971 6317

LBFGS 81.835 143 429.957 301

Newton 144.121 30 100.375 18

GD 642.523 1129 2875.719 1847

AGD 397.912 701 1327.913 876

Synthetic Dataset

LR SVM

Method Elapsed(sec) Iter Elapsed(sec) Iter

NewSamp 26.412 12 47.755 8

BFGS 50.699 22 13352.254 2439

LBFGS 103.590 47 326.526 67

Newton 18235.842 449 775.191 16

GD 345.025 198 1512.305 238

AGD 449.724 233 1695.44 239

Table C.2: Details of the experiments presented in Figure 4.2.
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C.4 Useful lemmas

Lemma C.4.1. Let C be convex and bounded set in Rp and Tε be an ε-net over C. Then,

|Tε| ≤
(

diam(C)
2ε/
√
p

)p
. (C.21)

Proof of Lemma C.4.1. A similar proof appears in [VdVW96]. The set C can be contained

in a p-dimensional cube of size diam(C). Consider a grid over this cube with mesh width

2ε/
√
p. Then C can be covered with at most (diam(C)/(2ε/√p))p many cubes of edge length

2ε/
√
p. If ones takes the projection of the centers of such cubes onto C and considers the

circumscribed balls of radius ε, we may conclude that C can be covered with at most(
diam(C)
2ε/
√
p

)p
(C.22)

many balls of radius ε.

Lemma C.4.2 ([GN10]). Let X be a finite set of Hermitian matrices in Rp×p where ∀Xi ∈
X , we have

E[Xi] =0, ‖Xi‖2 ≤ γ,
∥∥E[X2

i ]
∥∥

2
≤ σ2. (C.23)

Given its size, let S denote a uniformly random sample from {1, 2, ..., |X |} with or without

replacement. Then we have

P

(∥∥∥∥ 1

|S|
∑
i∈S

Xi

∥∥∥∥
2

> ε

)
≤ 2p exp

{
−|S|min

(
ε2

4σ2
,
ε

2γ

)}
. (C.24)

Lemma C.4.3. Let Z be a random variable with a density function f and cumulative

distribution function F . If FC = 1− F , then,

∣∣E[Z1{|Z|>t}]
∣∣ ≤ tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz. (C.25)
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Proof. We write,

E[Z1{|Z|>t}] =

∫ ∞
t

zf(z)dz +

∫ −t
−∞

zf(z)dz.

Using integration by parts, we obtain∫
zf(z)dz =− zFC(z) +

∫
FC(z)dz, (C.26)

=zF (z)−
∫
F (z)dz.

Since limz→∞ zF
C(z) = limz→−∞ zF (z) = 0, we have∫ ∞

t
zf(z)dz =tFC(t) +

∫ ∞
t

FC(z)dz, (C.27)∫ −t
−∞

zf(z)dz =− tF (−t)−
∫ −t
−∞

F (z)dz,

=− tF (−t)−
∫ ∞
t

F (−z)dz.

Hence, we obtain the following bound,

∣∣E[Z1{|Z|>t}]
∣∣ =

∣∣∣∣tFC(t) +

∫ ∞
t

FC(z)dz − tF (−t)−
∫ ∞
t

F (−z)dz
∣∣∣∣ , (C.28)

≤t
(
FC(t) + F (−t)

)
+

(∫ ∞
t

FC(z) + F (−z)dz
)
,

≤tP(|Z| > t) +

∫ ∞
t

P(|Z| > z)dz.
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Figure C.2: The plots demonstrate the behavior of ξ1 and ξ2 over several datasets.
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