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Abstract

We study the optimization and sample complexity of gradient-based training of a two-layer neural
network with quadratic activation function in the high-dimensional regime, where the data is generated
as y ∝

∑r
j=1 λjσ (⟨θj ,x⟩) ,x ∼ N (0, Id), σ is the 2nd Hermite polynomial, and {θj}rj=1 ⊂ Rd are

orthonormal signal directions. We consider the extensive-width regime r ≍ dβ for β ∈ [0, 1), and assume
a power-law decay on the (non-negative) second-layer coefficients λj ≍ j−α for α ≥ 0. We present a sharp
analysis of the SGD dynamics in the feature learning regime, for both the population limit and the finite-
sample (online) discretization, and derive scaling laws for the prediction risk that highlight the power-law
dependencies on the optimization time, sample size, and model width. Our analysis combines a precise
characterization of the associated matrix Riccati differential equation with novel matrix monotonicity
arguments to establish convergence guarantees for the infinite-dimensional effective dynamics.

1 Introduction

We study the problem of learning a two-layer neural network (NN) with quadratic activation on isotropic
Gaussian data. The target function (or the “teacher” model) is defined as

y = 1
∥Λ∥F

∑r
j=1 λjσ (⟨θj ,x⟩) with x ∼ N (0, Id), (1.1)

where σ(z) = z2 − 1 is the 2nd Hermite polynomial, {θj}rj=1 ⊂ Rd are unknown signal directions (index
features) which we assume to be orthonormal, λ1 > λ2 > · · · > λr > 0 are their respective contributions, and
Λ = diag(λ1, · · · , λr) collects the second-layer coefficients. The normalization in front of the sum ensures
that the output magnitude remains constant. Our goal is to learn this target network using a “student”
two-layer neural network with quadratic activation and rs neurons, trained via a gradient-based optimization
algorithm. This setting encompasses several well-known problems:

• Phase retrieval (r = 1). The problem of learning one quadratic neuron (i.e., phase retrieval) has been
studied extensively [Fie82, CC15, TV23]. The quadratic σ has information exponent k = 2 (defined as the
index of the lowest non-zero Hermite coefficient [DH18, BAGJ21]). This entails that randomly initialized
parameters are close to a saddle point in high dimensions; hence the SGD dynamics exhibit a plateau
(“search” phase) of length log d before the loss decreases sharply (“descent” phase).

• Multi-spike PCA (r = Θd(1)). The target function (1.1) is a subclass of Gaussian multi-index models, for
which various algorithms have been proposed for the finite-rank case rs = Θd(1) [CM20, DLS22, BBPV23].
The setting also closely relates to the multi-spike PCA problem, for which online SGD [AGP24] and other
streaming algorithms has been studied [OK85, JJK+16, AZL17].
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(a) Additive model hypothesis for scaling laws. (b) SGD risk curves for quadratic NN.

Figure 1: (a) Illustration of the additive model hypothesis, i.e., sum of emergent learning curves at different timescales
yields a power law in the cumulative loss. (b) Population loss vs. compute for two-layer quadratic NNs trained with
online SGD with batch size d on squared loss. We set d = 3200, and for the teacher model r = 2400, α = 1.

• Linear-width quadratic NN (r ≍ d). The regime where the teacher width rs grows proportionally with
dimensionality d has also been studied, typically in the well-conditioned setting (e.g., identical λj ’s). Re-
cent works characterized the objective landscape [SJL18, DL18, VBB19, GKZ19, GMMM19], optimization
dynamics [MVEZ20, MBB23], and statistical efficiency [MTM+24, ETZK25].

In this work we focus on the “extensive-rank” regime where r ≍ dβ for β ∈ (0, 1) and rs ≍ dγ for γ ∈ [0, 1),
and place a power-law assumption on the second-layer coefficients: λj ≍ j−α for α ≥ 0. Our setting is
motivated by the following lines of research.

Neural scaling laws & emergence. Recent empirical studies on large language models (LLMs) reveal
that increasing the model or training data size often results in a predictable, power-law decrease in the loss
known as neural scaling laws [HNA+17, KMH+20, HBM+22]. While such scaling of generalization error
has been derived for sketched linear models [MRS22, BAP24, PPXP24, LWK+24, DLM24], these analyses
assume random projection with no feature learning, and hence cannot capture the NN’s ability to learn useful
features [GDDM14, DCLT18] that adapt to the underlying data structure. We aim to investigate a setting
where the training of a nonlinear NN beyond the “lazy” regime exhibits a nontrivial scaling law.

Feature learning in neural networks is often studied theoretically through the learning of multi-index models,
where the target function depends on a small number of latent directions (see [BH25] and references therein).
For these low-dimensional targets, it is known that the training dynamics typically exhibit emergent (or
staircase-like) behavior — long plateaus followed by sharp drops in loss [BAGJ22, AAM23]. To reconcile this
emergent loss curve with smooth power-law decay, recent works hypothesized that the pretraining objective
can be decomposed into a sum of losses on individual tasks [MLGT24, NFLL24], the learning of each exhibits
a sharp transition, and the superposition of numerous emergent risk curves at different timescales yields a
power-law scaling of the cumulative loss (see Figure 1(a)). In this context, the two-layer network (1.1) can
be viewed as a sum of single-index phase retrieval tasks, where the length of each ∼ log d plateau in the risk
trajectory can be modulated by the second-layer coefficient λj . This motivates the following question:

Q1: Does gradient-based training of a two-layer quadratic network yield power-law loss scaling, when the
target function is an additive model with varying second-layer coefficients {λj}rj=1?

In Figure 1(b) we empirically observe the affirmative: when the target function has smoothly decaying
second-layer weights, online SGD training yields a power-law risk curve that resembles the scaling laws in
[KMH+20, HBM+22]. The goal of this work is to rigorously establish such scaling laws.

Learning extensive-width neural networks. Prior works on multi-index models have shown that when
r = Θd(1), gradient-based training succeeds with polynomial sample complexity depending on properties
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of the link function [AAM22, DLS22, BBSS22]. The “extensive-rank” regime where r ≍ dβ for β > 0 is
relatively under-explored (except for the linear width regime r ≍ d [MBB23, MTM+24]); this setting is
arguably closer to the practical neural network training (compared to the narrow-width setting), and also
bears connections to several observations in the LLM literature such as superposition [EHO+22] and skill
localization [DDH+21, WWZ+22, PSZA23], where the model simultaneously acquires a large number of
“skills” during pretraining (see e.g., [OSSW24]).

The learning dynamics of (1.1) with divergingly many neurons is challenging to analyze primarily due to the
fact that the effective dynamics may not be captured by a finite set of summary statistics [BAGJ22] (as in
the finite-r case). Recent works [OSSW24, SBH24] addressed this challenge by assuming that the activation
σ has information exponent k ≥ 3, which allows the learning dynamics to decouple across feature directions.
However, the case k ≤ 2, which includes the quadratic activation studied in this work, remained open:
existing analyses either assumed “isotropic” feature contributions (λ1 = λr) [RL24, SBH24], or established a
computational complexity for SGD that scales with dΘ(λ1/λr) [LMZ20], which leads to pessimistic exponential
dimension dependency in the power-law setting we consider. We therefore ask the following question.

Q2: Can we establish optimization and sample complexity of learning an extensive-width
quadratic neural network (1.1) with anisotropic, power-decaying feature contributions?

1.1 Our Contributions

We analyze the risk trajectory of learning (1.1) with both gradient flow on the mean squared error (MSE) loss
and its online SGD discretization on Stiefel manifold, covering the extensive-width and power-law settings.
We derive scaling laws for feature recovery and population risk as a function of teacher and student network
widths rs, r, the decay exponent α, the optimization time, and the sample size (for the discretized dynamics).
Our contributions are summarized as follow (see also Table 1).

1. In Section 3, we analyze the population gradient flow and tightly characterize the loss decay with respect
to time and the student width rs. We show that the signal directions are recovered sequentially, and the
population MSE follows a smooth power law specified by the decay rate α > 0.

2. In Section 4, we consider the online stochastic gradient descent (SGD) dynamics on the Stiefel manifold
and derive scaling laws with respect to sample size. When specializing to the isotropic setting α = 0,
our sample complexity improves upon [RL24] in the extensive-width setting and matches the information
theoretic limit (in terms of d, r dependence) up to polylogarithmic factors.

The following technical challenges in the extensive-width regime are central to our analysis:

• Coupled population dynamics. As r, rs → ∞, we must track infinitely many overlapping student and
teacher neurons. [OSSW24, SBH24] assumed high information exponent k > 2, to decouple the dynamics
into r independent single-index models, but such property does not hold in our quadratic case (k = 2).
We address this by leveraging the closed-form solution of the quadratic problem [MBB23], which satisfies
a Matrix Riccati ODE. A key ingredient in our analysis is its monotonicity with respect to its initialization,
illustrated in Figures 3(a), which enables sharp risk bounds via comparisons to decoupled models.

• Operator norm discretization error. Prior works [BAGJ21, BBPV23, AGP24] focused on finite-r set-
tings, where Frobenius norm control of the SGD noise was sufficient and natural: it allows bounding
error direction-wise without incurring additional dimension dependence. However, in the extensive-width
regime, such bounds become pessimistic and lead to suboptimal r-dependent rates. Hence we need to
establish operator norm concentration around the population dynamics.

• Matrix-monotone comparison framework. To control discretization error in operator norm, we extend the
monotonicity-based argument from the first item to discrete time and introduce a novel comparison-based
discretization technique. Our approach constructs matrix-valued reference sequences corresponding to
decoupled dynamics that tightly bound the discrete evolution from above and below. This yields sharp
operator norm control even when the true trajectories are non-monotone (see Figure 3), as the analysis
avoids relying on the trajectory itself by comparing against simpler bounding sequences.
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Algorithm Decay rate (λj) Risk scaling law Result

α > 0.5 t̄−
2α−1

α + r
−(2α−1)
s

α < 0.5 (1− t̄
1−2α

α )+ + (1− (rs/r)
1−2α)+

α > 0.5 (ηt̄)−
2α−1

α + r
−(2α−1)
s

α < 0.5 (1− (ηt̄)
1−2α

α )+ + (1− (rs/r)
1−2α)+

Gradient flow Theorem 1

Online SGD (Stiefel) Theorem 2

Table 1: Scaling laws for learning quadratic neural network (1.1) using population gradient flow and its online SGD
discretization. We omit constant factors in the risk scaling for ease of presentation.

• In α > 0.5, for population gradient flow, t̄ ∼ t · log d is the rescaled time; for online SGD, t̄ ∼ t · log d where t is the
number of gradient steps, which is equal to the sample size, and η ∼ 1/(d polylog(d)) is the step size.

• In α < 0.5, for population gradient flow, t̄ ∼ t · r log d is the rescaled time; for online SGD, t̄ ∼ t · r log d where t is
the number of gradient steps and η ∼ 1/(drα polylog(d)) is the step size.

1.2 Additional Related Works

Learning multi-index models with SGD. When r = 1, the target is a single-index model with quadratic
link function. The SGD learning of single-index models has been extensively studied in the feature learn-
ing literature [BAGJ21, BES+22, MHPG+22, BES+23, MHWSE23, MLHD23, MZD+23, BMZ24, DNGL24,
GWB25]; while this model has d parameters to be estimated, the quadratic link (with information exponent
k = 2) incurs an additional log d factor in the complexity of online SGD. More generally, the setting where r =
Θd(1) is covered by recent analyses of multi-index models [AAM22, AAM23, BBPV23, DKL+23, CWPPS23,
AGP24, VE24, MHWE24]; however, these learning guarantees for multi-index models typically yield super-
polynomial complexity when the target function is rank-extensive. The sample complexity of gradient-based
learning is also connected to statistical query lower bounds [DPVLB24, DTA+24, LOSW24, ADK+24].

Quadratic NNs and additive models. Prior theoretical works on learning two-layer neural network with
quadratic activation function have studied the loss landscape [SJL18, DL18, VBB19, GKZ19, GMMM19] and
the optimization dynamics [MVEZ20, AKLS23, MBB23, RL24]. While existing optimization and statistical
guarantees may cover the extensive-width regime (see e.g., [DL18, MBB23, RL24]), to our knowledge, precise
scaling laws have not been established in our extensive-rank and power-law setting. (1.1) is also an instance of
the additive model [Sto85, HT87, Bac17] where the individual functions are given as (orthogonal) single-index
models with unknown index features. For this model, [OSSW24, SBH24] established learning guarantees in
the well-conditioned regime, under the assumption that the link function σ has information exponent k > 2.

2 Background and Problem Setting

2.1 Student-teacher Setting

Teacher Network. We consider the task of learning a teacher network with a quadratic (second-order
Hermite) activation function written as

y =
1

∥Λ∥F

r∑
j=1

λj

(
⟨θj ,x⟩2 − 1

)
with x ∼ N (0, Id), (2.1)

where x ∈ Rd is the input, r is the teacher network width, and {θj}rj=1 ⊂ Rd is an orthonormal set of

unknown signal vectors. We collect these as columns of the matrix Θ ∈ Rd×r. The contributions of these
vectors are determined by the unknown second-layer coefficients λ1 > λ2 > · · · > λr > 0 with a power-law
decay λj ≍ j−α for α ≥ 0, and Λ is a diagonal matrix whose j-th diagonal entry is λj . The normalization
in front of summation ensures E[y2] is constant. We focus on the regime where r ≍ dβ for β ∈ (0, 1).
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Remark 1. The orthogonality of {θj}rj=1 can be assumed without loss of generality. Specifically, consider
teacher models in the form of (2.1) with arbitrary first-layer weights Θ and normalization E[y] = 0, the output
can be written as y ∝ Tr(xx⊤ΘΛΘ⊤) + cst; hence we may redefine (λj ,θj) via the spectral decomposition.

Student Network. We learn the target model with a quadratic student network defined as

ŷ(x,W ) =
1
√
rs

rs∑
j=1

⟨wj ,x⟩2 − ∥wj∥22, (2.2)

where rs is the width of the student network, and {wj}rsj=1 ⊂ Rd denotes the set of trainable weights. We

collect these weights as the columns of the matrix W ∈ Rd×rs , and omit the dependence on x in ŷ(x,W )
when clear from the context. Note that the norm subtraction ensures Ex[ŷ(x,W )] = 0. We may equivalently

write the student network as ŷ(x,W ) = 1√
rs

∑rs
j=1∥wj∥22 · (⟨w̄j ,x⟩2 − 1) where w̄j is unit-norm; since our

student does not have trainable second-layer, the norm component ∥wj∥22 allows the model to adapt to the
target second-layer λj ; this homogeneous parameterization has been studied in prior works [CB20, GRWZ21].

2.2 Training Objective

Training constitutes to minimizing the squared loss; we define the instantaneous loss on (x, y) as

L(W ; (x, y)) := 1
16

(
y − ŷ(x,W )

)2
,

where the prefactor is included for notational convenience in the gradient computation. We omit the depen-
dence on (x, y) when clear from context. The population risk can be written as

R(W ) := E(x,y)[L(W )] = 1
8

∥∥ 1√
rs
WW⊤ − 1

∥Λ∥F
ΘΛΘ⊤

∥∥2
F
. (2.3)

Alignment. Observe that the student network is invariant to right-multiplication of its weight matrix by
an orthonormal matrix, i.e., ŷ(x,W ) = ŷ(x,WO) for any O ∈ Rrs×rs with O⊤O = I. Consequently,
any notion of alignment that depends on individual directions in W may not be informative. To capture
directional learning in a way that respects this symmetry, we define alignment in terms of the subspace
spanned by the student weights. We formalize this using the polar decomposition:

W := UQ1/2, where Q := W⊤W and U⊤U = Irs . (2.4)

Here, Q denotes the radial component of the student weights, while U is an orthonormal matrix that encodes
their directional component. We quantify the alignment between the student network and the jth teacher
feature by the squared norm of the projection of θj onto the column space of W :

Alignment(W ,θj) := ∥U⊤θj∥22. (2.5)

Alignment(W ,θj) takes values in the interval [0, 1]; it is 0 if θj is orthogonal to W (no alignment), while it
is 1 if θj is in the column space of W (perfect alignment)1.

3 Continuous Dynamics: Population Gradient Flow

We first analyze the continuous-time population gradient flow dynamics for (2.3), given as

∂tWt = −∇R(Wt), where W0 ∈ Rd×rs , W0,ij ∼iid N (0, 1/d) , (GF)

1The definition in (2.5) may fail to converge to 1 when α = 0 and rs < r, due to rotational symmetry in the teacher network.
In this case, a more suitable notion of alignment can be defined using the principal angles between the subspaces spanned
by W and Θ, which provides a rotation-invariant characterization of directional overlap. Specifically, for α = 0, we define
Alignment(W ,θj) as the jth largest eigenvalue of the matrix Θ⊤UU⊤Θ.
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and the population gradient reads

∇R(Wt) = −
1

2
√
rs∥Λ∥F

(
ΘΛΘ⊤ − ∥Λ∥F√

rs
WtW

⊤
t

)
Wt.

For notational convenience, we write R(t) := R(Wt) and A(t,θj) := Alignment(Wt,θj). The following
theorem sharply characterizes the timescale for alignment and the limiting risk curve. For ease of exposition,
we drop the prefactor 1

8 in the population risk so that the population risk starts at 1.

Theorem 1. Let λj = j−α and r ≍ dβ for some α ≥ 0 and β ∈ (0, 1). Consider the regime{
rs
r → φ ∈ (0,∞) and d ≥ Ωα,β,φ(1), if α ∈ [0, 0.5),

rs ≍ 1, and d ≥ Ωα,rs(1), if α > 0.5.
(3.1)

Define the effective student width and effective timescale as

reff :=

{
⌊rs(1− log

−1/8d) ∧ r⌋, if α ∈ [0, 0.5)

rs, if α > 0.5.
and Teff :=

√
rs∥Λ∥F log d/rs.

Then, the population (GF) dynamics satisfy the following with probability 1− o(1/d2)− Ω(1/r2s):

1. Alignment: For j ≤ reff and t > 0 satisfying t ≍ rα when α ∈ [0, 0.5) and t ≍ 1 when α > 0.5, we have

A
(
tTeff ,θj

)
= 1{t ≥ 1

λj
}+ od(1). (3.2)

2. Risk curve: Under the same time scaling,

R
(
tTeff

)
= 1− 1

∥Λ∥2F

reff∑
j=1

λ2
j1{t ≥ 1

λj
}+ od(1). (3.3)

Remark 2. We make the following remarks about our result in Theorem 1:

• The spectral decay rate α determines both the choice of student width rs and the timescale needed for
learning in Theorem 1. Specifically, when α > 1/2 (i.e., light-tailed regime), the target coefficients {λj}rj=1

are square-summable, making the teacher model effectively finite-dimensional. Therefore, a finite-width
student suffices, and only finitely many directions need to be learned to achieve small loss, which results in
a timescale of order log d. In contrast, for the heavy-tailed regime α < 1/2, we need to recover linear-in-r
directions to achieve small population loss, which require both proportional width rs/r → φ and a longer
timescale r log d. This difference in timescale will be made explicit in Corollary 1.

• Theorem 1 verifies the additive model hypothesis [MLGT24] for quadratic neural networks in the feature
learning regime; specifically, (3.2) identifies sharp transition time in alignment between student weights and
the j-th teacher direction, and (3.3) suggests that the cumulative loss can be decomposed into individual
emergent risk curves where the timescale is decided by the signal strength λj.

Neural scaling laws. As a corollary of Theorem 1, we obtain the following risk characterization.

Corollary 1. By Theorem 1, the asymptotic risk of (GF) is given as follows:

• Heavy-tailed regime (α ∈ [0, 0.5)): Almost surely, for all t > 0

R(tr log d) d→∞−−−→
(
1− Ct

1−2α
α

)
+
∨
(
1− φ1−2α

)
+
.

• Light-tailed regime (α > 0.5): With probability 1− Ω(1/rs), for all t > 0, the risk R(t log d) converges as
d→∞ to a deterministic limit satisfying

R(t log d) d→∞−−−→ Θ
(
t−

2α−1
α + r−(2α−1)

s

)
.
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(a) Heavy-tailed regime (α < 1/2). (b) Light-tailed regime (α > 1/2).

Figure 2: Illustration of the limiting risk trajectories and scaling behavior given in Corollary 1.

Corollary 1 shows that, over appropriate timescales, the cumulative effect of these emergent transitions
yields a smoothly decaying risk curve. Intuitively speaking, the power-law exponent arises from the Riemann
integral approximation of the infinite sum (3.3) – see Appendix D.5 for details.

The asymptotic risk behavior in Corollary 1 is visualized in Figure 2 (see also Figure 1(b) for empirical
simulation). The figure illustrates how the sharp, step-like emergent curve at α = 0 (as observed in earlier
works on multi-index learning [BAGJ21, AAM23]) gradually transitions into a smooth curve as α increases.
Notably, in the light-tailed regime α > 1/2, our risk curve resembles the neural scaling laws in [KMH+20,
HBM+22] which takes the form ofR ∼ 1/(Data size)a+1/(Model size)b, where the data size can be connected
to optimization time under the one-pass discretization, which we analyze in the ensuing section.

4 Discrete Dynamics: Online Stochastic Gradient Descent

Now we analyze the finite-sample, discrete-time counterpart of the population dynamics (GF) and establish
computational and statistical guarantees. We first discretize the directional component of the dynamics
via online SGD with Stiefel constraint (see Proposition 2), and then introduce a fine-tuning step with
negligible statistical and computational cost to fit the radial component; this mirrors the layer-wise train-
ing paradigm commonly used in theoretical analyses of gradient-based feature learning [AAM22, DLS22,
BES+22, BEG+22]. The procedure is summarized in Algorithm 1.

Algorithm 1 Online Stochastic Gradient Descent (Stiefel)

1: for t = 1, 2, . . . do

2: W̃t = Wt−1 − η∇StL(Wt−1)

3: Wt = W̃t

(
W̃⊤

t W̃t

)−1/2

▷ Feature learning

4: end for

5: W final
t =WtΩ∗ where Ω∗ = argmin

Ω∈Rrs×rs

∑NFt

j=1 L
(
WtΩ; (xt+j , yt+j)

)
▷ Fine-tuning

In the feature learning step, we update the first-layer weights Wt to recover the subspace spanned by the
teacher directions. To this end, we use online SGD on Stiefel manifold [AGP24] with polar retraction. The
Riemannian gradient on the Stiefel manifold is given by:

∇StL(Wt−1) := ∇L(Wt−1)− 1
2Wt−1

(
W⊤

t−1∇L(Wt−1) +∇L(Wt−1)
⊤Wt−1

)
,

where the instantaneous loss is defined for the sample (xt, yt). Since the goal is to ensure subspace alignment
as in (2.5), the overlap of individual student-teacher weights is not relevant during this phase.
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After the feature learning phase, we perform a fine-tuning step to rotate Wt so that each wj aligns with
the corresponding teacher direction θj . This is achieved by solving an empirical risk minimization problem
over NFt fresh samples. The optimal fine-tuning matrix Ω∗ admits a closed-form solution that is also
numerically easy to compute. Importantly, the computational and statistical complexity of this step scales
only quadratically with the student width rs, which is negligible compared to the cost of feature learning.
The derivation and complexity analysis for this phase are provided in Appendix E.

Remark 3. Recall that the stage-wise training procedure is not required in our continuous-time analysis in
Section 3. This is because we employ a Stiefel gradient similar to [BBPV23, AGP24] – which alone cannot
fit the radial component – to simplify the discretization analysis. We conjecture that a standard Euclidean
discretization of (GF) can also achieve the same risk scaling; see Figure 1(b) for empirical evidence.

We define the population risk of the output of Algorithm 1, the alignment with a teacher direction θj , and
the optimal risk achievable by a student neural network with width rs respectively as

R(t) := R(W final
t ), A(t,θj) := Alignment(Wt,θj), Ropt :=

1
∥Λ∥2

F

∑r
j=(rs∧r)+1 λ

2
j .

Intuitively, Ropt is the risk achieved by exactly fitting the top rs ≤ r components of the teacher model. Note
that the alignment A(t,θj) depends only on the directional component of Wt; thus, this quantity remains
unchanged during fine-tuning. The following theorem characterizes the alignment and risk curve for the
discrete-time Algorithm 1.

Theorem 2. Let the parameters {λj}rj=1, r,rs, reff and Teff , and the scaling regime (3.1) be as in Theorem 1.
Suppose the student weights are initialized uniformly on the Stiefel manifold, and that the step size η and
fine-tuning sample size NFt satisfy

η ≍ 1

d

{
1

rα logCα (1+d/rs)
, α ∈ [0, 0.5)

1
logCαd

, α > 0.5
and NFt ≍ r2s log

5 d,

for some constant Cα > 0 depending only on α. Then with probability 1− od(1/d
2)− Ω(1/r2s),

1. Runtime and sample complexity: If

T ≥

{
dr1+α logCα+1(1 + d/rs), α ∈ [0, 0.5)

d logCα+1 d, α > 0.5.
(4.1)

we have R(T ) = Ropt + od(1).

2. Alignment and Risk curve: For t > 0 satisfying t ≍ rα/η when α ∈ [0, 0.5) and t ≍ 1/η when α > 0.5,

• A
(
tTeff ,θj

)
= 1{ηt ≥ 1

λj
}+ od(1) for j ≤ reff . • R

(
tTeff

)
= 1− 1

∥Λ∥2F

reff∑
j=1

λ2
j 1{ηt ≥ 1

λj
}+ od(1).

Remark 4. We make the following remarks on the sample complexity.

• The bound in (4.1) implies a complexity of n ≍ T ≃dr1+α polylog(1 + d/rs) in the heavy-tailed case, and
T ≃ dpolylog(d) in the light-tailed case. Note that due to the one-pass nature of the algorithm, the runtime
and sample complexity are identical (up to the negligible fine-tuning step).

• In the light-tailed regime (α > 1/2), the required sample size n ≃ dpolylog(d) is information theoretically
optimal up to logarithmic factors. Note that kernel methods and neural networks in the lazy regime [JGH18,
COB19] requires n ≳ d2 samples to learn a quadratic target function; thus our sample complexity bound
illustrates the benefit of feature learning.

• In the heavy-tailed regime (α < 1/2), we obtain (nearly) information theoretically optimal sample com-
plexity when α = 0 (see discussion below). For the intermediate regime α ∈ (0, 1/2), we conjecture that
the optimal sample complexity is T ≃ dr, which implies our current bound is suboptimal by a factor of rα.
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Isotropic Setting (α = 0). In the isotropic case, where the goal is to estimate the r-dimensional subspace
spanned by the teacher weights, the above theorem yields a sample and runtime complexity n ≍ T ≍
dr polylog(1 + d/rs). This interpolates between the n ≃ dpolylog(d) rate for phase retrieval r = 1 [TV23,
BAGJ21], and n ≃ d2 as r → d, which matches the sample complexity in the linear-width regime [MTM+24,
ETZK25]. Notably, our r-dependence improves upon the recent work of [RL24], which established a sufficient
sample size of n ≳ dpoly(r) for a similar quadratic setting. We expect our result to be optimal up to
polylogarithmic factors due to the intrinsic dr-dimensional nature of the subspace recovery problem.

Scaling laws in discrete time. As indicated by the alignment and risk expressions in Theorem 2, a
sufficiently small learning rate η ensures that running online SGD for t steps closely tracks the population
gradient flow trajectory (GF) at time ηt, exhibiting the same scaling behavior. The following corollary
formalizes the discrete-time counterpart of Corollary 1.

Corollary 2. By Theorem 2, the asymptotic risk of Online SGD is given as follows:

• Heavy-tailed case (α ∈ [0, 0.5)): Almost surely, for all t > 0

R(tr log d) d→∞−−−→
(
1− C(ηt)

1−2α
α

)
∨ (1− φ1−2α)+.

• Light-tailed case (α > 0.5): With probability 1 − Ω(1/rs), for all t > 0, the risk R(t log d) converges as
d→∞ to a deterministic limit satisfying

R(t log d) d→∞−−−→ Θ
(
(ηt)−

2α−1
α + r−(2α−1)

s

)
.

5 Overview of Proof Techniques

To avoid notational confusion between discrete-time and continuous-time dynamics, we adopt the following
convention throughout this section. Subscripts (e.g., Wt) denote discrete-time quantities, while parentheses
(e.g., W (t)) denote continuous-time trajectories. Specifically, {Wt}t∈N refers to the iterates of online SGD;
{W (t)}t≥0 denotes the continuous-time gradient flow governed by (GF).

Since our proof strategy heavily relies on the matrix (Loewner) order for symmetric matrices, we introduce
the following notations. For symmetric matrices G1,G2 ∈ Rd×d, we write G1 ≺ G2 (respectively, G1 ⪯ G2)
if G2 − G1 is positive definite (respectively, positive semidefinite). The reverse relations are denoted by
G1 ≻ G2 and G1 ⪰ G2. Figure 3(a) illustrates this ordering by comparing the level sets of the quadratic
forms {v : v⊤Giv = 1} for i = 1, 2. In particular, G1 ⪯ G2 implies that the level sets of G2 are strictly
contained within those of G1, as shown by the dashed ellipses.

5.1 Proof Sketch of Theorem 1

We first observe that both the population risk R
(
W (t)

)
and the alignment Alignment

(
W (t),θj

)
depend

on W (t) through two Gram matrices: the weight Gram matrix GW (t) := W (t)W (t)⊤, and the alignment
Gram matrix GU (t) := Θ⊤U(t)U(t)⊤Θ, where {U(t)}t≥0 denotes the directional component of W (t), as
defined in (2.4). The proof proceeds by analyzing the evolution of these matrices, each governed by an
autonomous ODE; in particular, a matrix Riccati differential equation.

Proposition 1. The Gram matrices defined above satisfy the following matrix Riccati ODEs:

• Weight Gram matrix: ∂tGW (t) = 0.5
∥Λ∥F

√
rs

(
ΘΛΘ⊤GW (t) +GW (t)ΘΛΘ⊤ − 2∥Λ∥F√

rs
G2

W (t)
)
.

• Alignment Gram matrix: ∂tGU (t) =
0.5

∥Λ∥F
√
rs

(
ΛGU (t) +GU (t)Λ− 2GU (t)ΛGU (t)

)
.

Both equations in Proposition 1 take the form of matrix Riccati ODEs [BLW91], whose structural properties
play a central role in the proof. To illustrate the core idea, we focus on the alignment dynamics. For
simplicity, we write G(t) := GU (t) and consider

∂tG(t) =
0.5

∥Λ∥F
√
rs

(ΛG(t) +G(t)Λ− 2G(t)ΛG(t)) . (5.1)
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(a) Trajectory in matrix order. (b) Trajectory of entries of the Gram matrix.

Figure 3: Solutions of the matrix Riccati ODE in (5.1) with λ1 = 2, λ2 = 1, rs = 2. (a) To visualize the dynamics
under matrix order, we plot the level sets of G(t) at times t ∈ {0, 0.25, 0.5} for two initializations: G(0) (solid) and a
scaled version 1.25G(0) (dashed). The dashed ellipses remain enclosed within the solid ones at all times, illustrating
monotonicity of the Riccati flow with respect to initialization. However, note that G(t) is not monotone in Loewner
order over time, as seen from the lack of nesting among the solid ellipses. (b) Entry-wise evolution of G(t) under a
random initialization with d = 1024. The diagonal entry G22(t) exhibits non-monotonic behavior, illustrating that
the solution trajectory G(t) need not be monotone in time; the off-diagonal entry G12(t) is also shown for reference.

Note that Alignment
(
W (t),θj

)
corresponds to the jth diagonal entry of G(t). To characterize its trajectory,

we leverage the monotonicity of the matrix Riccati flow with respect to its initialization, i.e., if G+
0 ⪰G−

0 ,
the corresponding solutions satisfy G(t,G+

0 ) ⪰ G(t,G−
0 ) for all t ≥ 0, where G(t,G0) denotes the solution

to (5.1) with initial condition G0. Our proof strategy builds on this monotonicity and proceeds as follows:

1. Diagonalization & decoupling. If G0 is diagonal, the solution {G(t)}t≥0 remains diagonal under (5.1),
reducing the dynamics to independent scalar ODEs that govern each diagonal entry. Moreover, each scalar
ODE admits a closed-form solution, allowing us to track the evolution of individual alignment terms.

2. Asymptotic characterization. For general G0, we construct diagonal matrices G+
0 ⪰ G0 ⪰ G−

0 . By
monotonicity, the corresponding trajectories upper and lower bound {G(t)}t≥0. These bounding systems
are diagonal and decoupled, and as d→∞, their trajectories converge to the same limit.

We apply this strategy in Appendix D.3 to derive the exact asymptotics stated in Theorem 1.

Remark 5. We remark a conceptual point about the monotonicity of Riccati flow: while the Riccati flow is
monotone with respect to its initialization, this does not imply that its solution is monotone in time. That is,
the trajectory G(t) may not evolve monotonically in matrix order, even though a larger initialization yields
a trajectory that remains above that of a smaller one for all t ≥ 0. This distinction is illustrated in Figure 3.

5.2 Proof Sketch of Theorem 2

Extending Monotonicity Arguments to Discrete Dynamics

We begin by observing that online SGD on the Stiefel manifold approximates the directional component of
the continuous-time gradient flow, with stochastic gradients arising from online sampling. This connection
becomes apparent when comparing the discrete and continuous dynamics:

SGD on Stiefel: W̃t = Wt−1 − η∇StL(Wt−1) ⇒ GF on Stiefel: ∂tŴ (t) = −∇StR
(
Ŵ (t)

)
. (5.2)

Wt = W̃t

(
W̃⊤

t W̃t

)−1/2
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The proposition below formalizes the idea that online SGD approximates the directional dynamics of the
continuous gradient flow at the population level. For the statement, recall that U(t) denotes the directional
component of the gradient flow solution W (t) from (GF), as defined in (2.4).

Proposition 2. Let Ŵ (t) be the solution to the continuous-time gradient flow on the Stiefel manifold defined

in (5.2), initialized with U(0). Then for all t ≥ 0, the column spaces of Ŵ (t) and U(t) coincide.

This result justifies studying the online SGD on Steifel manifold via the directional dynamics of (GF). To
this end, we introduce the discrete analog of G(t) above as Gt = Θ⊤WtW

⊤
t Θ. Extending the analysis

to discrete time is non-trivial due to the loss of monotonicity in the Euler discretization of the Riccati
dynamics (5.1). In particular, the update

Gt = Gt−1 +
0.5η

∥Λ∥F
√
rs

(ΛGt−1 +Gt−1Λ− 2Gt−1ΛGt−1)︸ ︷︷ ︸
non-monotone dynamics

+ (2nd-order terms and noise) (5.3)

no longer preserves the matrix order structure crucial to the continuous-time argument.

To overcome this, we construct an auxiliary discrete system that approximates (5.3) up to second-order
terms while preserving monotonicity. Specifically, we define the map

G(Gt, η) := Gt −
η

2
(2Gt − Ir)Λ(2Gt − Ir) (Ir+ηΛ(2Gt − Ir))

−1
+ ηΛ (5.4)

which matches (5.3) up to second-order terms. Indeed, expanding the inverse term gives

G(Gt, η) = Gt −
η

2
(2Gt − Ir)Λ(2Gt − Ir) + ηΛ︸ ︷︷ ︸

=Gt+η(ΛGt+GtΛ−2GtΛGt)

+ 2nd-order terms.

The key advantage of the iteration (5.4) is that it preserves matrix order:

Proposition 3. For η > 0, if G+
t ⪰ G−

t ⪰ 0, we have G(G+
t , η) ⪰ G(G−

t , η).

We use this to bound the non-monotone dynamics (5.3) via monotone iterates. Roughly, we show that for
small enough step size η, the following holds:

G
(
Gt−1, (1 + ε)η

)
+ Noise ⪰ Gt ⪰ G

(
Gt−1, (1− ε)η

)
+ Noise

for some ε = od(1), where we denote the effective learning rate in (5.3) with η = η√
rs∥Λ∥F

. We then follow the

same bounding argument used in the continuous case by defining the upper and lower reference sequences,

G±
t = G

(
G±

t−1, (1± ε)η
)
+Noise, where G+

0 ⪰ G0 ⪰ G−
0 ⪰ 0,

show that G+
t ⪰ Gt ⪰ G−

t for all t ∈ N. Finally, by choosing G±
0 to be diagonal, the bounding dynamics

reduce to decoupled scalar recursions, which can be analyzed explicitly. This allows us to establish concentra-
tion of the original iterates {Gt}t∈N around the bounding sequences, leading to operator-norm convergence
of the discrete-time dynamics to their continuous-time counterparts. See Appendix F.3 for full argument.

Risk Decomposition for Fine Tuning

The fine-tuning step relies on the following decomposition of the population risk:

Proposition 4. For any Ω ∈ Rrs×rs , the population risk defined in (2.3) can be written as:

R(WtΩ) =
1

rs

∥∥∥ΩΩ⊤ −
√
rs

∥Λ∥F
W⊤

t ΘΛΘ⊤Wt

∥∥∥2
F
+

1

∥Λ∥2F

(
∥Λ∥2F − ∥Λ

1
2GtΛ

1
2 ∥2F

)
,

where Gt = Θ⊤WtW
⊤
t Θ is the discrete alignment Gram matrix defined in the previous part.

We observe that both the second term and the matrix W⊤
t ΘΛΘ⊤Wt are independent of Ω. Hence, the

fine-tuning step reduces to a least squares problem in the matrix ΩΩ⊤ in population, which is approximated
via empirical risk minimization over a fresh batch of samples. By standard concentration arguments, a
sample size of NFt ≥ r2spolylogd suffices to ensure that the empirical minimizer approximates the population
solution with high probability. Full details are provided in Appendix E.
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6 Conclusion

In this work, we presented a comprehensive theoretical analysis of gradient-based learning in high-dimensional,
extensive-width two-layer neural networks with quadratic activation. We established precise scaling laws that
characterize both the population gradient flow and its empirical, discrete-time approximation. These results
demonstrate how anisotropic signal strengths in the target function fundamentally shapes the convergence
behavior and sample efficiency of gradient-based learning.

Beyond quadratic activations. An immediate direction for future research is to extend our analysis
to more general activation functions. Link functions with higher information exponent is studied in a
companion work [RNWL25], where the precise risk scaling is established by exploiting a decoupling structure
that is unique to the information exponent k > 2 setting. Importantly, many commonly-used activation
functions (ReLU, GeLU, etc.) have information exponent k = 1 and also contain a nonzero He2 component.
For such nonlinearities, we conjecture that SGD dynamics exhibits a multi-phase risk curve (analogous to
the incremental learning phenomenon in [AAM23, BBPV23]), where the higher Hermite modes affects the
learning dynamics after the low-order terms are learned. In Figure 4 we report the SGD risk curves for ReLU
networks, in which we observe (i) an initial loss drop driven by the He1 component (which finds a degenerate
rank-1 subspace), followed by (ii) a power-law decay phase driven by the quadratic He2 component where
the empirical scaling exponent align closely with our theoretical predictions, and finally (iii) a slope change
late in training likely due to higher Hermite terms (in Figure 5 we confirm that this “late” phase is absent
if we remove these higher-order components). Understanding such complex multi-phase learning dynamics
remains an interesting challenge for future work.

(a) α = 1. Ideal exponent: −1; empirical: −1.01. (b) α = 3
2
. Ideal exponent; − 4

3
, empirical:: −1.26.

Figure 4: Population loss vs. compute for two-layer ReLU network (power-law second-layer with exponent α) trained
with population gradient descent. The student network adopts the 2-homogeneous parameterization as in (2.2).
Observe that after the initial loss drop due to the He1 component, the risk curves follow a power-law scaling where
the exponent (dashed lines) nearly matches our theoretical prediction for the quadratic setting 1−2α

α
.
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A Additional Experiments

(a) α = 1. Ideal slope: −1, empirical slope: −1.08. (b) α = 3
2
. Ideal slope: − 4

3
, empirical slope: −1.38.

Figure 5: Population loss vs. compute for two-layer neural network with activation function σ ∝ He1 +He2, trained
with population gradient descent. The student network adopts the 2-homogeneous parameterization as in (2.2).
Observe that after the initial loss drop due to the He1 component, the risk curves exhibit a power-law scaling where
the exponent (dashed lines) nearly matches our theoretical prediction for the quadratic setting 1−2α

α
; and unlike the

ReLU setting (Figure 4), the loss immediately plateaus after the power-law phase.

Experiment Setting. In Figures 4 and 5, we plot the mean squared error loss for gradient descent with a
constant step size on the population loss, using activations σ = ReLU and σ = He1+He2. The teacher model
has orthogonal first-layer neurons and power-law decay in the second-layer coefficients with α ∈ {1.0, 1.5}.
Both teacher and student networks use the same activation function, which we normalize to have zero-mean
an unit L2 norm. The student network uses the 2-homogeneous parameterization:

ŷ(W ) =
1
√
rs

rs∑
i=1

∥wi∥22 · σ(⟨wi,x⟩) where σ ∈ {ReLU−1/
√
2π

0.5 , He1+He2
3 }.

We set dimension d = 5000, number of teacher neurons r = 2400, student widths rs ∈ {32, 64, 128, 256, 512},
and learning rate η = 0.5/

√
r. To estimate the scaling exponents, we first identify the range of compute

exhibiting a linear trend by visual inspection, and then fit the exponent via least squares. The dashed lines
in the plots correspond to these fitted lines, and the reported empirical exponents represent the median
values across different student widths.

B Preliminaries for Proofs

Proof organization. Section B introduces the notations and definitions used throughout the paper. In
Section C, we provide a brief review of matrix Riccati ODEs and difference equations, along with the
necessary supporting statements. The main results are proved in Section D. In Section E we discuss the fine-
tuning phase for the discretized algorithm. Additional proofs related to online SGD and auxiliary lemmas
are deferred to Sections F and G, respectively.

Notation and Definitions. We use [n] := {1, 2, . . . , n} to denote the first n natural numbers. The
Euclidean inner product and norm are denoted by ⟨·, ·⟩ and ∥·∥2, respectively. For matrices, ∥·∥2 and ∥·∥F
denote the operator norm and Frobenius norm. The positive part is denoted by (x)+ := max{x, 0}. We
write fd = od(1) if fd → 0 as d→∞, and fd ≪ gd if fd/gd → 0. We use O(·) or Ω(·) to suppress constants
in upper and lower bounds respectively, and we use subscript to indicate parameter dependence, e.g., Oα(·).
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The symmetric part of a square matrix M ∈ Rd×d is given by Sym(M) := 1
2 (M + M⊤). For symmetric

matrices A,B ∈ Rd×d, we write A ≺ B (or A ⪯ B) if B −A is positive definite (or positive semidefinite).
Moreover, if A and B are mutually diagonalizable, we write AB−1 = A

B .

We follow the convention that subscripts (e.g., Wt) refer to discrete-time quantities, and parentheses (e.g.,
W (t)) refer to continuous-time quantities. The overlap matrices of interest are defined as

GW (t) := W (t)W (t)⊤︸ ︷︷ ︸
Weight Gram matrix

, GU (t) := Θ⊤U(t)U(t)⊤Θ︸ ︷︷ ︸
Alignment Gram matrix

, Gt := Θ⊤WtW
⊤
t Θ.︸ ︷︷ ︸

Discrete alignment Gram matrix

Let Z ∈ Rd×rs be a Gaussian matrix with i.i.d. entries distributed as N (0, 1/d). We define Z1:m ∈ Rm×rs

as the submatrix formed by the first m rows:

Z =

[
Z1:m

Zrest

]
.

Without loss of generality, we assume the teacher directions coincide with the standard basis vectors, i.e.,
θj = ej . With this, the initialization satisfies:

GW (0) = ZZ⊤, GU (0) = G0 = Z1:r(Z
⊤Z)−1Z⊤

1:r. (B.1)

We start with characterizing “good events” for initial matrices given by the following lemma:

Lemma 1.

Both cases (α ∈ [0, 0.5) ∪ (0.5,∞)). For d ≥ Ω(1), the following holds:

(E.1) 1
1.05 ≤ λmin(Z

⊤Z) ≤ λmax(Z
⊤Z) ≤ 1.05.

(E.2) 1.05Z1:rZ
⊤
1:r ⪰ GU (0) = G0 ⪰ 1

1.05Z1:rZ
⊤
1:r.

Heavy-tailed case (α ∈ [0, 0.5)). For d ≥ Ωφ(1), the following holds:

(H.1) For m ≤ rs(1− log
−1/2 d) ∧ r uniformly, we consider λmin(Z1:mZ⊤

1:m) ≥ rs
5d

(
1− m

rs

)2
.

(H.2) For all m ≤ rs(1− log
−1/2 d) ∧ r uniformly, λm(Z1:rZ

⊤
1:r) ≥ rs

5d

(
1− m

rs

)2
.

(H.3) λmax(Z1:rZ
⊤
1:r) ≤ 2rs

d

(
1 + 1√

φ

)2
.

Light-tailed case (α ∈ [0, 0.5)). For d ≥ Ω(1), the following holds:

(L.1) 1
r5sd
≤ λmin(Z1:rsZ

⊤
1:rs)

(L.2) For m ∈ {1, 2, · · · , 5rs, ⌈log2.5 d⌉, ⌈log6 d⌉, r} uniformly, λmax(Z1:mZ⊤
1:m) ≤ 5(rs∨m)

d

We define

Ginit ≡

{
(E.1) ∩ (E.2) ∩ (H.1) ∩ (H.2) ∩ (H.3), α ∈ [0, 0.5)

(E.1) ∩ (E.2) ∩ (L.1) ∩ (L.2), α ∈> 0.5.

We have

P[Ginit] ≥

{
1− 3rs exp

( −rs
2 log2 d

)
, α ∈ [0, 0.5)

1− Ω(1/r2s), α > 0.5.

Proof. We will use the following:
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(S.1) By [Ver10, Corollary 5.35], for m ≤ rs and
√
rs −

√
m ≥ t > 0

P
[
λmin

(
Z1:mZ⊤

1:m

)
≥ rs

d

(
1−
√

m
rs
− t√

rs

)2]
≥ 1− 2e−t2 ,

and for m ≥ rs and
√
m−√rs ≥ t > 0

P
[
λmin

(
Z⊤

1:mZ1:m

)
≥ m

d

(
1−
√

rs
m−

t√
m

)2]
≥ 1− 2e−t2 .

(S.2) By [Ver10, Corollary 5.35], for any fixed m

P
[
m
d

(
1 +

√
rs
m + t√

m

)2
≥ λmax

(
Z⊤

1:mZ1:m

)]
≥ 1− 2e−t2 .

(S.3) By [Ver10, Theorem 5.38], there exists C, c > 0 such that

P
[
λmin

(
Z1:rsZ

⊤
1:rs

)
≥ ε2

4drs

]
≥ 1− Cε− e−crs .

For the heavy tailed case, we consider d is large enough to guarantee | rsr − φ| ≤ φ
2 . We have

• By using (S.1) and (S.2) with m = d, t =
√

d
log d , we can show that P[(E.1)] ≥ 1− e

−d
log d for d ≥ Ω(1).

• By (B.1) and (E.1) , (E.2) follows.

• For (H.1), by using (S.1) with t =
√
rs−

√
m√

log d
≥
√

rs
2 log2 d

, we have with probability 1− 2rs exp
( −rs
2 log2 d

)
, for

m ≤ rs(1− log
−1/2 d) ∧ r uniformly:

λmin

(
Z1:mZ⊤

1:m

)
> rs

d

(
1− 1√

log d

)2 (
1−

√
m
rs

)2
≥ rs

5d

(
1− m

rs

)2
.

Therefore, P[(H.1)] ≥ 1− 2rs exp
( −rs
2 log d

)
.

• By Cauchy’s eigenvalue interlacing theorem, λm(Z1:rZ
⊤
1:r) ≥ λmin

(
Z1:mZ⊤

1:m

)
. Therefore, by (H.1) , (H.2)

follows.

• For (H.3) , by using m = r and t = 0.4
√
rs in (S.2), we have P[(H.3)] ≥ 1− 2e−0.16rs .

• For (L.1), by using (S.3) with ε = 2
r2s
, we have P[(L.1)] ≥ 1− Ω(1/r2s).

• For (L.2), by using (S.2) with t = 0.4
√
rs, we have with probability 1 − (10rs + 6)e−0.16rs for m ∈

[5rs] ∪ {⌈log2.5 d⌉, ⌈log6 d⌉, r} uniformly:

λmax(Z1:mZ⊤
1:m) ≤ rs

d

(
1.4 +

√
m
rs

)2
≤ 5(rs ∨m)

d
.

By union bound, we have the result.

C Background: Matrix Riccati Dynamical Systems

We begin by reviewing Riccati dynamical systems in both continuous and discrete time, establishing the
necessary background for the arguments that follow. For the following, we define

Λe :=

[
Λ 0
0 0

]
and Λ̃ :=

√
rs

∥Λ∥F
Λe.

For notational convenience, we adapt the abuse of notation:

Λe

Id − exp(−tΛe)
= lim

ε→0

(Λe + εId)

Id − exp(−t(Λe + εId))
=

[ Λ
Ir−exp(−tΛ) 0

0 1
t Id−r

]
.
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C.1 Continous-time Matrix Riccati ODE

In this paper, we study continuous-time matrix Riccati differential equations of the following form:

• Weight Gram matrix: For TW = rs

∂tGW (t) =
0.5

TW

(
Λ̃GW (t) +GW (t)Λ̃− 2G2

W (t)
)
. (C.1)

• Alignment Gram matrix: For TU = ∥Λ∥F
√
rs,

∂tGU (t) =
0.5

TU

(
ΛGU (t) +GU (t)Λ− 2GU (t)ΛGU (t)

)
. (C.2)

For α = 0, we assume that the ODEs are expressed in the eigenbasis of GW (0) or GU (0), ensuring that the
trajectories remain diagonal. The solutions of these ODEs are characterized in the following statement:

Lemma 2. (C.1) and (C.2) admit the following solutions:

GW (t) =
Λ̃

Id − exp(−tΛ̃/TW )
− Λ̃ exp(−0.5tΛ̃/TW )

Id − exp(−tΛ̃/TW )

(
GW (0) +

Λ̃ exp(−tΛ̃/TW )

Id−exp(−tΛ̃/TW )

)−1
Λ̃ exp(−0.5tΛ̃/TW )

Id−exp(−tΛ̃/TW )

GU (t) =
Ir

Ir − exp(−tΛ/TU)
− exp(−0.5tΛ/TU)

Ir − exp(−tΛ/TU)

(
GU (0) +

exp(−tΛ/TU)

Ir − exp(−tΛ/TU)

)−1
exp(−0.5tΛ/TU)

Ir − exp(−tΛ/TU)

Moreover, (GW (t))t≥0 and (GU (t))t≥0 are monotone with respect to GW (0) ⪰ 0 and GU (0) ⪰ 0 respectively.

Proof. One can check by direct differentiation that the given closed-form expressions satisfy the ODEs above.
The uniqueness of the solutions follow the local Lipschitzness of the drifts. Monotonicity is a consequence
of Proposition 25.

C.2 Discrete-time Matrix Riccati Difference Equations

In this section, we will study a particular discretization of Alignment Gram matrix ODE, given as

Gt+1 = Gt −
η

2
(2Gt − Ir)Λ(2Gt − Ir)

(
Ir + ηΛ(2Gt − Ir)

)−1
+ ηΛ. (C.3)

For convenience, we will make a change of variable and define Vt := 2Λ
1
2GtΛ

1
2 −Λ. We write (C.3) in terms

of Vt as follows:

Vt+1 = Vt − ηV 2
t

(
Ir + ηVt

)−1
+ ηΛ2.

We characterize the dynamics of (Vt)t∈N as follows:

Lemma 3. We consider[
Xt+1,1

Xt+1,2

]
=

[
Xt,1

Xt,2

]
+ ηH

[
Xt,1

Xt,2

]
where

[
X0,1

X0,2

]
=

[
Ir
V0

]
and H :=

[
0 Ir
Λ2 ηΛ2

]
.

The following hold for all n ∈ N:

(R.1) We have [
At,11 Λ−1At,12

ΛAt,12 At,22

]
:= (I2r + ηH)t. (C.4)

where At,11, At,12, At,22 are positive definite diagonal matrices.
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(R.2) At,11 + ηΛAt,12 = At,22 and At,22At,11 −A2
t,12 = Ir.

(R.3) For η ≤ 1, we have At,11A
−1
t,12 ≻

(
Ir +

η2

4 Λ2
)1/2 − η

2Λ and At,22A
−1
t,12 ≻

(
Ir +

η2

4 Λ2
)1/2

+ η
2Λ.

(R.4) If ∥ηΛ∥2 < 1,

At,22A
−1
t,12 ≻

(Ir + ηΛ)t + (Ir − ηΛ)t

(Ir + ηΛ)t − (Ir − ηΛ)t
⪰ At,11A

−1
t,12.

Moreover, if Xt,1 and Xt+1,1 are invertible:

(R.7) For Vt+1 := Xt+1,2X
−1
t+1,1, and Vt := X2,tX

−1
t,1 , we have

Vt+1 = Vt − ηV 2
t (Ir + ηVt)

−1
+ ηΛ2.

Proof of Lemma 3. We have

I2r + ηH =

[
Ir ηIr
ηΛ2 Ir + η2Λ2

]
. (C.5)

Let

(I2r + ηH)t =:

[
Ãt,11 Ãt,12

Ã21,t Ãt,12

]
.

Since each submatrix in (C.5) is diagonal positive definite, the matrices in (C.4) are also diagonal positive
definite. To prove (R.1) and the first part of (R.2) we use proof by induction. We assume Ãt,11 + ηÃ21,t =

Ãt,12 and Ã21,tÃ
−1
12,t = Λ2. We have

Ã12,t+1 = Ãt,12 + ηÃt,12

(a)

= Ãt,12 + η
(
Ãt,11 + ηÃ21,t

) (b)

= ηÃt,11 +
(
Ir + η2Λ2

)
Ãt,12

(c)

= ηÃt,11 +Λ−2
(
Ir + η2Λ2

)
Ã21,t

= Λ−2Ã21,t+1.

where (a) follows the first assumption, (b) and (c) follow the second assumption. Moreover,

Ã11,t+1 + ηÃ21,t+1 = Ãt,11 + ηÃ21,t + η2Λ2Ãt,11 + η(Ir + η2Λ2)Ã21,t

= (Ir + η2Λ2)(Ãt,11 + ηÃ21,t) + ηÃ21,t

(d)

= (Ir + η2Λ2)Ãt,12 + ηΛ2Ãt,12 = Ã22,t+1.

where (d) follows the first and second assumptions. For the second part of (R.2) we again use proof by
induction. We assume At,22At,11 −A2

t,12 = Ir. We have

Ã11,t+1Ã22,t+1 − Ã12,n+1Ã21,t+1 =
(
Ãt,11 + ηÃ21,t

)(
ηΛ2Ãt,12 +

(
Ir + η2Λ2

)
Ãt,12

)
−
(
ηΛ2Ãt,11 +

(
Ir + η2Λ2

)
Ã21,t

)(
Ãt,12 + ηÃt,12

)
= Ãt,11Ãt,12 − Ãt,12Ã21,t = Ir.

For (R.3), by using (R.2), we have

At,11 (At,11 + ηΛAt,12)−A2
t,12 = Ir ⇒

(
At,11A

−1
t,12

)2
+ ηΛ

(
At,11A

−1
t,12

)
− Ir ≻ 0

⇒ At,11A
−1
t,12 ≻

(
Ir +

η2

4
Λ

)1/2

− η

2
Λ.
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The second part follows (R.2). For (R.4), we recall that

At+1,12 = At,12 + ηΛAt,22 = (Ir + η2Λ2)At,12 + ηΛAt,11 (C.6)

At+1,22 = ηΛAt,12 +
(
Ir + η2Λ2

)
At,22 ≻ ηΛAt,12 +At,22. (C.7)

We use proof by induction. Suppose the lower bound for
At,22

At,12
holds. We have

At+1,22

At+1,12

(e)

≻ ηΛAt,12 +At,22

At,12 + ηΛAt,22

(f)

≻
(
ηΛ+

(Ir + ηΛ)t + (Ir − ηΛ)t

(Ir + ηΛ)t − (Ir − ηΛ)t

)(
Ir + ηΛ

(Ir + ηΛ)t + (Ir − ηΛ)t

(Ir + ηΛ)t − (Ir − ηΛ)t

)−1

=
(Ir + ηΛ)t+1 + (Ir − ηΛ)t+1

(Ir + ηΛ)t+1 − (Ir − ηΛ)t+1
.

where (e) follows (C.7) and (f) follows the induction hypothesis with that x→ x+ηλ
1+ηλx is monotonic increasing

for ηλ < 1. For the upper bound, suppose the lower bound for
At,11

At,12
holds. We have

At+1,11

At+1,12

(g)

⪯ At,11 + ηΛAt,12

At,12 + ηΛAt,11

(h)

⪯
(
ηΛ+

(Ir + ηΛ)t + (Ir − ηΛ)t

(Ir + ηΛ)t − (Ir − ηΛ)t

)(
Ir + ηΛ

(Ir + ηΛ)t + (Ir − ηΛ)t

(Ir + ηΛ)t − (Ir − ηΛ)t

)−1

=
(Ir + ηΛ)t+1 + (Ir − ηΛ)t+1

(Ir + ηΛ)t+1 − (Ir − ηΛ)t+1
.

where (g) follows (C.6), and (h) follows the induction hypothesis.

Lastly if Xt,1 and Xt+1,1 are invertible,

Xt+1,2X
−1
t+1,1 =

(
Xt,2X

−1
t,1 + η2Λ2Xt,2X

−1
t,1 + ηΛ2

) (
Ir + ηXt,2X

−1
t,2

)−1

= Xt,2X
−1
t,2

(
Ir + ηXt,2X

−1
t,2

)−1
+ ηΛ2

= Xt,2X
−1
t,2 − ηXt,2X

−1
t,1 Xt,2X

−1
t,1

(
Ir + ηXt,2X

−1
t,1

)−1
+ ηΛ2.

Corollary 3. For V0 = 2Λ
1
2
2 G0Λ

1
2
2 −Λ1, we define

Vt+1 = Vt − ηV 2
t (Ir + ηVt)

−1
+ ηΛ̂2.

If Λ1, Λ2 and Λ̂ are mutually diagonalizable, and X1,t is invertible for t ≤ t∗ ∈ N, we have for t ≤ t∗

Gt =

Λ1

Λ2
+

At,22

At,12

Λ̂
Λ2

2
− 1

4

A−1
t,12Λ̂

Λ2

 Λ̂
Λ2

At,11

At,12
− Λ1

Λ2

2
+G0

−1

Λ̂A−1
t,12

Λ2
,

where A11t, At,12, At,22 are defined with Λ̂.

Proof. By using (C.4), we can write that

Vt =
(
Λ̂At,12 +At,22V0

)(
Λ̂A−1

t,12At,11 + V0

)−1

Λ̂A−1
t,12

= Λ̂At,12

(
Λ̂A−1

t,12At,11 + V0

)−1

Λ̂A−1
t,12 +At,22

(
Ir −At,11A

−1
t,12Λ̂

(
Λ̂A−1

t,12At,11 + V0

)−1 )
Λ̂A−1

t,12
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= At,22A
−1
t,12Λ̂−A−1

t,12Λ̂
(
Λ̂A−1

t,12At,11 + V0

)−1

Λ̂A−1
t,12.

Therefore,

Gt =

Λ1

Λ2
+

At,22

At,12

Λ̂
Λ2

2
− 1

4

A−1
t,12Λ̂

Λ2

 Λ̂
Λ2

At,11

At,12
− Λ1

Λ2

2
+G0

−1

Λ̂A−1
t,12

Λ2
.

Proposition 5. For some symmetric matrix S, we consider

V1 = V0 + ηS − ηV 2
0 (Ir + ηV0)

−1
. (C.8)

If V +
0 ⪰ V0 ≻ −1

η Ir, we have V +
1 ⪰ V1, where V +

1 is the next iterate if we use V +
0 in (C.8).

Proof. We have

V1 =
1

η

(
Ir − (Ir + ηV0)

−1
)
+ ηS.

The statement follows by Proposition 25.

D Proofs for Main Results

D.1 Proof of Propositions 2 and 3

For Proposition 2, we observe that

Ĝ(t) := Ŵ (t)Ŵ (t)⊤ and G̃(t) := U(t)U(t)⊤ = W (t)(W (t)⊤W (t))−1W (t)⊤

have the exact same dynamics. Therefore the statement follows. Proposition 3 follows Proposition 25.

D.2 Proof of Proposition 4

We begin by noting that Wt is an orthonormal matrix. Using this, we can express the population risk as:

R(WtΩ) =
∥∥∥ 1
√
rs
WtΩΩ⊤W⊤

t −
1

∥Λ∥F
ΘΛΘ⊤

∥∥∥2
F

=
1

∥Λ∥2F

(
∥Λ∥2F +

∥Λ∥2F
rs
∥ΩΩ⊤∥2F − 2

∥Λ∥F√
rs

Tr(ΩΩ⊤W⊤
t ΘΛΘ⊤Wt)± ∥W⊤

t ΘΛΘ⊤Wt∥2F
)

=
1

∥Λ∥2F

(
∥Λ∥2F − ∥W⊤

t ΘΛΘ⊤Wt∥2F +

∥∥∥∥∥Λ∥F√
rs

ΩΩ⊤ −W⊤
t ΘΛΘ⊤Wt

∥∥∥∥2
F

)

By observing that ∥W⊤ΘΛΘ⊤W ∥2F = ∥Λ 1
2GtΛ

1
2 ∥2F , we have the statement.

D.3 Proof of Theorem 1

We let

tsc := t
√
rs∥Λ∥F, κeff :=

{
rα, α ∈ [0, 0.5)

1, α > 0.5
, Teff := κeff

√
rs∥Λ∥F log d/rs.
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and

ru :=

{
r, α ∈ [0, 0.5)

⌈log2.5 d⌉, α > 0.5
ru⋆

:=

{
⌊rs(1− log

−1/8 d) ∧ r⌋, α ∈ [0, 0.5)

rs, α > 0.5.

In the following part, we will establish the high-dimensional limit of the risk curve and the alignment.

D.3.1 High-dimensional limit for the alignment

By Lemma 2, we have

GU (tsc) =
Ir

Ir − exp(−tΛ)
− exp(−0.5tΛ)

Ir − exp(−tΛ)

(
GU (0) +

exp(−tΛ)

Ir − exp(−tΛ)

)−1
exp(−0.5tΛ)

Ir − exp(−tΛ)
.

We define the block matrix forms

GU (t) =:

[
GU,11(t) GU,12(t)
G⊤

U,12(t) GU,22(t)

]
, Λ =

[
Λeff 0
0 Λ22

]
, Λe,11 := Λeff , Λe,22 :=

[
Λ22 0
0 0

]
,

where GU,11(t),Λeff ∈ Rru⋆×ru⋆ . The following statement characterizes the time-scales for the alignment
terms.

Proposition 6. Ginit implies that A(tTeff ,θj) = 1{tκeff ≥ 1
λj
}+ od(1) for t ̸= limd→∞

1
λjκeff

and j ≤ ru⋆
.

Proof. For α = 0, since the trajectory stays diagonal and the diagonal entries are monotonically increasing,
by using the events (E.2) and (H.2) with Lemma 10 we have the result.

In the following, we will prove the result for α > 0. By using Proposition 22 with (L.2)

GU (0) ⪯
[
2.1Z1:ru⋆

Z⊤
1:ru⋆

0

0 2.1Z2Z
⊤
2

]
,

where

2.1λmax(Z1:ru⋆
Z⊤

1:ru⋆
) ≤

{
5(1 + 1√

φ )
2, α ∈ [0, 0.5)

15, α > 0.5.

Therefore,

GU,11(tsc)⪯
Iru⋆

Iru⋆
−exp(−tΛeff)

− exp(−0.5tΛeff)

Iru⋆
−exp(−tΛeff)

(
O(rs)

d
Iru⋆

+
exp(−tΛeff)

Iru⋆
−exp(−tΛeff)

)−1
exp(−0.5tΛeff)

Iru⋆
−exp(−tΛeff)

.

Therefore, by Proposition 36, for j ≤ ru⋆
,

A(tTeff ,θj) ≤
1

1 +
(

d
rs

1
log3 d

− 1
)

d
rs

−tκeffj−α = 1{tκeff ≥ 1
λj
}+ od(1).

Moreover, for t ≤ (ru⋆ + 1)α log d
rs
, by using the events (H.3) and (L.2), we have

Z⊤
2 exp(tΛ22)Z2 ⪯

{
Oφ(1)Irs , α ∈ (0, 0.5)

O(log2.5 d)Irs , α > 0.5.

Therefore, for t ≤ (ru⋆
+ 1)α log d

rs
, we have GU,11(tsc) ⪰ G(t) where

G(t) :=
Iru⋆

Iru⋆
−exp(−tΛeff)

− exp(−0.5tΛeff)

Iru⋆
−exp(−tΛeff)

(
rs
d

O(1)

log4 d
Iru⋆

+
exp(−tΛeff)

Iru⋆
−exp(−tΛeff)

)−1
exp(−0.5tΛeff)

Iru⋆
−exp(−tΛeff)

,
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which implies that for t < (ru⋆ + 1)α log d
rs

A(tTeff ,θj) ≥
1

1 +O(log4 d) d
rs

1−tκeffj−α = 1{tκeff ≥ 1
λj
}+ od(1).

To extend the lower bound for t > (ru⋆
+ 1)α log d

rs
, let us define

t0 := (ru⋆
+ 1)α log d

rs
and Λ−

eff := Λeff − (ru⋆ + 1)−αIru⋆
.

We have for t > t0,

∂tGU,11(t) =
0.5

TU

(
Λ−

effGU,11(t) +GU,11(t)Λ
−
eff − 2GU,11(t)Λ

−
effGU,11(t)

)
+

1

TU

(
(ru + 1)−αGU,11(t)(Iru⋆

−GU,11(t))−GU,12(t)Λ22G
⊤
U,12(t)

)
.︸ ︷︷ ︸

⪰ (ru+1)−α

TU

(
GU,11(t)

(
Iru⋆

−GU,11(t)
)
−GU,12(t)G⊤

U,12(t)

)
⪰0

Therefore, for t > t0, by monotonicity and [BR14, Theorem 38], GU,11(tsc) ⪰ G(t) ⪰ G(t0), where

G(t) =
Iru⋆

Iru⋆
− exp(−(t− t0)Λ

−
eff)

−
exp(−0.5(t− t0)Λ

−
eff)

Iru⋆
− exp(−(t− t0)Λ

−
eff)

(
G(t0)+

exp(−(t− t0)Λ
−
eff)

Iru⋆
− exp(−(t− t0)Λ

−
eff)

)−1
exp(−0.5(t− t0)Λ

−
eff)

Iru⋆
− exp(−(t− t0)Λ

−
eff)

.

Therefore, the result extends to t > t0 as well.

D.3.2 High-dimensional limit for the risk curve

For Err(t) := ∥Λ∥F
(

Λe

∥Λ∥F
−GW (t)√

rs

)
, by Lemma 2, we have

Err(tsc)=
−Λe exp(−tΛe)

Id − exp(−tΛe)
+
Λe exp(−0.5tΛe)

Id − exp(−tΛe)

(
∥Λ∥F√

rs
GW (0)+

Λe exp(−tΛe)

Id − exp(−tΛe)

)−1
Λe exp(−0.5tΛe)

Id − exp(−tΛe)
, (D.1)

We define the block matrix forms

GW (t) =

[
GW,11(t) GW,12(t)
G⊤

W,12(t) GW,22(t)

]
, Λ =

[
Λeff 0
0 Λ22

]
, Λe,11 := Λeff , Λe,22 :=

[
Λ22 0
0 0

]
,

where GW,11(t),Λeff ∈ Rru×ru . Our proof strategy is as follows: In Proposition 7, we show that the
off-diagonal and lower-right terms in (D.1) does not contribute to the high-dimensional limit. Then, in
Proposition 8, we characterize the limit of the left-top terms. Finally, in Proposition 9, we prove the
asymptotic behaviour of the risk curve.

Proposition 7. Ginit implies that ∥GW,12(tTeff)∥2F = od(rs) and ∥GW,22(tTeff)∥2F = od(rs).

Proof. We let

D1 :=
Λe,11 exp(−tΛe,11)

Iru − exp(−tΛe,11)
, D2 :=

Λe,22 exp(−tΛe,22)

Id−ru − exp(−tΛe,22)
, Z :=

[
Z1:ru

Z2

]
.

and [
S11 S12

S⊤
12 S22

]
:=
([∥Λ∥F√

rs
Z1:ruZ

⊤
1:ru +D1

∥Λ∥F√
rs

Z1:ruZ
⊤
2

∥Λ∥F√
rs

Z2Z
⊤
1:ru

∥Λ∥F√
rs

Z2Z
⊤
2 +D2

])−1

.
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where

S11 =

(
D1 +Z1:ru

( √
rs

∥Λ∥F
Irs +Z⊤

2 D−1
2 Z2

)−1

Z⊤
1:ru

)−1

,

S12 = −

(
D1 +Z1:ru

( √
rs

∥Λ∥F
Irs +Z⊤

2 D−1
2 Z2

)−1

Z⊤
1:ru

)−1

Z1:ruZ
⊤
2

(
Z2Z

⊤
2 +D2

)−1
,

S22 =

(
D2 +Z2

( √
rs

∥Λ∥F
Irs +Z⊤

1:ruD
−1
1 Z1:ru

)−1

Z⊤
2

)−1

.

Off-diagonal terms: By Proposition 26

G̃W,12(t) :=
Λe,11 exp(−0.5tΛe,11)

Iru − exp(−tΛe,11)
S12

Λe,22 exp(−0.5tΛe,11)

Id−ru − exp(−tΛe,22)

= exp(0.5tΛe,11)Z1:ru

( √
rs

∥Λ∥F
Irs +Z⊤

2 D−1
2 Z2 +Z⊤

1:ruD
−1
1 Z1:ru

)−1

Z⊤
2 exp(0.5tΛe,22).

We observe that λmax(D2) ⪯ 1
t and

√
rs

∥Λ∥F
≍ κeff . By using Proposition 27 with Ginit and t̃ := tκeff log d

rs
,

we write

1

rs
∥GW,12(tTeff)∥2F =

1

∥Λ∥2F
∥G̃W,12(t̃)∥2F

≤ 1

∥Λ∥2F
O(1)

(κeff + t̃)2

ru∧rs∑
i=1

(
λmax(Z1:ruZ

⊤
1:ru) exp(t̃λi) ∧ (κeff + t̃)

λi exp(t̃λi)

exp(t̃λi)− 1

)
. (D.2)

For the heavy-tailed case (α ∈ [0, 0.5)),

(D.2) ≤ Oα,φ,β(1)

r log2 d

∑
i≤r

1{t̃λi ≤ log d
rs
}+ Oα,φ,β(1)

r1−α log d

∑
i≤r

λi1{t̃λi > log d
rs
} = od(1).

For the light-tailed case (α > 0.5),

(D.2) ≤ Oα,rs,β(1)

log2 d

∑
i≤rs

1{t̃λi ≤ log d
rurs
}+ Oα,φ,β(1)

log d

∑
i≤rs

λi1{t̃λi > log d
rsru
} = od(1).

Lower-right terms: By using Matrix-Inversion lemma, we have

−D2 +D2S22D2 = −Z2

( √
rs

∥Λ∥F
Irs +Z⊤

1:ruD
−1
1 Z1:ru +Z⊤

2 D−1
2 Z2

)−1

Z⊤
2 .

We observe that λmax(D2) ⪯ 1
t and

√
rs

∥Λ∥F
≍ κeff . By using t̃ := tκeff log d

rs
, we have

1
√
rs
GW,22(tTeff) =

1

∥Λ∥F
Z2

( √
rs

∥Λ∥F
Irs +Z⊤

1:ruD
−1
1 Z1:ru +Z⊤

2 D−1
2 Z2

)−1

Z⊤
2

⪯ O(1)

∥Λ∥F
Z2

(
κeffIrs + t̃Z⊤

2 Z2

)−1
Z⊤

2 . (D.3)

For the heavy-tailed case (α ∈ [0, 0.5)),

∥(D.3)∥2F ≤
Oα,φ,β(1)

r−2α log2 d

1

t2r2α log2 d
= od(1).

For the light-tailed case (α > 0.5),

∥(D.3)∥2F ≤ Oα,rs,β(1)
1

t2 log2 d
= od(1).
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Proposition 8. Let

G(0) :=
cZ1:ruZ

⊤
1:ru

t
, t ∈


(
0,

(ru⋆+1)α

κeff

)
, α ∈ [0, 0.5)(

0,
(ru⋆+1)α

κeff

)
\ {jα : j ∈ N}, α > 0.5,

d ≥

{
Ωφ,α(1) α ∈ [0, 0.5)

Ωrs,α(1), α > 0.5,

for some c > 0. We define

Errru(tsc) :=
−Λeff exp(−tΛeff)

Iru − exp(−tΛeff)
+
Λeff exp(−0.5tΛeff)

Iru − exp(−tΛeff)

(
Λeff exp(−tΛeff)

Iru − exp(−tΛeff)
+G(0)

)−1
Λeff exp(−0.5tΛeff)

Iru − exp(−tΛeff)
.

Ginit implies that

∥Errru(tTeff)∥2F
∥Λ∥2F

= 1− 1

∥Λ∥2F

ru⋆∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1).

Proof. We let

Z1:ruZ
⊤
1:ru

:=

[
Z1:ru⋆

Z⊤
1:ru⋆

Z1Z
⊤
2

Z2Z
⊤
1 Z2Z

⊤
2

]
, Λeff :=

[
Λeff,11 0

0 Λeff,22

]
,

where Λeff,11 ∈ Rru⋆×ru⋆ , Z2 ∈ R(ru−ru⋆ )×rs . Let

Γ(tsc) :=

(
Λeff exp(−tΛeff)

Iru − exp(−tΛeff)
+

c

t
Z1:ruZ

⊤
1:ru

)−1

and Err(tsc,Γ) := Errru(tsc).

By using Proposition 22 and the events (H.3) and (L.2),

Γ(tsc) ⪰ Γ(tsc) :=


10c

t

rs
d
Iru⋆

+
Λeff,11 exp(−tΛeff,11)

Iru⋆
− exp(−tΛeff,11)

0

0
2c

t

rs log
2.5 d

d
Iru−ru⋆

+
Λeff,22 exp(−tΛeff,22)

Iru−ru⋆
− exp(−tΛeff,22)


−1

.

For the upper bound, by using ε = 1
c log3 d

in Proposition 24, and the events (H.1), (L.1) and (H.3), (L.2),

we have for t ≤ (ru⋆
+ 1)α log d

rs
,

Γ(tsc) ⪯ Γ(tsc) :=


0.2/t

log4 d

rs
d
Iru⋆

+
Λeff,11 exp(−tΛeff,11)

Iru⋆
− exp(−tΛeff,11)

0

0
−1.1/t

log
1/2 d

rs
d
Iru−ru⋆

+
Λeff,22 exp(−tΛeff,22)

Iru−ru⋆
− exp(−tΛeff,22)


−1

.

Therefore, for t <
(ru⋆+1)α

κeff
, by Corollary 8, we have

∥Err(tTeff ,Γ)∥2F
∥Λ∥2F

≥ ∥Err(tTeff ,Γ)∥2F
∥Λ∥2F

=
1

∥Λ∥2F

ru∑
j=1

λ2
j1{ 1

λj
> tκeff}+ od(1)

= 1− 1

∥Λ∥2F

ru⋆∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1).

On the other hand, by Corollary 8, we have

∥Err(tTeff ,Γ)∥2F
∥Λ∥2F

≤ ∥Err(tTeff ,Γ)∥2F
∥Λ∥2F

=
1

∥Λ∥2F

ru⋆∑
j=1

λ2
j1{ 1

λj
> tκeff}+

1

∥Λ∥2F

ru∑
j=ru⋆+1

λ2
j + od(1)
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= 1− 1

∥Λ∥2F

ru⋆∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1).

Proposition 9. Ginit implies that

∥Err (tTeff)∥2F
∥Λ∥2F

= 1− 1

∥Λ∥2F

ru⋆∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1),

for

t ∈

(0,∞), α ∈ [0, 0.5)

(0,∞) \ {jα : j ∈ N}, α > 0.5,
d ≥

{
Ωφ,α(1) α ∈ [0, 0.5)

Ωrs,α(1), α > 0.5.

Proof. We recall that

D1 :=
Λe,11 exp(−tΛe,11)

Iru − exp(−tΛe,11)
, D2 :=

Λe,22 exp(−tΛe,22)

Id−ru − exp(−tΛe,22)
, Z :=

[
Z1:ru

Z2

]
,

and

Err(tsc)=
−Λe exp(−tΛe)

Id − exp(−tΛe)
+

Λe exp(−0.5tΛe)

Id − exp(−tΛe)

(
∥Λ∥F√

rs
ZZ⊤ +

Λe exp(−tΛe)

Id − exp(−tΛe)

)−1
Λe exp(−0.5tΛe)

Id − exp(−tΛe)

=

[
Errru(tsc)

−1√
rs
GW,12(tsc)

−1√
rs
GW,12(tsc)

−1√
rs
GW,22(tsc)

]
.

Note that by Proposition 35, in the time scale we consider we have 1−od(1)
tTeff

≤ λmin(D2) ≤ λmax(D2) ≤ 1
tTeff

.

The by using (E.1),

Errru(tsc) =
−Λeff exp(−tΛeff)

Iru − exp(−tΛeff)

+
Λeff exp(−0.5tΛeff)

Iru − exp(−tΛeff)

(
Θ(1)

∥Λ∥F√
rs

+ t
Z1:ruZ

⊤
1:ru +

Λe exp(−tΛeff)

Iru − exp(−tΛeff)

)−1
Λe exp(−0.5tΛeff)

Iru − exp(−tΛeff)
.

By Propositions 7 and 8, we have

∥Err (tTeff)∥2F
∥Λ∥2F

= 1− 1

∥Λ∥2F

(rs∧r)∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1),

for

t ∈


(
0,

(ru⋆+1)α

κeff

)
, α ∈ [0, 0.5)(

0,
(ru⋆+1)α

κeff

)
\ {jα : j ∈ N}, α > 0.5.

(D.4)

To extend the limit for t >
(ru⋆+1)α

κeff
, we observe that

• ∥Err (t)∥2F non increasing since it corresponds to the objective under (GF).

• The global optimum of (GF) and the previous item with (D.4) guarantees that for t >
(ru⋆+1)α

κeff
,

1− 1

∥Λ∥2F

(rs∧r)∑
j=1

λ2
j1{tκeff ≥ 1

λj
} ≤ ∥Err (tTeff)∥2F

∥Λ∥2F
≤ 1− 1

∥Λ∥2F

(rs∧r)∑
j=1

λ2
j1{tκeff ≥ 1

λj
}+ od(1).

Therefore, the statement extends to t >
(ru⋆+1)α

κeff
.
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D.4 Proof of Theorem 2

We redefine the time-scale and effective-width as:

tsc = t
√
rs∥Λ∥F, κeff =

{
rα/η, α ∈ [0, 0.5)

1/η, α > 0.5
, Teff = κeff

√
rs∥Λ∥F log d/rs.

and

ru =

{
r, α ∈ [0, 0.5)

⌈log2.5 d⌉, α > 0.5
, ru⋆

:=

{
⌊rs(1− log

−1/8 d) ∧ r⌋, α ∈ [0, 0.5)

rs, α > 0.5.

We consider the learning rate and fine-tuning sample size given as

η ≍ 1

d

{
1

rα log20(1+d/rs)
, α ∈ [0, 0.5)

1
r4α+3
u log18 d

, α > 0.5
and NFt ≍ r2s log

5 d.

We define the effective learning rate η and the hitting time Thit as follows:

η :=
η/2

∥Λ∥F
√
rs
, Thit :=

{
t ≥ 0

∣∣∣ 1− ∥Λ 1
2GtΛ

1
2 ∥2F

∥Λ∥2F
≤ 1

∥Λ∥2F

r∑
j=(rs∧1)+1

λ2
j +

10

log
1
8 d

}
.

We note that bounding Thit suffices to derive sample complexity since by Proposition 11, we have

R(W final
t ) ≤ 1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F
+

O(1)

log d
.

The main statement of this part is as follows:

Proposition 10. The intersection of the following events hold with probability 1− od(1/d
2)− Ω(1/r2s):

1. We have

Thit ≤


1
2η

(
rs
(
1− log

−1/8 d
)
∧ r
)α

log

(
20d log

3
4 (1+d/rs)
rs

)
, α ∈ [0, 0.5)

1
2ηr

α
s log

(
20d log

3/4 d
rs

)
, α > 0.5.

2. For t > 0,

• A(tTeff ,θj) = 1{ηtκeff ≥ 1
λj
}+ od(1) for t ̸= limd→∞

1
ηκeffλj

and j ≤ ru⋆
.

• ∥Λ∥2F − ∥Λ
1
2GtTeff

Λ
1
2 ∥2F = 1−

∑ru⋆
j=1 λ

2
j1{ηtκeff ≥ 1

λj
}+ od(∥Λ∥2F).

Proof. By using Lemma 1 and Corollary 5, we have with probability 1− od(1/d
2)− Ω(1/r2s):

Tbad ≥


1
2η

(
rs
(
1− log

−1
2 d
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ [0, 0.5)

1
2ηr

α
s log

(
d log1.5 d

rs

)
, α > 0.5,

where Tbad is defined in (F.14). Given the lower bound, by Proposition 14, and the third item of Proposition
15, we have the first item.

For the second item, by Proposition 14, and Proposition 15 (for the lower bound) and Proposition 16 (for
the upper bound), we have for ru⋆

× ru⋆
dimensional top left submatrices Gt,11 and Λ11,

1
1.2
Clb

d
rs

exp (−2tηΛ11) + 1
− od(1) ⪯ Gt,11 ⪯

(
Cubrs

d
exp (2ηtΛ11) ∧ 1

)
+ od(1), (D.5)
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and

∥Λ∥2F − ∥Λ
1
2GtΛ

1
2 ∥2F ≥

ru∑
i=1

λ2
i

(
1− Cubrs

d exp (2ηtλi)
)
+
− od(∥Λ∥2F )

∥Λ∥2F − ∥Λ
1
2GtΛ

1
2 ∥2F ≤

r∑
i=(ru⋆∧r)+1

λ2
i +

ru⋆∑
i=1

λ2
i

(
1− 1

1.2
Clb

d
rs

exp (−2tηλi) + 1

)2

+ od(∥Λ∥2F ), (D.6)

for

t ≤


1
2η

(
rs
(
1− log

−1/8 d
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ [0, 0.5)

1
2ηr

α
s log

(
d log1.5 d

rs

)
, α > 0.5.

(D.7)

where

Cub =

2.5
(
1 + 1√

φ

)2
, α ∈ [0, 0.5)

15, α > 0.5,
Clb =

1

15

{
log

−1/2 d, α ∈ [0, 0.5)

r−6
s , α > 0.5.

The high-dimensional limits of the alignment and risk up to the time horizon in (D.7) follow from (D.5) (for
the alignment), and from (D.6) (for the risk) by Proposition 36. Proposition 21 then allows us to extend
these results beyond the time limit in (D.7), yielding the full statement.

D.5 Proof of Corollary 1 and Corollary 2

Finally, we derive the scaling of prediction risk under power-law second-layer coefficients. Since Corollary 2
is a rescaled version of Corollary 1, we will only consider the latter.

Proof of Corollary 1. We will prove heavy and light-tailed cases separately.

Heavy-tailed case (α ∈ [0, 0.5)): We define C :=
(

(1−β)
√
φ√

1−2α

) 1
α

. We first fix a (Cφ)α > t > 0. By

Proposition 9, for any d ≥ Ωφ,α(1), we have with probability at least 1− o(1/d2)

R(tr log d) = 1− 1

∥Λ∥2F

rs∑
i=1

λ2
j1{ tr

α

Cα ≥ 1±od(1)
λj
}︸ ︷︷ ︸

:=Rd((Ct)
1
α )

+od(1)

where we define Rd((Ct)
1
α ) to isolate the main term and make the dependence on the ambient dimension

explicit. By using λj = j−α in the indicator function, we can rewrite

Rd(t) = 1− 1

∥Λ∥2F

rs∑
i=1

λ2
j1{(1± od(1))t ≥ j

r}

We define a sequence of measures supported on {j/r : j ∈ [r]}, where µd{ jr} ∝ j−2α for j = 1, · · · , r. We
observe the following:

• µd converges weakly weakly to a limiting probability measure µ supported on [0, 1], with cumulative
distribution function

µ{[0, c)} =

{
c1−2α, c < 1

1 x ≥ 1
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• Moreover, the risk can be expressed as

Rd(t) = 1− (1± od(1))EX∼µd
[1{(1± od(1))t ∧ φ ≥ X}]

By the Portmanteau theorem [Dur93], it follows that for any fixed t ∈ (0, φ),

Rd(t)→ 1− t1−2α.

almost surely as d→∞. The almost sure convergence follows from the Borel-Cantelli lemma [Dur93] applied
to the failure probabilities.

To extend this result to t ≥ φ, we observe that by (GF), Rd(t) is non-increasing and inft≥0Rd(t) ≥
(1− φ1−2α)+ − od(1). Hence, for all t > 0, we obtain

Rd(t) = (1− t1−2α)+ ∨ (1− φ1−2α)+

The desired result for a fixed t > 0 follows by a change of variable. Finally, since the risk curves are
continuous in t, the almost sure convergence extends to all t > 0 pointwise.

Light-tailed case (α > 0.5): For this part, we consider the probability space conditioned on Ginit which
holds with probability at least 1− o(1/r2s). We define

Z :=

∞∑
j=1

j−2α, C := (rsZ)
1
2α .

We first fix a t ∈
(
0, (Crs)

α
)
\ {jα : j ∈ N}. By Proposition 9, for any d ≥ Ωrs,α(1), we have ,

R(t log d) = 1− 1

∥Λ∥2F

rs∑
i=1

λ2
j1{ t

Cα ≥ 1±od(1)
λj
}︸ ︷︷ ︸

:=Rd((Ct)
1
α )

+od(1).

By using λj = j−α in the indicator function, we rewrite

Rd(t) = 1− 1

∥Λ∥2F

rs∑
i=1

λ2
j1{(1± od(1))t ≥ j}

We define a sequence of measures supported on N, where µd{j} ∝ j−2α for j = 1, · · · , rs. We observe the
following:

• µd converges weakly weakly to a limiting probability measure µ supported on N, such that µ{j} = j−2α

Z .

• Moreover, the risk can be expressed as

Rd(t) = EX∼µd
[1{(1± od(1)t ∨ rs < X}]

Since t ̸∈ N, we have

Rd(t)→ µ([t ∨ rs,∞)).

By observing that µ([t,∞)) ∈ Θ(t1−2α), the result follows for a fixed t ∈
(
0, (Crs)

α
)
\{jα : j ∈ N}. Since the

limit is piecewise continuous and non increasing, it is sufficient to take a union over t ∈ {0.5, 1.5, · · · , rs+0.5}
to extend the result for all t > 0.
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E Details of the Fine-tuning Step

In this part, we describe how to efficiently solve the empirical risk minimization problem used in the fine-
tuning step of Algorithm 1. Recall that this step aims to find a rotation matrix Ω ∈ Rrs×rs that aligns the
learned features with the teacher directions by minimizing the empirical loss over NFt fresh samples:

Ω∗ = argmin
Ω∈Rrs×rs

NFt∑
j=1

L
(
WtΩ; (xt+j , yt+j)

)
, (E.1)

where each sample loss is given by

L
(
WtΩ; (xt+j , yt+j)

)
=

1

16

(
yt+j −

1
√
rs
Tr
(
ΩΩ⊤W⊤

t (xt+jx
⊤
t+j − Id)Wt

))2
.

Let us define Aj := W⊤
t (xt+jx

⊤
t+j − Id)Wt. We observe that the loss becomes quadratic in the symmetric

matrix positive semidefinite matrix S := ΩΩ⊤. Then, the fine-tuning objective reduces to a standard least
squares problem over the cone of symmetric matrix positive semidefinite matrices:

S∗ := argmin
S∈Rrs×rs

S=S⊤,S⪰0

1

2NFt

NFt∑
j=1

(√
rsyt+j − Tr(SAj)

)2
︸ ︷︷ ︸

:=Ft(S)

. (E.2)

For the following, we also define the global minimum of the least square objective in (E.2) as:

Sglob := argmin
S∈Rrs×rs

S=S⊤

Ft(S). (E.3)

E.1 Characterizing the Minimum

Since the fine-tuning objective reduces to a least squares regression problem over symmetric matrices, we
can write

Ft(S) = Ft(Sglob) + Tr
(
(S − Sglob)L(S − Sglob)

)
where L is defined as the linear operator acting on symmetric matrices via

L(S) :=
1

2NFt

NFt∑
j=1

Tr(SAj)Aj ,

which corresponds to the empirical second moment operator associated with the covariates Aj . We note
that the operator L is self-adjoint and positive semi-definite on the space of symmetric matrices, and we can
write the characterization in (E.2) equivalently

S∗ := argmin
S∈Rrs×rs

S=S⊤,S⪰0

Tr
(
(S − Sglob)L(S − Sglob)

)
.

We define the projection on the cone of symmetric positive semi-definite matrices as:

Π(S̃) := argmin
S∈Rrs×rs

S=S⊤,S⪰0

∥S − S̃∥2F .

In the following, we will show that the operator L is close to the identity, and thus, S∗ is close to Π◦L(Sglob).
Before proceeding, we make the following observations:
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• We observe that by the first-order optimality condition applied in (E.3), we have

L(Sglob) =

√
rs

2NFt

NFt∑
j=1

yt+jAj . (E.4)

• By the generalized Pythagorean theorem [Bub14, Lemma 3.1], we have

∥S∗ − Π ◦ L(Sglob)∥2F ≤ ∥S∗ − L(Sglob)∥2F − ∥Π ◦ L(Sglob)− L(Sglob)∥2F
= Ft(S∗)− Ft

(
Π ◦ L(Sglob)

)
− Tr

(
(S∗ − Π ◦ L(Sglob))(L− Id)(S∗ + Π ◦ L(Sglob))

)
, (E.5)

where we use Id to denote the identity map on symmetric matrices.

E.2 Computing the Minimum

We define the approximate solution for (E.1) as:

Ω̂ :=
(
Π ◦ L(Sglob)

) 1
2

, (E.6)

where S → S1/2 denotes the square root operator on symmetric positive semidefinite matrices. Note that
the approximation in (E.6) can be computed by taking the spectral decomposition of L(Sglob) given in (E.4),

which requires Õ(dr3s) including the computation of L(Sglob). This is negligible compared to the feature

learning phase, whose complexity scales as O(Tdrs). The following statement shows that Ω̂ is sufficiently
close to the fine-tuning solution Ω∗:

Proposition 11. Suppose NFt ≥ r2s log
5 d. Then, with probability at least 1 − 2d−3, the final risk incurred

by WtΩ̂ is close to that of the optimal fine-tuning solution:

R(WtΩ̂) ≤ R(WtΩ∗) +
1

log d
≤ 1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F
+

O(1)

log d
.

E.2.1 Proof of Proposition 11

We define the operator norm of L as

∥L∥2 = sup
S∈Rrs×rs

S=S⊤

∥L(S)∥F .

We consider the intersection of the following events:

• ∥L− Id∥2 ≤ 6√
log d

•
∥∥∥ 1
2NFt

∑NFt

j=1 yt+jAj − 1
∥Λ∥F

W⊤
t ΘΛΘ⊤Wt

∥∥∥2
F
≤ 1

log d .

We note that for d ≥ Ω(1) the first item holds with probability 1− d−3 by Proposition 31, where we choose
C = 5 and u = log d, and the second item holds follows with probability 1 − d−3 by Proposition 32 where
we choose C = 16. Given the events, we have

R(WtΩ̂) =
1

rs

∥∥∥∥Π ◦ L(Sglob)−
√
rs

∥Λ∥F
W⊤

t ΘΛΘ⊤Wt

∥∥∥∥2
F

+
(
1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F

)
(a)

≤ 1

rs

∥∥∥∥L(Sglob)−
√
rs

∥Λ∥F
W⊤

t ΘΛΘ⊤Wt

∥∥∥∥2
F

+
(
1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F

)
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(b)

≤ 1

log d
+R(WtΩ∗).

where we use the convexity of the cone of symmetric positive semi-definite matrices in (a) and the second
event above in (b). By using (E.5), we have

∥S∗ − Π ◦ L(Sglob)∥F ≤ ∥L− Id∥2∥S∗ + Π ◦ L(Sglob)∥F .

Therefore,

∥S∗∥F ≤
1 + ∥L− Id∥2
1− ∥L− Id∥2

∥Π ◦ L(Sglob)∥F ⇒ ∥S∗ − Π ◦ L(Sglob)∥F ≤
2∥L− Id∥2∥Π ◦ L(Sglob)∥F

1− ∥L− Id∥2

(c)

≤ 15rs√
log d

where we followed the reasoning in (a)-(b) to bound ∥Π ◦ L(Sglob)∥F in (c) . Therefore,

R(WtΩ∗) =
1

rs

∥∥∥∥S∗ −
√
rs

∥Λ∥F
W⊤

t ΘΛΘ⊤Wt

∥∥∥∥2
F

+
(
1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F

)
≤ 2

rs
∥S∗ − Π ◦ L(Sglob)∥2F +

2

rs

∥∥∥∥Π ◦ L(Sglob)−
√
rs

∥Λ∥F
W⊤

t ΘΛΘ⊤Wt

∥∥∥∥2
F

+
(
1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F

)
≤ O(1)

log d
+
(
1− ∥Λ

1
2GtΛ

1
2 ∥2F

∥Λ∥2F

)
.

F Deferred Proofs for Online SGD

F.1 Preliminaries

We consider

yt+1 =
1

∥Λ∥F

r∑
j=1

λj

(
⟨θj ,xt+1⟩2 − 1

)
and ŷ(Wn;xt+1) =

1
√
rs

rs∑
j=1

⟨wt,j ,xt+1⟩2 − 1.

We use ŷt+1 := ŷ(Wt;xt+1) and consider

• The loss function is L(Wt; (xt+1, yt+1)) =
1
16

(
yt+1 − ŷt+1

)2
• The Euclidean gradient is ∇L(Wt) =

−1
4
√
rs

(
yt+1 − ŷt+1

)
xt+1x

⊤
t+1Wt. Therefore, we have

∇StL(Wt) =
−1/4
√
rs

(
Id −WtW

⊤
t

) (
yt+1 − ŷt+1

)
xt+1x

⊤
t+1Wt.

• We recall that Gt = Θ⊤WtW
⊤
t Θ.

Then, (SGD) reads

W̃t+1 = Wt +
η/4
√
rs

(
Id −WtW

⊤
t

) (
yt+1 − ŷt+1

)
xt+1x

⊤
t+1Wt︸ ︷︷ ︸

:=∇StLt+1

Wt+1 = W̃t+1

(
Irs +

η2/16

rs
∇StL

⊤
t+1∇StLt+1︸ ︷︷ ︸
:=Pt+1

)−1/2

. (SGD)

We observe that

η2/16

rs
Pt+1 =

η2/16

rs

(
yt+1 − ŷt+1

)2
W⊤

t xt+1x
⊤
t+1

(
Id −WtW

⊤
t

)
xt+1x

⊤
t+1Wt
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=
η2/16

rs

(
yt+1 − ŷt+1

)2∥(Id −WtW
⊤
t

)
xt+1∥22W⊤

t xt+1x
⊤
t+1Wt.

Let

c2t+1 :=
η2/16

rs
∥Pt+1∥2 =

η2/16

rs

(
yt+1 − ŷt+1

)2∥(Id −WtW
⊤
t

)
xt+1∥22∥W⊤

t xt+1∥22.

We define Pt+1 :=
(
Irs +

η2/16
rs

Pt+1

)−1/2

and since Pt+1 is 1-rank, we have

P 2
t+1 = Irs −

η2/16

rs

Pt+1

1 + c2t+1

.

We let

Mt := Θ⊤Wt and M̂t+1 := Θ⊤Ŵt+1.

We have

M̂t+1 = Mt +
η/4
√
rs
Θ⊤∇StLt+1.

By recalling that Gt = MtM
⊤
t , we have

Gt+1 = M̂t+1M̂
⊤
t+1 + M̂t+1(P

2
t+1 − Irs)M̂

⊤
t+1

= Gt +
η/4
√
rs
Mt∇StL

⊤
t+1Θ+

η/4
√
rs
Θ⊤∇StLt+1M

⊤
t +

η2

16rs
Θ⊤∇StLt+1∇StL

⊤
t+1Θ

− η2

16rs

M̂t+1Pt+1M̂
⊤
t+1

1 + c2t+1

.

We have

∇StLt+1 =
2

∥Λ∥F
(
Id −WtW

⊤
t

)
ΘΛΘ⊤Wt +

(
∇StLt+1 − Et [∇StLt+1]

)
,

Therefore,

Θ⊤∇StLt+1M
⊤
t =

2

∥Λ∥F
Θ⊤ (Id −WtW

⊤
t

)
ΘΛΘ⊤WtW

⊤
t Θ+Θ⊤(∇StLt+1 − Et [∇StLt+1]

)
M⊤

t

=
2

∥Λ∥F
(Ir −Gt)ΛGt +Θ⊤(∇StLt+1 − Et [∇StLt+1]

)
M⊤

t .

Hence, we have

Gt+1 = Gt +
η/2

∥Λ∥F
√
rs

(ΛGt +GtΛ− 2GtΛGt) +
η/2
√
rs
Sym

(
Θ⊤(∇StLt+1 − Et [∇StLt+1]

)
M⊤

t

)
+

η2

16rs
Θ⊤∇StLt+1∇StL

⊤
t+1Θ−

η2

16rs

M̂t+1Pt+1M̂
⊤
t+1

1 + c2t+1

On the other hand,

M̂t+1Pt+1M̂
⊤
t+1=

(
Mt+

η/4
√
rs
Θ⊤∇StLt+1

)
Pt+1

(
Mt +

η/4
√
rs
Θ⊤∇StLt+1

)⊤

=MtPt+1M
⊤
t +

η/2
√
rs
Sym

(
Θ⊤∇StLt+1Pt+1M

⊤
t

)
+

η2

16rs
Θ⊤∇StLt+1Pt+1∇StL

⊤
t+1Θ.
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We collect the higher order terms in a single term defined as follows:

Rso[Gt] :=
η2

16rs
Θ⊤Et

[
∇StLt+1∇StL

⊤
t+1

]
Θ− η2

16rs
MtEt

[
Pt+1

1 + c2t+1

]
M⊤

t

− η3

32r
3/2
s

Sym

(
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
M⊤

t

)
− η4

256r2s
Θ⊤Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ.

We collect the noise terms in a single term defined as follows:

η/2
√
rs
νt+1 :=

η/2
√
rs
Sym

(
Θ⊤
(
∇StLt+1 − Et [∇StLt+1]

)
M⊤

t

)
− η2

16rs
Mt

(
Pt+1

1 + c2t+1

− Et

[
Pt+1

1 + c2t+1

])
M⊤

t

+
η2

16rs
Θ⊤ (∇StLt+1∇StL

⊤
t+1 − Et

[
∇StLt+1∇StL

⊤
t+1

])
Θ

− η3

32r
3/2
s

Sym

(
Θ⊤

(
∇StLt+1Pt+1

1 + c2t+1

− Et

[
∇StLt+1Pt+1

1 + c2t+1

])
M⊤

t

)
− η4

256r2s
Θ⊤

(
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

− Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

])
Θ.

With these definitions in hand, we have

Gt+1 = Gt +
η/2

∥Λ∥F
√
rs

(ΛGt +GtΛ− 2GtΛGt) +Rso[Gt] +
η/2
√
rs
νt+1.

F.2 Including second-order terms and monotone bounds

For C > 1, we define

Λℓ1 := Λ− C∥Λ∥F
ηd
√
rs
Ir and Λu1

:= Λ+ C∥Λ∥F
ηd
√
rs
Ir. (F.2)

We recall the definition of effective learning rate η = η/2
∥Λ∥F

√
rs

. By Proposition 17, we have

Gt+1 ⪰ Gt + η
(
Λℓ1Gt +GtΛℓ1 − 2GtΛGt

)
− C

2
η2∥Λ∥2FrsIr +

η/2
√
rs
νt+1, (F.3)

Gt+1 ⪯ Gt + η
(
Λu1

Gt +GtΛu1
− 2GtΛGt

)
+

C

2
η2∥Λ∥2FrsIr +

η/2
√
rs
νt+1. (F.4)

F.2.1 Heavy tailed case - α ∈ [0, 0.5)

Proposition 12. We consider α ∈ [0, 0.5), rs
r → (0,∞] and η ≪ 1

d log4 d

√
rs
r . We define

V −
t := 2Λ

1
2GtΛ

1
2 −Λℓ1 and V +

t := 2Λ
1
2GtΛ

1
2 −Λu1

.

For d ≥ Ω(1), we have

Λ+ 0.1r−α

log4 d
Ir ≻ Λu1

≻ Λ ≻ Λℓ1 ≻ Λ− 0.1r−α

log4 d
Ir (F.5)

and

V −
t+1 ⪰ V −

t

(
Ir +

η

1− 1.1η
V −
t

)−1

+ ηΛ2
ℓ1 − Cη2∥Λ∥2FrsΛ+

η
√
rs
Λ

1
2νt+1Λ

1
2
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V +
t+1 ⪯ V +

t

(
Ir +

η

1 + 1.1η
V +
t

)−1

+ ηΛ2
u1

+ Cη2∥Λ∥2FrsΛ+
η
√
rs
Λ

1
2νt+1Λ

1
2 (F.6)

where the bounding iterations are monotone in the sense defined in Proposition 5.

Proof. We first note that since ∥Λ∥F ≍ r
1
2−α for α ∈ [0, 0.5), we have

∥Λ∥F
ηd
√
rs
≪ r−α

log4 d
.

Therefore, (F.5) holds for d ≥ Ω(1), which implies

∥V −
t ∥2 ∨ ∥V +

t ∥2 ≤ 1 +
0.1r−α

log4 d
, for all t ∈ N. (F.7)

Therefore, the monotonicity follows from Proposition 5.

For the remaining part, we introduce the following notation, Kt := Λ
1
2GtΛ

1
2 . For the lower bound, by (F.3),

we have

Kt+1 ⪰Kt +
η

2

(
Λ2

ℓ1 − (2Kt −Λℓ1)
2
)
− C

2
η2∥Λ∥2FrsΛ+

η/2
√
rs
Λ

1
2νt+1Λ

1
2 .

By multiplying both sides with 2 and subtracting Λℓ1 from both sides, we have

V −
t+1 ⪰ V −

t − η(V −
t )2 + ηΛ2

ℓ1 − Cη2∥Λ∥2FrsΛ+
η
√
rs
Λ

1
2νt+1Λ

1
2

(a)

⪰ V −
t −

η

1− 1.1η
(V −

t )2
(
Ir +

η

1− 1.1η
V −
t

)−1

+ ηΛ2
ℓ1 − Cη2∥Λ∥2FrsΛ+

η
√
rs
Λ

1
2νt+1Λ

1
2

= V −
t

(
Ir +

η

1− 1.1η
V −
t

)−1

+ ηΛ2
ℓ1 − Cη2∥Λ∥2FrsΛ+

η
√
rs
Λ

1
2νt+1Λ

1
2 ,

where we used (F.7) for (a).

For the upper bound, by (F.4), we have

Kt+1 ⪯Kt +
η

2

(
Λ2

u1
− (2Kt −Λu1

)2
)
+

C

2
η2∥Λ∥2FrsΛ+

η/2
√
rs
Λ

1
2νt+1Λ

1
2 .

By multiplying both sides with 2 and subtracting Λu1
from both sides, we get

V +
t+1 ⪯ V +

t − η(V +
t )2 + ηΛ2

u1
+ Cη2∥Λ∥2FrsΛ+

η
√
rs
Λ

1
2νt+1Λ

1
2

(b)

⪯ V +
t −

η

1 + 1.1η
(V +

t )2
(
Ir +

η

1 + 1.1η
V +
t

)−1

+ ηΛ2
u1

+ Cη2∥Λ∥2FrsΛ+
η
√
rs
Λ

1
2νt+1Λ

1
2

= V +
t

(
Ir +

η

1 + 1.1η
V +
t

)−1

+ ηΛ2
u1

+ Cη2∥Λ∥2FrsΛ+
η
√
rs
Λ

1
2
u2νt+1Λ

1
2
u2 ,

where we used (F.7) for (b).

F.2.2 Light tailed case - α > 0.5

We introduce the submatrix notation

Gt =:

[
Gt,11 Gt,12

G⊤
t,12 Gt,22

]
νt =:

[
νt,11 νt,12

ν⊤
t,12 νt,22

]
Λ =:

[
Λ11 0
0 Λ22

]
Λℓ1 =:

[
Λℓ1,11 0

0 Λℓ1,22

]
,
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where Gt,11,νt,11,Λ11,Λℓ1,11 ∈ Rru×ru for ru < r. Similarly, we define the block matrices of Λu1 as
Λu1,11 ∈ Rru×ru and Λu1,22. We can write iterations (F.3) and (F.4) for the left-top submatrix as:

Gt+1,11 ⪰ Gt,11 + η
(
Λℓ1,11Gt,11 +Gt,11Λℓ1,11 − 2Gt,11Λ11Gt,11 − 2Gt,12Λ22G

⊤
t,12

)
+

C

2
η2∥Λ∥2FrsIru +

η/2
√
rs
νt+1,11 (F.8)

Gt+1,11 ⪯ Gt,11 + η
(
Λu1,11Gt,11 +Gt,11Λu1,11 − 2Gt,11Λ11Gt,11 − 2Gt,12Λ22G

⊤
t,12

)
+

C

2
η2∥Λ∥2FrsIru +

η/2
√
rs
νt+1,11. (F.9)

The following statement is analogous to Proposition 12 in the case α > 0.5.

Proposition 13. We consider α > 0.5, rs ≍ 1, and

η ≪ 1

d log3 d

1

r2+α
u

and ru = ⌈log2.5 d⌉.

We define V +
t := 2Λ

1
2
11Gt,11Λ

1
2
11 −Λu1,11 and

V −
t := 2

(
Λ11− 1

(ru+1)α Iru

) 1
2

Gt,11

(
Λ11− 1

(ru+1)α Iru

) 1
2 −

(
Λℓ1,11− 1

(ru+1)α Iru

)
.

For d ≥ Ω(1), we have

Λ11 +
0.1

r2+α
u log3 d

Iru ≻ Λu1,11 ≻ Λ11 ≻ Λℓ1,11 ≻ Λ11 − 0.1
r2+α
u log3 d

Iru (F.10)

and

V −
t+1 ⪰ V −

t

(
Iru + η

1−1.1ηV
−
t

)−1

+ η
(
Λℓ1,11− 1

(ru+1)α Iru

)2
− Cη2∥Λ∥2Frs

(
Λ11 − 1

(ru+1)α Iru

)
+

η
√
rs

(
Λ11− 1

(ru+1)α Iru

) 1
2

νt+1,11

(
Λ11− 1

(ru+1)α Iru

) 1
2

V +
t+1 ⪯ V +

t

(
Iru + η

1+1.1ηV
+
t

)−1

+ ηΛ2
u1,11 + Cη2∥Λ∥2FrsΛ11 +

η
√
rs
Λ

1
2
11νt+1,11Λ

1
2
11.

where the bounding iterations are monotone in the sense defined in Proposition 5.

Proof. We first note that since rs ≍ 1 and ∥Λ∥F ≍ 1 for α > 0.5, we have

∥Λ∥F
ηd
√
rs
≪ 1

r2+α
u log3 d

.

Therefore, (F.10) holds for d ≥ Ω(1), which implies

∥V −
t ∥2 ∨ ∥V +

t ∥2 ≤ 1 +
0.1

r2+α
u log3 d

+
1

(ru + 1)α
, for all t ∈ N. (F.11)

For the remaining part, we introduce the following notation,

K−
t :=

(
Λ11− 1

(ru+1)α Iru

) 1
2

Gt,11

(
Λ11− 1

(ru+1)α Iru

) 1
2

and K+
t := Λ

1
2
11Gt,11Λ

1
2
11.

For the upper bound, since Λ22 ≻ 0, by (F.9) we have

K+
t+1 ⪯K+

t +
η

2

(
Λ2

u1,11 − (2K+
t −Λu1,11)

2
)
+

C

2
η2∥Λ∥2FrsΛ11 +

η/2
√
rs
Λ

1
2
11νt+1,11Λ

1
2
11.
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By multiplying both sides with 2 and subtracting Λu1,11 from both sides, we get

V +
t+1 ⪯ V +

t − η(V +
t )2 + ηΛ2

u1,11 + Cη2∥Λ∥2FrsΛ11 +
η
√
rs
Λ

1
2
11νt+1,11Λ

1
2
11

(a)

⪯ V +
t −

η

1 + 1.1η
(V +

t )2
(
Iru +

η

1 + 1.1η
V +
t

)−1

+ ηΛ2
u1,11 + Cη2∥Λ∥2FrsΛ11 +

η
√
rs
Λ

1
2
11νt+1,11Λ

1
2
11

= V +
t

(
Iru +

η

1 + 1.1η
V +
t

)−1

+ ηΛ2
u1,11 + Cη2∥Λ∥2FrsΛ11 +

η
√
rs
Λ

1
2
11νt+1,11Λ

1
2
11,

where we used (F.11) for (a).

For the lower bound, we first observe that Gt,11(Iru −Gt,11) −Gt,12G
⊤
t,12 ⪰ 0 since it corresponds to the

left-top submatrix of Gt(Ir −Gt). Therefore, by (F.8)

Gt+1,11⪰ Gt,11 +η
(
Λℓ1,11Gt,11+Gt,11Λℓ1,11−2Gt,11Λ11Gt,11−2Gt,12Λ22G

⊤
t,12

)
− C

2
η2∥Λ∥2FrsIru +

η/2
√
rs
νt+1,11 −

2η

(ru + 1)α
(
Gt,11(Iru −Gt,11)−Gt,12G

⊤
t,12

)
(b)

⪰Gt,11+η
((

Λℓ1,11− 1
(ru+1)α Iru

)
Gt,11+Gt,11

(
Λℓ1,11− 1

(ru+1)α Iru
)
−2Gt,11

(
Λ11− 1

(ru+1)α Iru
)
Gt,11

)
− C

2
η2∥Λ∥2FrsIru +

η/2
√
rs
νt+1,11,

where (b) follows by Λ22 ⪯ 1
(ru+1)α Ir−ru . Therefore, we have

K−
t+1 ⪰K−

t +
η

2

((
Λℓ1,11 − 1

(ru+1)α Iru
)2 − (2K−

t −
(
Λℓ1,11 − 1

(ru+1)α Iru
))2)

− C

2
η2∥Λ∥2Frs

(
Λ11 − 1

(ru+1)α Iru
)
+

η/2
√
rs

(
Λ11 − 1

(ru+1)α Iru
) 1

2νt+1,11

(
Λ11 − 1

(ru+1)α Iru
) 1

2 .

By multiplying both sides with 2 and subtracting Λℓ1,11 from both sides, we get

V −
t+1 ⪰ V −

t − η(V −
t )2 + η

(
Λℓ1,11 − 1

(ru+1)α Iru
)2 − Cη2∥Λ∥2Frs

(
Λ11 − 1

(ru+1)α Iru
)

+
η
√
rs

(
Λ11 − 1

(ru+1)α Iru
) 1

2νt+1,11

(
Λ11 − 1

(ru+1)α Iru
) 1

2

(c)

⪰ V −
t −

η

1− 1.1η
(V −

t )2
(
Iru +

η

1− 1.1η
V −
t

)−1

+ η
(
Λℓ1,11 − 1

(ru+1)α Iru
)2

− Cη2∥Λ∥2Frs
(
Λ11 − 1

(ru+1)α Iru
)
+

η
√
rs

(
Λ11 − 1

(ru+1)α Iru
) 1

2νt+1,11

(
Λ11 − 1

(ru+1)α Iru
) 1

2

= V −
t

(
Iru +

η

1− 1.1η
V −
t

)−1

+ η
(
Λℓ1,11 − 1

(ru+1)α Iru
)2

− Cη2∥Λ∥2Frs
(
Λ11 − 1

(ru+1)α Iru
)
+

η
√
rs

(
Λ11 − 1

(ru+1)α Iru
) 1

2νt+1,11

(
Λ11 − 1

(ru+1)α Iru
) 1

2 ,

where we used (F.11) for (c). The monotonicity of the update follows the same argument in the heavy-tailed
case.

F.3 Definitions and bounding systems

To avoid repetition in the derivations, we introduce the following unified notation:

rk ∈ {r, ru}, Gt ∈ {Gt,Gt,11}, νt ∈ {νt,νt,11}.
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where each variable will take its first value in the heavy-tailed case and its second value in the light-tailed
case. To avoid repetition in the following sections, we make the following simplifications by slight abuse of
notation:

Λℓ1 ←

{
Λℓ1 , α ∈ [0, 0.5)

Λℓ1,11 − 1
(ru+1)α Iru , α > 0.5

and Λℓ2 ←

{
Λ, α ∈ [0, 0.5)

Λ11 − 1
(ru+1)α Iru , α > 0.5

and

Λu1
←

{
Λu1 , α ∈ [0, 0.5)

Λu1,11, α > 0.5
and Λu2

←

{
Λ, α ∈ [0, 0.5)

Λ11, α > 0.5.

The dimension of each block is ru < r for α > 0.5 and r for α ∈ [0, 0.5), from which readers can distinguish
the light tailed case from the heavy tailed case. Throughout the proof, we will also use constants κd ∈ od(1)
and C̃ ∈ O(1) that will be specified later. Moreover, we make the following definitions:

• Noise sequence. For ν0 = 0, we define the noise sequence νt+1 := νt +
η/2√
rs
νt+1.

• Reference sequence. For T0 = κdrs
d Irk, we define the reference sequence

Tt+1 = Tt + 2(1− 2κd)η

(
Λℓ1Tt −

3κd + 1

κd(1− 2κd)
Λu2

T 2
t

)
.

• Bounding systems. We define the lower and upper bounding recursions as

V t+1 = V t

(
Irk +

η(1 + 2κd)

1− 1.2η
V t

)−1

+
η(1 + 2κd)

1− 1.2η

(
Λ2

ℓ1

(1 + 2κd)2
− C̃η∥Λ∥2FrsΛℓ1

)
, (F.12)

V̄t+1 = V̄t

(
Irk +

η(1− 2κd)

1 + 1.2η
V̄t

)−1

+
η(1− 2κd)

1 + 1.2η

(
Λ2

u1

(1− 2κd)2
+ C̃η∥Λ∥2FrsΛu1

)
. (F.13)

where the iterates {V t }t∈N and {V̄t}t∈N are functions of the bounding sequences {Gt}t∈N and {Ḡt}t∈N as
following:

Kt := Λ
1
2

ℓ2
GtΛ

1
2

ℓ2
and V t = 2Kt −

Λℓ1

1 + 2κd
and G0 ⪯ G0 − T0,

K̄t := Λ
1
2
u2ḠtΛ

1
2
u2 and V̄t = 2K̄t −

Λu1

1− 2κd
and Ḡ0 ⪰ G0 + T0.

• Stopping times. We define a sequence of events {Et}t≥0

Et :=


{
−κdr

−α
2 Tt ⪯ νt ⪯ κdr

−α
2 Tt

}
∩
{
−κ2dr−αTt ⪯ Λ

1
2νtΛ

1
2 ⪯ κ2dr

−αTt

}
, α ∈ [0, 0.5){

−κdr
−α
2

u Tt ⪯ νt ⪯ κdr
−α
2

u Tt

}
∩
{

−κ2
d

4 r−α
u Tt ⪯ Λ

1
2
11νtΛ

1
2
11 ⪯

κ2
d

4 r−α
u Tt

}
, α > 0.5.

We define the stopping times

Tnoise(ω) := inf {t ≥ 0 | ω ̸∈ Et} ∧ d3 and Tbounded := inf
{
t ≥ 0

∣∣ ∥Gt∥2 ∨ ∥Ḡt∥2 ≥ 1.5
}
,

and

Tbad := Tnoise ∧ Tbounded ∧ {t ≥ 0 : ∥Tt∥2 > 1.2κd}. (F.14)

The main result of this section is the following:
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Proposition 14. Let κd satisfy (F.15) and consider d large enough so that κd ≤ 1
50 . Under the learning rate

conditions considered in Propositions 12 and 13, we have for C̃ > 1 ∨ Ω(1)

Gt∧Tbad
+ Tt∧Tbad

+ νt∧Tbad
⪯ Gt∧Tbad

⪯ Ḡt∧Tbad
− Tt∧Tbad

+ νt∧Tbad
.

Before starting the proof, we provide an auxiliary statement.

Lemma 4. We consider the learning rate conditions considered in Propositions 12 and 13 with

κd ≪

{
1

log d , α ∈ [0, 0.5)
r−1
u

log d , α > 0.5.
(F.15)

The event Et implies for d ≥ Ω(1) and t ≤ Tbounded ∧ {t : ∥Tt∥2 > 1.2κd} that

1. −3κdΛ
1
2

ℓ1
TtΛ

1
2

ℓ1
⪯ Λℓ1νt + νtΛℓ1

2. Λu1
νt + νtΛu1

⪯ 3κdΛ
1
2
u1TtΛ

1
2
u1

3.
(
Λ

1
2

ℓ2
νtΛ

1
2

ℓ2

)2 ⪯ κ2
d

4 Λℓ1TtΛℓ1

4.
(
Λ

1
2
u2νtΛ

1
2
u2

)2 ⪯ κ2
d

4 Λu1
TtΛu1

Proof. For notational convenience, we define ν̃t := T
−1
2

t νtT
−1
2

t . We initially observe that Et implies for
α ∈ [0.0.5) that

Λν̃t + ν̃tΛ ⪯ κ2dΛ+
1

κ2d
Λ

−1
2

(
Λ

1
2 ν̃tΛ

1
2

)2
Λ

−1
2 ⪯ κ2dΛ+ κ2dr

−αIr

Λν̃t + ν̃tΛ ⪰ −κ2dΛ−
1

κ2d
Λ

−1
2

(
Λ

1
2 ν̃tΛ

1
2

)2
Λ

−1
2 ⪰ −κ2dΛ− κ2dr

−αIr.

For α > 0.5, these bounds become

Λ11ν̃t + ν̃tΛ11 ⪯
κ2d
4
Λ11 +

4

κ2d
Λ

−1
2

11

(
Λ

1
2
11ν̃tΛ

1
2
11

)2
Λ

−1
2

11 ⪯
κ2d
4
Λ11 +

κ2d
4
r−α
u Iru

Λ11ν̃t + ν̃tΛ11 ⪰ −
κ2d
4
r−1
u Λ11 −

4

κ2d
Λ

−1
2

11

(
Λ

1
2
11ν̃tΛ

1
2
11

)2
Λ

−1
2

11 ⪰ −
κ2d
4
r−1
u Λ11 −

κ2d
4
r−α
u Iru .

In the following, we will use these bounds. For the first item, we have

Λℓ1 ν̃t + ν̃tΛℓ1 ⪰

−κd
(
κdΛ+ κdr

−αIr + r
−α
2 C∥Λ∥F ηd√

rs
Ir

)
, α ∈ [0, 0.5)

−κd
(

κd

4 Λ11 +
κd

4 r−α
u Iru + r

−α
2

u C∥Λ∥F ηd√
rs
Iru

)
, α > 0.5

⪰ −3κdΛℓ1 .

For the second item, we have

Λu1
ν̃t + ν̃tΛu1

⪯

κd

(
κdΛ+ κdr

−αIr + r
−α
2 C∥Λ∥F ηd√

rs
Ir

)
, α ∈ [0, 0.5)

κd

(
κd

4 Λ11 +
κd

4 r−α
u Iru + r

−α
2

u C∥Λ∥F ηd√
rs
Iru

)
, α > 0.5

⪯ 3κdΛu1
.

For the third item, we immediately observe that
(
Λ

1
2

ℓ2
νtΛ

1
2

ℓ2

)2 ⪯ Λ
1
2

ℓ2
ν2
tΛ

1
2

ℓ2
. Therefore,

T
−1
2

t Λ
1
2

ℓ2
ν2
tΛ

1
2

ℓ2
T

−1
2

t ⪯ 1.2κdΛ
1
2

ℓ2
ν̃2
t Λ

1
2

ℓ2
⪯ 1.2κ3drk

−αΛℓ2 ⪯
κ2d
4
Λ2

ℓ1 .
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For the fourth item, we observe that

(
Λ

1
2
u2νtΛ

1
2
u2

)2
= Λ

1
2
u2νtΛu2

νtΛ
1
2
u2 ⪯

(
1 +

0.1rk−α

log3 d

)
Λ

1
2
u2ν

2
tΛ

1
2
u2 .

Therefore (
1 +

0.1rk−α

log3 d

)
T

−1
2

t Λ
1
2
u2ν

2
tΛ

1
2
u2T

−1
2

t ⪯ 1.25κdΛ
1
2
u2 ν̃

2
t Λ

1
2
u2 ⪯ 1.25κ3drk

−αΛu2
⪯ κ2d

4
Λ2

u1
.

F.3.1 Proof of Proposition 14

Proof. For the proof, we introduce the following notations

ζ
t
:= 2Λ

1
2

ℓ2
νtΛ

1
2

ℓ2
and ζ̄t := 2Λ

1
2
u2νtΛ

1
2
u2 and Bt := 2Λ

1
2

ℓ2
TtΛ

1
2

ℓ2
and B̄t := 2Λ

1
2
u2TtΛ

1
2
u2 .

Using this notation, we obtain:

Bt+1 ⪯ Bt +
2(1− 2κd)η

1− 1.1η

(
Λℓ1Bt −

1.5κd + 0.5

κd(1− 2κd)
B2

t

)
+ 10η2κdΛℓ1 (F.16)

B̄t+1 ⪯ B̄t +
2(1− 2κd)η

1 + 1.1η

(
Λu1

B̄t −
1.5κd + 0.5

κd(1− 2κd)
B̄2

t

)
+ 10η2κdΛu1

(F.17)

Before proceeding with the proof, we observe that the following inequalities hold:

∥Λ−1
ℓ2

Λℓ1∥2 ≤ 1, ∥Λ−1
ℓ1

Λℓ2∥2 ≤
1

1− 0.1
log4 d

and ∥Λ−1
u2

Λu1
∥2 ≤ 1, ∥Λ−1

u1
Λu2
∥2 ≤

1

1− 0.1
log4 d

.

These bounds will be used in the following whenever we apply Propositions 29 and 30, without explicitly
restating them each time. We will establish the upper and lower bounds simultaneously for rk ∈ {r, ru}.

Upper bound proof: We will use proof by induction. Specifically, we will show that for t < Tbad,

V +
t ⪯ V̄t + ζ̄t − B̄t +

2κdΛu1

1− 2κd
⇒ V +

t+1 ⪯ V̄t+1 + ζ̄t+1 − B̄t+1 +
2κdΛu1

1− 2κd
. (F.18)

Since the base case holds at t = 0 and Tbad > 0, it remains to prove (F.18). By (F.6), we have

V +
t+1 ⪯

(
V̄t + ζ̄t − B̄t +

2κdΛu1

1− 2κd

)(
Irk+

η

1 + 1.1η
(V̄t+ζ̄t−B̄t+

2κdΛu1

1− 2κd
)

)−1

+ ηΛ2
u1

+ Cη2∥Λ∥2FrsΛu2
+

η
√
rs
Λ

1
2
u2νt+1Λ

1
2
u2

= V̄t

(
Irk +

η

1 + 1.1η
V̄t

)−1

+ ηΛ2
u1

+ Cη2∥Λ∥2FrsΛu2
+

η
√
rs
Λ

1
2
u2νt+1Λ

1
2
u2

+

(
Irk +

η

1 + 1.1η
V̄t

)−1

(ζ̄t − B̄t +
2κdΛu1

1− 2κd
)

(
Irk +

η

1 + 1.1η
(V̄t + ζ̄t − B̄t +

2κdΛu1

1− 2κd
)

)−1

.(F.19)

By using Proposition 29, we have for t < Tbad(
Irk +

η

1 + 1.1η
V̄t

)−1

(ζ̄t − B̄t +
2κdΛu1

1− 2κd
)

(
Irk +

η

1 + 1.1η
(V̄t + ζ̄t − B̄t +

2κdΛu1

1− 2κd
)

)−1

⪯
(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
− η

1 + 1.1η
V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
− η

1 + 1.1η

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
V̄t
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− η

1 + 1.1η

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

+
2η2/κ2d

(1 + 1.1η)2

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

+
η2κ2d

(1 + 1.1η)2
V̄ 4
t

+
η2κ2d

(1 + 1.1η)2
V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

V̄t +
η2

(1 + 1.1η)2

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
+

η2

(1 + 1.1η)2

(
ζ̄t − B̄t +

2κdΛu1

1− 2cd

)3

+
η2

(1 + 1.1η)2
V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
V̄t + η3C̃1Λu1

for some C̃1 = O(1) . We have the following: First:

κ2dV̄
4
t +κ2dV̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

V̄t+V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
V̄t

(a)

⪯ 4κdV̄
2
t

(b)

⪯ 1

15

1 + 1.1η

1 + 1.2η
V̄ 2
t ,

where (a) follows by ∥V̄t∥2 ≤ 5 and
∥∥∥ζ̄t − B̄t +

2κdΛu1

1−2κd

∥∥∥
2
≤ 2.5κd, and (b) follows by κd ≤ 1

50 . Second,

2

κ2d

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

+

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
V̄t

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)
+

(
ζ̄t + B̄t +

2κdΛu1

1− 2cd

)3

(c)

⪯ 3

κ2d

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

⪯ 9

κ2d

(
ζ̄2
t + B̄2

t

)
+

36

(1− 2κd)2
Λ2

u1
,

where (c) follows by ∥V̄t∥2 ≤ 5 and
∥∥∥ζ̄t − B̄t +

2κdΛu1

1−2κd

∥∥∥
2
≤ 2.5κd. Third:

−V̄t

(
ζ̄t−B̄t+

2κdΛu1

1− 2κd

)
−
(
ζ̄t−B̄t+

2κdΛu1

1− 2κd

)
V̄t−

(
ζ̄t − B̄t +

2κdΛu1

1− 2κd

)2

+
9η/κ2d
1 + 1.1η

(
ζ̄2
t + B̄2

t

)
⪯ −2(K̄tζ̄t + ζ̄tK̄t) + 2(K̄tB̄t + B̄tK̄t)−

4κd
1− 2κd

(K̄tΛu1 +Λu1K̄t) + 3
(
ζ̄2
t + B̄2

t

)
+ (Λu1

ζ̄t + ζ̄tΛu1
)− (Λu1

B̄t + B̄tΛu1
) +

4κd(1− κd)

(1− 2κd)2
Λ2

u1

(d)

⪯ 8κdK̄
2
t −

4κd
1− 2κd

(K̄tΛu1
+Λu1

K̄t) +
4κd(1− κd)

(1− 2κd)2
Λ2

u1
− (2− 4κd)Λu1

B̄t +

(
3 +

1

κd

)
B̄2

t

= 2κdV̄
2
t +

2κd
1− 2κd

Λ2
u1
− (2− 4κd)Λu1

B̄t +

(
3 +

1

κd

)
B̄2

t ,

where we used Proposition 22, and the second and fourth items in Lemma 4 in (d). Therefore, we have

(F.19) ⪯ V̄t

(
Irk +

η

1 + 1.1η
V̄t

)−1

+
2κdη

1 + 1.1η
V̄ 2
t +

1

10

(1− 2κd)η
2

(1 + 1.1η)(1 + 1.2η)
V̄ 2
t +

2κdΛu1

1− 2κd

+
η

1 + 1.1η

(
Λ2

u1

1− 2κd
+ C̃η∥Λ∥2FrsΛu2

)
+ ζ̄t+1 − B̄t −

2(1− 2κd)η

1 + 1.1η

(
Λu1

B̄t −
1.5κd + 0.5

κd(1− 2κd)
B̄2

t

)
(e)

⪯ V̄t

(
Irk +

η(1− 2κd)

1 + 1.2η
V̄t

)−1

+
η

1 + 1.2η

(
Λ2

u1

1− 2κd
+ C̃η∥Λ∥2FrsΛu1

)
+ ζ̄t+1 +

2κdΛu1

1− 2κd
− B̄t+1

⪯ V̄t+1 + ζ̄t+1 +
2κdΛu1

1− 2κd
− B̄t+1,

where we used Proposition 30 and (F.17) in (e).

Lower bound proof: Similar to the upper bound proof, here we will show that for t < Tbad,

V t + ζ
t
+Bt −

2κdΛℓ1

1 + 2κd
⪯ V −

t ⇒ V t+1 + ζ
t+1

+Bt+1 −
2κd

1 + 2κd
Λℓ1 ⪯ V −

t+1. (F.20)

Since the base case holds at t = 0 and Tbad > 0, it remains to prove (F.20). By (F.6), we have

V −
t+1 ⪰

(
V t +ζ

t
+Bt−

2κdΛℓ1

1 + 2κd

)(
Irk +

η

1− 1.1η
(V t +ζ

t
+Bt−

2κdΛℓ1

1 + 2κd
)

)−1

+ ηΛ2
ℓ1
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− Cη2∥Λ∥2FrsΛℓ2 +
η
√
rs
Λ

1
2

ℓ2
νt+1Λ

1
2

ℓ2

= V t

(
Irk +

η

1− 1.1η
V t

)−1

+ ηΛ2
ℓ1 − Cη2∥Λ∥2FrsΛℓ2 +

η
√
rs
Λ

1
2

ℓ2
νt+1Λ

1
2

ℓ2

+

(
Irk +

η

1− 1.1η
V t

)−1

(ζ
t
+Bt −

2κdΛℓ1

1 + 2κd
)

(
Irk +

η

1− 1.1η
(V t + ζ

t
+Bt −

2κdΛℓ1

1 + 2κd
)

)−1

.(F.21)

By using Proposition 29, we have for t < Tbad(
Irk +

η

1− 1.1η
V t

)−1(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)(
Irk +

η

1− 1.1η
(V t + ζ

t
+Bt −

2κdΛℓ1

1 + 2κd
)

)−1

⪰
(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)
− η

1− 1.1η
V t

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)
− η

1− 1.1η

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)
V t

− η

1− 1.1η

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)2

− 2η2/κ2d
(1− 1.1η)2

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)2

− η2κ2d
(1− 1.1η)2

V 4
t

− η2κ2d
(1− 1.1η)2

V t

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)2

V t +
η2

(1− 1.1η)2

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)
V t

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)
+

η2

(1− 1.1η)2

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)3

+
η2

(1− 1.1η)2
V t

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)
V t − η3C̃2Λℓ1

for some C̃2 = O(1) . We have the following: First:

−κ2dV
4
t −κ2dV t

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)2

V t +V t

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)
V t

(f)

⪰−3.2κdV 2
t

(g)

⪰ − 1

15

1− 1.1η

1− 1.2η
V 2

t .

where (f) follows by ∥V t ∥2 ≤ 5 and
∥∥∥ζ

t
+Bt −

2κdΛℓ1

1+2κd

∥∥∥
2
≤ 2.5κd, and (g) follows by κd ≤ 1

50 . Second:

− 2

κ2d

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)2

+

(
ζ
t
+Bt−

2cdΛℓ1

1 + 2κd

)
V t

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)
+

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)3

(h)

⪰ −3
κ2d

(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)2

⪰ −9
κ2d

(
ζ2

t
+B2

t

)
− 36Λ2

ℓ1 ,

where (h) follows by ∥V t ∥2 ≤ 5 and
∥∥∥ζ

t
+Bt −

2κdΛℓ1

1+2κd

∥∥∥
2
≤ 2.5κd. Third:

− V t

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)
−
(
ζ
t
+Bt −

2κdΛℓ1

1 + 2κd

)
V t−

(
ζ
t
+Bt−

2κdΛℓ1

1 + 2κd

)2

− 9η/κ2d
1− 1.1η

(
ζ2

t
+B2

t

)
⪰ −2

(
Ktζt

+ ζ
t
Kt

)
− 2 (KtBt +BtKt) +

4κd
1 + 2κd

(KtΛℓ1 +Λℓ1Kt)− 3(ζ2

t
+B2

t )

+
(
Λℓ1ζt

+ ζ
t
Λℓ1

)
+ (Λℓ1Bt +BtΛℓ1)−

4κd(1 + κd)Λ
2
ℓ1

(1 + 2κd)2

(i)

⪰ −8cdK2
t +

4κd
1 + 2κd

(KtΛℓ1 +Λℓ1Kt)−
4κd(1 + κd)Λ

2
ℓ1

(1 + 2κd)2
+ (2− 4κd)Λℓ1Bt −

(
3 +

1

κd

)
B2

t

= −2κdV 2
t −

2κdΛ
2
ℓ1

(1 + 2κd)
+ (2− 4κd)BtΛℓ1 −

(
3 +

1

κd

)
B2

t ,

where we used Proposition 22, and the first and third items in Lemma 4 in (i). Therefore, we have

(F.21) ⪰ V t

(
Ir +

η

1− 1.1η
V t

)−1

− 2κdη

1− 1.1η
V 2

t −
1

15

(1 + 2κd)η
2

(1− 1.1η)(1− 1.2η)
V 2

t −
2κd

1 + 2κd
Λℓ1
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+
η

1− 1.1η

(
Λ2

ℓ1

1 + 2κd
− C̃η∥Λ∥2FrsΛℓ2

)
+ ζ

t+1
+Bt +

2(1− 2κd)η

1− 1.1η

(
Λℓ1Bt −

1.5κd + 0.5

κd(1− 2κd)
B2

t

)
(j)

⪰ V t

(
Ir +

η(1 + 2κd)

1− 1.2η
V t

)−1

+
η

1− 1.1η

(
Λ2

ℓ1

1 + 2κd
−C̃η∥Λ∥2FrsΛℓ1

)
+ ζ

t+1
+Bt+1 −

2κd
1 + 2κd

Λℓ1

= V t+1 + ζ
t+1

+Bt+1 −
2κd

1 + 2κd
Λℓ1 ,

where we used Proposition 30 and (F.16) in (j).

F.4 Analysis of the bounding systems

F.4.1 Lower bounding system

In this section, we consider (F.12). For notational convenience, we multiply both sides by the factor (1+2κd)
and use a generic learning rate η, i.e.,

V t+1 = V t (Irk + ηV t )
−1 + η

(
Λ2

ℓ1 − C̃η∥Λ∥2FrsΛℓ1

)
, where V t = 2Λ

1
2

ℓ2
GtΛ

1
2

ℓ2
−Λℓ1 .

The main result of this section is stated in Proposition 15. To establish it, we first prove an auxiliary result,
Lemma 5. For the following, we define

Λ̂ :=
√
Λ2

ℓ1
− C̃η∥Λ∥2FrsΛℓ1 = diag({λ̂i}ri=1) and Dt :=

Λ−1
ℓ2

Λ̂
(

At,11

At,12
− Irk

)
2

− 1.1κdrs
d

Irk.

By Corollary 3, we have

Gt =
1

2

(
Λℓ1

Λℓ2

+
At,22

At,12

Λ̂

Λℓ2

)
− 1

4

A−1
t,12Λ̂

Λℓ2

 Λ̂
Λℓ2

(
At,11

At,12
− Irk

)
2

+

(
Λ̂−Λℓ1

)
2Λℓ2

+G0

−1

Λ̂A−1
t,12

Λℓ2

, (F.22)

where At,11, At,12, and At,22 are defined as in (R.1) with Λ̂. For α = 0, we will consider {Gt}t∈N in the basis
of G0 without writing explicitly, which will imply that {Gt}t∈N is diagonal due to the rotational symmetry
for α = 0.

We further decompose {Gt}t∈N and related matrices to isolate their top-left submatrices of dimension
rk⋆ ∈ {r⋆, ru⋆}, where r⋆ < r and ru⋆ < ru which we will denote as rk⋆ < rk. The decompositions are as
follows:

Gt :=

[
Gt,11 Gt,12

G⊤
t,12 Gt,22

]
, Λ̂ :=

[
Λ̂11 0

0 Λ̂22

]
, Dt :=

[
Dt,1 0
0 Dt,2

]
, Z1:rk :=

[
Z1:rk⋆

Z2

]
,

where Gt,11,Dt,1, Λ̂11 ∈ Rrk⋆×rk⋆ . We define

Γt := Dt +
1

1.05
Z1:rkZ

⊤
1:rk =

[
1

1.05Z1:rk⋆Z
⊤
1:rk⋆

+Dt,1
1

1.05dZ1:rk⋆Z
⊤
2

1
1.05Z2Z

⊤
1:rk⋆

1
1.05Z2Z

⊤
2 +Dt,2

]

and

Γ−1
t :=

[
(Γ−1

t )11 (Γ−1
t )12

(Γ−⊤
t )12 (Γ−1

t )22

]
whenever Γt is invertible. Lemma 5 is stated as follows:
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Lemma 5. We consider the following setting:

α ∈ [0, 0.5) :
rs
r
→ φ ∈ (0,∞), η≪ 1

d r1−α log4 d
, κd =

1

log3.5 d
,

α > 0.5 : rs ≍ 1, η≪ 1

d r2+α
u log3 d

, κd =
1

ru log
2.5 d

.

Ginit implies the following:

• For α ≥ 0 and K ≤ rk⋆ ≤ rk, we have for ηt ≤ 1
2 (K + 1)α log

(
d log1.5 d

rs

)
,

Dt ⪰
Λ−1

ℓ2
Λ̂
(

At,22

At,12
− Irk

)
2

− 1.2κdrs
d

Irk and Dt,2 ⪰
(
1− 1

log3 d

)(
0.5rs

d log1.5 d

)( K+1
rk⋆+1 )

α

Irk−rk⋆ .

• For r⋆ = ⌊rs
(
1− log

−1
2 d
)
∧ r⌋ and ru⋆

= rs, and ηt ≤ 1
2 (rk⋆ + 1)α log

(
d log1.5 d

rs

)
, we have

Γt ⪰
Λ−1

ℓ2
Λ̂
(

At,22

At,12
− Irk

)
2

+

[
C1rs

d log4.5 d
Irk⋆ 0

0 − C2rs
d log2 d

Irk−rk⋆

]
≻ 0, (F.23)

where

C1 =


1
10 , α ∈ [0, 0.5)(

1
1.1r6s

− 1.3√
log d

)
, α > 0.5

and C2 =

2.1
(
1 + 1√

φ

)2
, α ∈ [0, 0.5)

2, α > 0.5.

Within the same time interval, we have

Γ−1
t ⪯

Λ−1
ℓ2

Λ̂
(

At,22

At,12
− Irk

)
2

+

[
C1rs

d log4.5 d
Irk⋆ 0

0 −C2rs
d log2 d

Irk−rk⋆

]−1

. (F.24)

• For α > 0, we have

(Γ−1
t )11 ⪯

(
Dt,1 +

1

2
Z1:rk⋆Z

⊤
1:rk⋆

)−1

,

for 0.001 > δ ≥ log
−1
4 dr⋆ = ⌊rs
(
1− δ

)
∧ r⌋ and ηt ≤ 1

2

(
rs
(
1−
√
δ
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ (0, 0.5)

ru⋆ = rs and ηt ≤ 1
2r

α
s log

(
d log1.5 d

rs

)
, α > 0.5

provided that {
d ≥ Ωβ(1) ∨ exp

(
2.5α−8

)
, α ∈ (0, 0.5)

d ≥ Ωrs(1), α > 0.5.

Proof. For the first part of the first item, by (R.2), we have

Dt =
Λ−1

ℓ2
Λ̂
(

At,22

At,12
− Irk

)
2

− η

2
Λ−1

ℓ2
Λ̂2 − 1.1κdrs

d
Irk

(a)

⪰
Λ−1

ℓ2
Λ̂
(

At,22

At,12
− Irk

)
2

− 1.2κdrs
d

Irk,
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where (a) follows η≪ κdrs
d . Moreover, since Λ−1

ℓ2
Λ̂ ⪰ (1− 1

log3 d
)Irk, by (R.4), we have

Dt,2 ⪰
(
1− 1

log3 d

)
(
Irk−rk⋆ − ηΛ̂22

)t
(
Irk−rk⋆ + ηΛ̂22

)t
−
(
Irk−rk⋆ − ηΛ̂22

)t − 1.3κdrs
d

Irk−rk⋆

 . (F.25)

We observe that(
Irk−rk⋆ − ηΛ̂22

)t
(
Irk−rk⋆ + ηΛ̂22

)t
−
(
Irk−rk⋆ − ηΛ̂22

)t ⪰ Irk−rk⋆

exp
(

2tηΛ̂22

1−ηΛ̂22

)
− Irk−rk⋆

(b)

⪰
(

rs

d log1.5 d

)(1+2ηrk−α
⋆ )( K+1

rk⋆+1 )
α

Irk−rk⋆

(c)

⪰
(

0.9rs

d log1.5 d

)( K+1
rk⋆+1 )

α

Irk−rk⋆ ,

where we use ηt ≤ 1
2 (K + 1)α log

(
d log1.5 d

rs

)
in (b) and d ≥ Ω(1) in (c). By (F.25), the first item follows.

For the second item, by Proposition 24 with ε = 1
log2 d

for α ∈ [0, 0.5) and ε = 1
ru log2 d

for α > 0.5, we have

Γt ⪰
Λ−1

ℓ2
Λ̂
(

At,22

At,12
− Irk

)
2

− 1.2κdrs
d

Irk +
1

1.05

[
εZ1:rk⋆Z

⊤
1:rk⋆

0
0 −ε

1−εZ2Z
⊤
2

]
.

For α ∈ [0, 0.5), since κd = 1
log3.5 d

, by (H.1), we have

ε

1.05
Z1:r⋆Z

⊤
1:r⋆ −

1.2κdrs
d

Ir⋆ ⪰
rs

d log3 d

1

6.25
Ir⋆ −

1.2κdrs
d

Ir⋆ ≻
1

10

rs

d log3 d
Ir⋆ .

Similarly by (H.3), we have

−ε
1− ε

1

1.05
Z2Z

⊤
2 −

1.2κdrs
d

Ir−r⋆ ⪰ −
(
1 +

1
√
φ

)2
2.1rs

d log2 d
Ir−r⋆ .

For α > 0.5, since κd = 1
ru log2.5 d

and ru = ⌈log2.5 d⌉, by (L.1), we have

ε

1.05
Z1:ru⋆

Z⊤
1:ru⋆

− 1.2κdrs
d

Iru⋆
≻ rs

d log4.5 d

(
1

1.1r6s
− 1.3√

log d

)
Iru⋆

.

Similarly by (L.2),

−ε
1− ε

1

1.05d
Z2Z

⊤
2 −

1.2κdrs
d

Iru−ru⋆
⪰ −2rs

d log2 d
Iru−ru⋆

.

Therefore, we have (F.23). By Proposition 25, we have (F.24).

For the last item, we have

(Γ−1
t )11 =

(
Dt,1 +

1

1.05
Z1:rk⋆

(
Irs +

1

1.05
Z⊤

2 D−1
t,2Z2

)−1

Z⊤
1:rk⋆

)−1

. (F.26)

For α ∈ (0, 0.5), if r⋆ = r, the statement follows. If not by the first item, for K = ⌊
(
1 −
√
δ
)
rs⌋ and

r⋆ = ⌊rs
(
1− δ

)
⌋, we have

K + 1

r⋆ + 1
≤ 1−

√
δ

1− δ
+

2

rs
≤ 1− 0.9

√
δ ⇒

(
K + 1

r⋆ + 1

)α

≤ 1− α0.9
√
δ.
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Therefore,

Dt,2 ⪰
(

0.5rs

d log1.5 d

)1−α0.9
√
δ

Ir−r⋆

(d)

⪰ 0.5rs

d log1.5 d

(
d

rs

)log
−1/4d

Ir−r⋆

(e)

⪰ rs log d

d
Ir−r⋆ ,

where we used d ≥ Ω(1) ∨ exp(2.5α−8) in (d) and d ≥ Ωβ(1) in (e). By (F.26) and (H.3), we have the
statement for α ∈ (0, 0.5). For α > 0.5, K = r⋆ = rs, we have(

K + 1

r⋆ + 1

)α

≤
(
1 +

1

rs + 1

)0.5

≤ 1− 1

2(rs + 1)
.

Therefore,

Dt,2 ⪰
(

0.5rs

d log1.5 d

)1− 1
2(rs+1)

Iru−ru⋆
⪰ rs log

8 d

d
Ir−r⋆

for d ≥ Ωrs(1). By (F.26) and (L.2), we have the statement for α > 0.5.

Proposition 15. Let

G0 = (1 + 2κd)
(
G0 −

κdrs
d

Irk

)
,

Under the parameter choice in Lemma 5, Ginit guarantees that:

• We have Ω
(
− log

−1
2 d
)
Irk ⪯ Gt whenever

ηt ≤


1
2

(
rs
(
1− log

−1
2 d
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ [0, 0.5)

1
2r

α
s log

(
d log1.5 d

rs

)
, α > 0.5

.

• Let Λ11be the rk⋆ × rk⋆ dimensional top-left sub-matrix of Λ. Given 0.001 ≥ δ ≥ log
−1
4 d and rk⋆ =

{
r⋆ =

⌊rs
(
1− δ

)
∧ r⌋, ru⋆

= rs

}
, we have

Gt,11 ⪰
1− 10

log3 d

1.2
Clb

d
rs

exp (−2ηtΛ11) + 1

and

∥Λ̂∥2F − ∥Λ̂
1
2
1 Gt,11Λ̂

1
2
1 ∥2F ≤

r∑
i=(rk⋆∧r)+1

λ̂2
i +

rk⋆∑
i=1

λ̂2
i

(
1−

1− 10
log3 d

1.2
Clb

d
rs

exp (−2ηtλi) + 1

)2

,

for

Clb =
1

15

{
δ2, α ∈ [0, 0.5)
1
r6s
, α > 0.5

and ηt ≤


1
2

(
rs
(
1−
√
δ
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ [0, 0.5)

1
2r

α
s log

(
d log1.5 d

rs

)
, α > 0.5.

• For δ = log
−1
4 d, we define

Tlb := inf

n ≥ 0

∣∣∣∣∣∣ ∥Λ̂∥2F − ∥Λ̂ 1
2
1 Gt,11Λ̂

1
2
1 ∥2F ≤

r∑
j=(rs∧r)+1

λ2
j +

3∥Λ̂∥2F
log

1
8 d

 .

Then,

Tlb ≤


1
2η

(
rs
(
1− log

−1
8 d
)
∧ r
)α

log

(
20d log

3
4 (1+d/rs)
rs

)
, α ∈ [0, 0.5)

1
2ηr

α
s log

(
20d log

3
4 d

rs

)
, α > 0.5.
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Proof. For α > 0.5, we assume that d is large enough to guarantee that
(

1
1.1r6s

− 1.3√
log d

)
> 0. We observe

that

Λ−1
ℓ2

Λ̂
(

At,11

At,12
− Irk

)
2

+
Λ−1

ℓ2

(
Λ̂−Λℓ1

)
2

+G0 ⪰ Γt,

where we used (E.1), Λℓ2 ⪰ Λℓ1 and η∥Λ∥2FrsIrk ≪
κdrs
d Λℓ1 .

For the first item, by using rk⋆ =
{
r⋆ = ⌊rs

(
1− log

−1
2 d
)
∧ r⌋, ru⋆

= rs
}
, we define

Dlb :=

[
C1rs

d log4.5 d
Irk⋆ 0

0 −C2rs
d log2 d

Irk−rk⋆

]
and D̃lb :=

Λℓ2

Λ̂
Dlb.

We introduce submatrix notation for block-diagonal matrices. Specifically, we write

D̃lb =

[
D̃lb,1 0

0 D̃lb,2

]
and

At,22

At,12
± Irk =

(At,22

At,12
± Irk

)
11

0

0
(

At,22

At,12
± Irk

)
22

 ,

where the block dimensions of each submatrix match those of Dlb. We start with proving the lower bound
part. By the second item in Lemma 5, we have

Gt ⪰
1

2

√
Λ̂

Λℓ2

((
At,22

At,12
+ Irk

)
−A−1

t,12

((
At,22

At,12
− Irk

)
+ 2D̃lb

)−1

A−1
t,12

)√
Λ̂

Λℓ2

+

Λℓ1

Λℓ2
− Λ̂

Λℓ2

2

⪰ 1

2

√
Λ̂

Λℓ2

((
At,22

At,12
+ Irk

)
−A−1

t,12

((
At,22

At,12
− Irk

)
+ 2D̃lb

)−1

A−1
t,12

)√
Λ̂

Λℓ2

, (F.27)

where we used Λℓ1 ≻ Λ̂ in the second line. We have(At,22

At,12
+Irk

)
−A−1

t,12

((At,22

At,12
− Irk

)
+ 2D̃lb

)−1

A−1
t,12 =

(At,22 +At,12)(At,22 −At,12 + 2D̃lbAt,12)− Irk

At,12(At,22 −At,12 + 2D̃lbAt,12)

(a)

⪰
2D̃lb

(
At,22

At,12
+ Irk

)
At,22

At,12
− Irk + 2D̃lb

=


2D̃lb,1

(
At,22
At,12

+Irk

)
11(

At,22
At,12

−Irk

)
11

+2D̃lb,1

0

0
2D̃lb,2

(
At,22
At,12

+Irk

)
22(

At,22
At,12

−Irk

)
22

+2D̃lb,2

 ,(F.28)

where we used A2
t,22 −A2

t,12 ≻ Irk (by (R.2)) and At,22 −At,12 + 2D̃lbAt,12 ≻ 0 (by (F.23)) in (a). Since
At,22

At,12
− Irk ≻ 0 and D̃lb,1 ≻ 0, it is enough to look at the bottom-right submatrix in (F.28) for the lower

bound part. We have

2D̃lb,2

(
At,22

At,12
+ Irk

)
22(

At,22

At,12
− Irk

)
22

+ 2D̃lb,2

=
2D̃lb,2

(
At,22

At,12
+ Irk

)
22(

At,22

At,12
+ Irk

)
22
− 2Irk−rk⋆ + 2D̃lb,2

. (F.29)

Note that by (R.4),(
At,22

At,12
+ Irk

)
2

⪰ 2(Irk−rk⋆ + ηΛ̂2)
t

(Irk−rk⋆ + ηΛ̂2)t − (Irk−rk⋆ − ηΛ̂2)t
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⪰ 2Irk−rk⋆ +
2(Irk−rk⋆ − η2Λ̂2

2)
t exp

(
−2tηΛ̂2

)
Irk−rk⋆ − (Irk−rk⋆ − η2Λ̂2

2)
t exp

(
−2tηΛ̂2

)
(b)

⪰
(
2 +

0.9rs

d log1.5 d

)
Irk−rk⋆ ,

where we use ηt ≤ 1
2 (rk⋆ + 1)α log

(
d log1.5 d

rs

)
in (b). Hence, for d ≥ Ω(1)

(F.29) ⪰
2
(
2 + 0.9rs

d log1.5 d

)
D̃lb,2

0.9rs
d log1.5 d

Irk−rk⋆ + D̃lb,2

(c)

⪰ 12D̃lb,2
rs

d log1.5 d
Irk−rk⋆

(d)

⪰ −15C2

log0.5 d
Irk−rk⋆ , (F.30)

where we used D̃lb,2 ⪰ −1.1C2rs
d log2 d

Irk in (c) and (d). The first item follows from (F.30).

For the second and third items, let
(At,22

At,12
±Irk

)
11

denote the rk⋆× rk⋆ dimensional top-left submatrices with

rk⋆ =
{
r⋆ = ⌊rs

(
1 − δ

)
∧ r⌋, ru⋆ = rs

}
. By using the third item in Lemma 5, we immediately observe that

for α > 0, Gt,11 ⪰ 0 and

Gt,11

(e)

⪰
(
1− 10

log3 d

)
1

2

2Clbrs
d

(
At,22

At,12
+ Irk

)
11(

At,11

At,12
− Irk

)
11

+ 2Clbrs
d Irk⋆

, (F.31)

for

Clb =
1

15

{
δ2, α ∈ (0, 0.5)
1
r6s
, α > 0.5

and ηt ≤


1
2

(
rs
(
1−
√
δ
)
∧ r
)α

log
(

d log1.5 d
rs

)
, α ∈ (0, 0.5)

1
2r

α
s log

(
d log1.5 d

rs

)
, α > 0.5,

where we used Λℓ2 ⪰ Λ̂ ⪰
(
1− 0.5

log4 d

)
Λℓ2 , and followed the steps in (F.27)- (F.28) with (H.1) and (L.1) to

obtain (e). Then, by (R.4), we have

1

2

2Clbrs
d

(
At,22

At,12
+ Irk

)
11(

At,11

At,12
− Irk

)
11

+ 2Clbrs
d Irk⋆

⪰ Irk⋆(
1

Clb

d
rs
− 1
)

(Irk⋆−ηΛ̂1)t

(Irk⋆+ηΛ̂1)t
+ Irk⋆

⪰ Irk⋆
1.1
Clb

d
rs

exp
(
−2ηtΛ̂1

)
+ Irk⋆

.

Consequently, by observing Λ̂ ⪰ Λℓ1 − C̃ηIrk and using the lower bounds for Λℓ1 in Propositions 12 and 13,
we have

Gt,11 ⪰
1− 10

log3 d

1.2
Clb

d
rs

exp (−2ηtΛ11) + 1
,

where Λ11 denotes the rk⋆ × rk⋆ dimensional top-left sub-matrix of Λ. Therefore,

∥Λ̂∥2F − ∥Λ̂
1
2
1 Gt,11Λ̂

1
2
1 ∥2F ≤

r∑
i=(rk⋆∧r)+1

λ̂2
i +

rk⋆∑
i=1

λ̂2
i

(
1−

1− 10
log3 d

1.2
Clb

d
rs

exp (−2ηtλi) + 1

)2

, (F.32)

which proves the second item for α > 0. Moreover, since (F.22) is in the eigenbasis of G0, the arguments in
(F.27)-(F.28) and the condition in (H.2) extend (F.31) to α = 0 in the eigenbasis of G0 for d ≥ Ω(1). Given
(F.31), we can extend (F.32) to α = 0 as the Frobenious norm is basis independent.

For the third item, for α > 0.5 and t ≥ 1
2ηr

α
s log

(
20d log

3
4 d

rs

)
, we have

(F.32) ≤
r∑

i=(rs∧r)+1

λ̂2
i +
∥Λ̂∥2F
log

1
2 d
≤

r∑
i=(rs∧r)+1

λ2
i +
∥Λ̂∥2F
log

1
2 d

,
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which gives us the corresponding bound for Tlb.

For α ∈ [0, 0.5) and t ≥ 1
2η

(
rs
(
1− log

−1
8 d
)
∧ r
)α

log
( 20d log

3
4 (1+d/rs)
rs

)
, we have

(F.32) ≤
r∑

i=(rs∧r)+1

λ̂2
i +

rs∧r∑
i=⌊rs

(
1−log

−1
8 d
)
∧r⌋+1

λ̂2
i +

⌊rs
(
1−log

−1
8 d
)
∧r⌋∑

i=1

λ̂2
i

(
1−

1− 10
log3 d

1.2
Clb

d
rs

exp (−2ηtλi) + 1

)2

≤
r∑

i=(rs∧r)+1

λ2
i +

3∥Λ̂∥2F
log

1
8 d

,

which gives us its bound for Tlb.

F.4.2 Upper bounding system

In this section, we consider (F.13). For notational convenience, we multiply both sides by the factor (1−2κd)
and use a generic learning rate η, i.e.,

V̄t+1 = V̄t(Irk + ηV̄t)
−1 + η

(
Λ2

u1
+ C̃η∥Λ∥2FrsΛu1

)
, where V̄t = 2Λ

1
2
u2ḠtΛ

1
2
u2 −Λu1

.

The main result of this section is stated in Proposition 16. To establish it, we first prove an auxiliary result:

Lemma 6. The following statement holds:

• The reference sequence satisfies Tt ⪰ κdrs
d Irk and {t ≥ 0 : ∥Tt∥2 > 1.2κd} =∞.

• For ru⋆
= 2rs, we have

Ḡ0 =
2.2

(
1+ 1√

φ

)2
rs

d Ir ⪰ (1− 2κd)
(
G0 +

κdrs
d Ir

)
, α ∈ [0, 0.5)

Ḡ0 = 5.5
d

[
2rsIru⋆

0

0 ruIr−ru⋆

]
⪰ (1− 2κd)

(
G0,11 +

κdrs
d Iru

)
, α > 0.5

(F.33)

provided that Ginit holds.

For the following, we introduce T̂t :=
Λu2

Λℓ1

(3κd+1)
κd(1−κd)

Tt. Note that for d ≥ Ω(1), we have

T̂t+1 = T̂t + 2(1− 2κd)ηΛℓ1 T̂t

(
Irk − T̂t

)
and

κd

1.1

Λℓ1

Λu2

⪯ Tt

T̂t

⪯ κdIrk. (F.34)

By Proposition 34, we have

1.1 ∧ T̂0,ii exp (2ηtλi) ≥ T̂t,ii ≥
1

2


1 ∧ T̂0,ii exp

(
(1−2κd)2ηt

(
λi− 0.1r−α

log4d

)
1+2(1−2κd)ηλi

)
, α ∈ [0, 0.5)

1 ∧ T̂0,ii exp

(
(1−2κd)2ηt

(
λi− 1

(ru+1)α
− 0.1

r
2+α
u log4d

)
1+2(1−2κd)ηλi

)
, α > 0.5.

(F.35)

Proof of Lemma 6. For the first item, by Proposition 34, we have

T̂t ⪰ T̂0

(a)

⇒ Tt ⪰ T0 =
κdrs
d

Irk,

where we multiplied each side with κd(1−κd)
3κd+1

Λℓ1

Λu2
for (a). Moreover, by (F.34)-(F.35), we have

Tt ⪯ κdT̂t ⪯ 1.1Irk ⇒ {t ≥ 0 : ∥Tt∥2 > 1.2κd} =∞.

The second item follows (E.2) and (H.3) (for α ∈ [0, 0.5)) and (L.2) (for α > 0.5).
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Proposition 16. We consider rk ∈ {r, ru}, where ru = ⌈log2.5 d⌉, and

α ∈ [0, 0.5) :
rs
r
→ φ ∈ (0,∞), η≪ 1

d r1−α log4 d
, κd =

1

log3.5 d
,

α > 0.5 : rs ≍ 1, η≪ 1

d r2+α
u log3 d

, κd =
1

ru log
2.5 d

.

If Ḡ0 are taken as in (F.33), we have the following:

• {Ḡt}n∈N is diagonal and satisfies

rs
d
Irk ⪯ Ḡt+1 ⪯ Ḡt + η

(
(1 + κd)Λu1

Ḡt + (1 + κd)ḠtΛu1
− 2ḠtΛu2

Ḡt

)
⪯ 1.1Irk.

• For α ∈ [0, 0.5) and d ≥ Ω(1), we have for t ≤ 1
2ηr

α log
(

d log1.5 d
rs

)
:

– T
− 1

2
t ḠjT

− 1
2

t ⪯
11

(
1+ 1√

φ

)2

κd
Ir for 0 ≤ j ≤ t.

– T
− 1

2
t

(
η
∑t

j=1 Ḡj−1

)
T

− 1
2

t ⪯
5.5

(
1+ 1√

φ

)2

κd
(2ηt ∨ rα)Ir.

– Ḡt ⪯
(
1.1Ḡ0 exp (2ηtΛ) ∧ Ir

)
+ od(1)

– ∥Λ∥2F − Tr(ΛḠtΛ) ≥
∑r

i=1 λ
2
i

(
1−

2.5
(
1+ 1√

φ

)2
rs

d exp (2ηtλi)
)
+
− od(1).

• For α > 0.5 and d ≥ Ωrs(1), we have for t ≤ 1
2ηr

α
s log

(
d log1.5 d

rs

)
:

– T
− 1

2
t ḠjT

− 1
2

t ⪯ 26.4ru
κd

Iru for 0 ≤ j ≤ t.

– T
− 1

2
t

(
η
∑t

j=1 Ḡj−1

)
T

− 1
2

n ⪯ 15ru
κd

(2rs)
α log dIru .

– Ḡt ⪯
(
1.1Ḡ0 exp (2ηtΛ11) ∧ Iru

)
+ od(1).

– ∥Λ11∥2F − Tr(Λ11Ḡt,11Λ11) ≥
∑rs

i=1 λ
2
i

(
1− 12.1rs

d exp (2ηtλi)
)
+
+
∑ru

i=rs+1 λ
2
i − od(1).

Proof. Given that rs
d Irk ⪯ Ḡt ⪯ 1.1Irk, we have

Ḡt+1

(a)

⪯ Ḡt + η
(
Λu1

Ḡt + ḠtΛu1
− 2ḠtΛu2

Ḡt

)
+ 1.1C̃η2∥Λ∥2FrsIrk

(b)

⪯ Ḡt + η
(
(1 + κd)Λu1

Ḡt + (1 + κd)ḠtΛu1
− 2ḠtΛu2

Ḡt

)
,

Ḡt+1

(c)

⪰ Ḡt + η
(
Λu1

Ḡt + ḠtΛu1
− 2ḠtΛu2

Ḡt

)
− 1.1C̃∥Λ∥2Frsη2Irk

(d)

⪰ Ḡt + η
(
(1− κd)Λu1Ḡt + (1− κd)ḠtΛu1 − 2ḠtΛu2Ḡt

)
where we use −2Λu2

⪯ V̄ 3
t

(
Ir + ηV̄t

)−1 ⪯ 2Λu2
in (a) and (c), and we use η∥Λ∥2Frs ≪ κdrk

−α rs
d in (b) and

(d). By Proposition 34, we have rs
d Irk ⪯ Ḡt+1 ⪯ 1.1Irk, hence, the induction hypothesis holds. Therefore,

we have the first item.

By using the first item and Proposition 34, we can write for the given time horizons in second and third
items that

Ḡt ⪯
(
Ḡ0 exp

(
2(1 + κd)ηtΛu1

)
∧
(
1 + (1 + κd)

2η2Λ2
u1

)
Irk

)
⪯

{(
1.1Ḡ0 exp (2ηtΛ) ∧ Irk

)
+ 2η2Irk

1.2
(
Ḡ0 exp (2ηtΛ) ∧ Irk

)
,

(F.36)
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where both upper bounds are valid and will be used in different parts of the proof. The third sub-items
immediately follow from the first bound.

For α ∈ [0, 0.5), we have

T̂t,ii ≥
1

3

(
1 ∧ T̂0,ii exp (2ηtλi)

)
⇒ Tt,ii ≥

1

4

(
κd ∧ T0,ii exp (2ηtλi)

) (e)

⇒ Tt,ii ≥
κd

4

(
1 ∧ rs

d
exp (2ηtλi)

)
,

where we used T0 = κdrs
d Irk in (e). Therefore by (F.33) and the second bound in (F.36), we have for j ≤ t

Ḡj,ii

Tt,ii
≤

1.2

(
1 ∧

(
1 + 1√

φ

)2
2.2rs
d exp (2ηtλi)

)
0.25κd

(
1 ∧ rs

d exp (2ηtλi)
) ≤ 11

κd

(
1 +

1
√
φ

)2

.

On the other hand, by using the second bound in (F.36),

η
∑t−1

j=0 Ḡj,ii

Tt,ii
≤

11
(
1 + 1√

φ

)2
κd

η
(
t ∧ rs

d

∑t−1
j=0 exp(2ηjλi)

)
(
1 ∧ rs

d exp (2ηtλi)
)

≤
5.5
(
1 + 1√

φ

)2
κd


1
λi
, 2ηt ≤ log d

rs

λi

2ηt, 2ηt >
log d

rs

λi

≤
5.5
(
1 + 1√

φ

)2
κd

(2ηt ∨ rα).

Lastly, by using the first bound in (F.36), we get

∥Λ∥2F − Tr(ΛḠtΛ) ≥
r∑

i=1

λ2
i

(
1−

2.5
(
1+ 1√

φ

)2
rs

d exp (2ηtλi)
)
+
− 2η2∥Λ∥2F.

For α > 0.5, we have for i ≤ 2rs log
1
α d and d ≥ Ωrs(1),

T̂t,ii ≥
1

3

(
1 ∧ T̂0,ii exp (2ηtλi)

)
⇒ Tt,ii ≥

1

4

(
κd ∧ T0,ii exp (2ηtλi)

)
.

Therefore, we have

Tt,ii ≥ κd

{
0.25

(
1 ∧ rs

d exp (2ηtλi)
)
, i ≤ 2rs log

1
α d

rs
d , i > 2rs log

1
α d.

On the other hand, for ηt ≤ 1
2r

α
s log(d log1.5 d

rs
) and i > 2rs log

1
α d, we have for d ≥ Ω(1).

Ḡt,ii ≤ 1.2
(
Ḡ0,ii exp (2ηtλi) ∧ 1

)
≤ 1.2

(
Ḡ0,ii exp

(
rαs log(d log d

rs
)

2αrαs log d

)
∧ 1

)
≤ 1.5Ḡ0,ii.

Therefore, for ηt ≤ 1
2r

α
s log(d log1.5 d

rs
),

Ḡj,ii

Tt,ii
≤


1.2
(
1 ∧ 5.5rurs

d exp (2ηtλi)
)

0.25κd
(
1 ∧ rs

d exp (2ηtλi)
) , i ≤ 2rs log

1
α d

d

κdrs

8.25rurs
d

, i > 2rs log
1
α d

≤ 26.4ru
κd

.
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Moreover, for ηt ≤ 1
2r

α
s log(d log1.5 d

rs
),

η
∑t−1

j=0 Ḡj,ii

Tt,ii
≤


26.4ru
κd

η
(
t ∧ rs

d

∑t−1
j=0 exp(2ηjλi)

)
(
1 ∧ rs

d exp (2ηtλi)
) , i ≤ 2rs log

1
α d

d

κdrs

8.25rurs
d

ηt, i > 2rs log
1
α d

≤ 13.2ru
κd

 1
λi
, 2ηt ≤ log d

rs

λi
and i ≤ 2rs log

1
α d

2ηt, otherwise

≤ 13.2ru
κd

(2ηt ∨ (2rs)
α log d) ≤ 15ru

κd
(2rs)

α log d.

Finally for ηt ≤ 1
2r

α
s log(d log1.5 d

rs
) and d ≥ Ωrs(1), by using the first bound in (F.36),

∥Λ11∥2F−Tr(Λ11Ḡt,11Λ11) ≥
rs∑
i=1

λ2
i

(
1− 12.1rs

d exp (2ηtλi)
)
+
+

2rs∑
i=rs+1

λ2
i

(
1− 12.1rs

d exp (2ηtλi)
)
+

+

ru∑
i=2rs+1

λ2
i

(
1− 6.05rurs

d exp (2ηtλi)
)
+
− 2η2∥Λ∥2F

(f)

≥
rs∑
i=1

λ2
i

(
1− 12.1rs

d exp (2ηtλi)
)
+
+

(
1− 1

log d

) 2rs∑
i=rs+1

λ2
i

+

(
1− 6.05ru log

1.5√
2 d
(rs
d

)1− 1√
2

) ru∑
i=2rs+1

λ2
i − 2η2∥Λ∥2F

≥
rs∑
i=1

λ2
i

(
1− 12.1rs

d exp (2ηtλi)
)
+
+

(
1− 6.05ru log

1.5√
2 d
(rs
d

)1− 1√
2

) ru∑
i=rs+1

λ2
i

− (rs + 1)1+2α

log d
− 2η2∥Λ∥2F,

where we used the bounds for t, d in (f).

F.5 Bounds for the second-order terms

We recall

Rso[Gt] =
η2

16rs
Θ⊤Et

[
∇StLt+1∇StL

⊤
t+1

]
Θ

− η2

16rs
MtEt

[
Pt+1

1 + c2t+1

]
M⊤

t −
η3

32r
3/2
s

Sym

(
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
M⊤

t

)
− η4

256r2s
Θ⊤Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ. (F.37)

Proposition 17. For η ≪ d−1/2, there exists a universal constant C > 0 such that

−C
(η2d

rs
Gt+η2Ir

)
⪯ Rso[Gt] ⪯ C

(
η2d

rs
Gt + η2Ir

)
.

Proof. We bound each term in (F.37). In the following, v denotes a generic unit norm vector with proper
dimensionality. For the first term,

Θ⊤Et

[
∇StLt+1∇StL

⊤
t+1

]
Θ
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= Θ⊤ (Id −WtW
⊤
t

)
Et

[
(yt+1 − ŷt+1)

2∥W⊤
t xt+1∥22xt+1x

⊤
t+1

] (
Id −WtW

⊤
t

)
Θ.

We have

Et

[
(yt+1 − ŷt+1)

2∥W⊤
t xt+1∥22 ⟨v,xt+1⟩2

]
≤ Crs.

Therefore,

0 ⪯ η2

16rs
Θ⊤Et

[
∇StLt+1∇StL

⊤
t+1

]
Θ ⪯ Cη2(Ir −Gt).

For the second term,

MtEt

[
Pt+1

1 + c2t+1

]
M⊤

t = MtEt

[(
yt+1 − ŷt+1

)2∥(Id −WtW
⊤
t

)
xt+1∥22W⊤

t xt+1x
⊤
t+1Wt

1 + c2t+1

]
M⊤

t .

We have

Et

[(
yt+1 − ŷt+1

)2∥(Id −WtW
⊤
t

)
xt+1∥22

〈
v,W⊤

t xt+1

〉2
1 + c2t+1

]
≤ Cd.

Therefore,

0 ⪯ η2

16rs
MtEt

[
Pt+1

1 + c2t+1

]
M⊤

t ⪯ C
η2d

rs
Gt.

For the third term by using Proposition 22,

η3

32r
3/2
s

Sym

(
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
M⊤

t

)
⪯ C

(
η4

r2sd
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
Et

[
Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ+

η2d

rs
Gt

)
We have

Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
= Θ⊤ (Id −WtW

⊤
t

)
Et

[(
yt+1 − ŷt+1

)3
1 + c2t+1

∥
(
Id −WtW

⊤
t

)
xt+1∥22∥W⊤

t xt+1∥22xt+1x
⊤
t+1Wt

]
.

Then, by using Cauchy-Schwartz inequality, we can show that∥∥∥∥∥Et

[(
yt+1 − ŷt+1

)3
1 + c2t+1

∥
(
Id −WtW

⊤
t

)
xt+1∥22∥W⊤

t xt+1∥22xt+1x
⊤
t+1Wt

]∥∥∥∥∥
2

≤ Cdrs.

Therefore,

η4

r2sd
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
Et

[
Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ ≤ Cη4d(Ir −Gt).

We get

η3

32r
3/2
s

Sym

(
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
M⊤

t

)
⪯ C

(
η4d(Ir −Gt) +

η2d

rs
Gt

)
.
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By repeating the argument with the lower bound in Proposition 22, we can also show

η3

32r
3/2
s

Sym

(
Θ⊤Et

[
∇StLt+1Pt+1

1 + c2t+1

]
M⊤

t

)
⪰ −C

(
η4d(Ir −Gt) +

η2d

rs
Gt

)
.

For the last term, we write

Θ⊤Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ

= Θ⊤(Id −WtW
⊤
t

)
Et

[(
yt+1 − ŷt+1

)4
1 + c2t+1

∥W⊤
t xt+1∥42∥

(
Id−WtW

⊤
t

)
xt+1∥22xt+1x

⊤
t+1

] (
Id −WtW

⊤
t

)
Θ.

We have

Et

[(
yt+1 − ŷt+1

)4
1 + c2t+1

∥W⊤
t xt+1∥42∥

(
Id −WtW

⊤
t

)
xt+1∥22 ⟨v,xt+1⟩2

]
≤ Cdr2s .

Therefore,

0 ⪯ η4

r2s
Θ⊤Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

]
Θ ⪯ Cη4d(Ir −Gt).

By using Gt ⪰ 0 and η ≪ d−1/2, the result follows.

F.6 Noise characterization

To prove the noise concentration bound for both the heavy-tailed and light-tailed cases simultaneously, we
introduce some new notation. Specifically, we define the submatrix notation:

Θ =:
[
Θ1 Θ2

]
and Mt =:

[
Mt,1

Mt,2

]
=

[
Θ⊤

1 Wt

Θ⊤
2 Wt

]
,

where Θ1 ∈ Rd×ru and Mt,1 ∈ Rru×rs . We note that Gt,11 = Mt,1M
⊤
t,1. To unify the treatment of the

heavy-tailed and light-tailed cases, we use the following notation to represent both cases:

Θ := {Θ,Θ1} Mt := {Mt,Mt,1}.

With the new notation, we have

η/2
√
rs
νt+1 =

η/2
√
rs
Sym

(
Θ⊤
(
∇StLt+1 − Et [∇StLt+1]

)
M⊤

t

)
− η2

16rs
Mt

(
Pt+1

1 + c2t+1

− Et

[
Pt+1

1 + c2t+1

])
M⊤

t

+
η2

16rs
Θ⊤ (∇StLt+1∇StL

⊤
t+1 − Et

[
∇StLt+1∇StL

⊤
t+1

])
Θ

− η3

32r
3/2
s

Sym

(
Θ⊤

(
∇StLt+1Pt+1

1 + c2t+1

− Et

[
∇StLt+1Pt+1

1 + c2t+1

])
M⊤

t

)
− η4

256r2s
Θ⊤

(
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

− Et

[
∇StLt+1Pt+1∇StL

⊤
t+1

1 + c2t+1

])
Θ.

We start with the following statement:

Proposition 18. Let et+1 := (yt+1 − ŷt+1), rk ∈ {r, ru} and T1,T2 ∈ Rrk×rk be a deterministic symmetric
positive definite matrices. There exists a universal constant C > 0 such that for L ≥ 8

√
2e, the following

statements hold:
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1. We define

At+1 (T1,T2) ≡
{∥∥T1Θ

⊤∇StLt+1M
⊤
t T2

∥∥
2
≤ L2

2

√
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T 2
1 (Irk − Gt)

)
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}
.
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2
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T1Θ
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Proof. First, we derive a concentration bound for |et+1|. By Corollary 6 and Proposition 33 we have

Et [|et+1|p] ≤
(
Et [|yt+1|p]

1
p + Et [|ŷt+1|p]

1
p
)p ≤ 8

p
2 pp for p ≥ 2 ⇒ Pt [|et+1| ≥ u] ≤ e

−u

2
√

2e for u ≥ 4
√
2e.
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In the following, we prove each item separately.

First item. We define

T1Θ
⊤∇StLt+1M

⊤
t T2 = T1Θ

⊤(Id −WtW
⊤
t )et+1xt+1︸ ︷︷ ︸

:=ut+1

x⊤
t+1WtW

⊤
t ΘT2︸ ︷︷ ︸

:=v⊤
t+1

.

For u, L > 0

Pt

[∥∥ut+1v
⊤
t+1

∥∥
2
≥ uL

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr(T 2

2 Gt) or |et+1| ≥ L
]

≤ Pt

[∥∥ut+1v
⊤
t+1

∥∥
2
≥ uL

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr(T 2

2 Gt) and |et+1| ≤ L
]
+ Pt

[
|et+1| ≥ L

]
≤ Pt

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥
2
≥ uL

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr(T 2

2 Gt)
]
+ Pt

[
|et+1| ≥ L

]
.

We have for p ≥ 2

Et

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥p
2

]
≤ LpEt

[
∥T1Θ

⊤(Id −WtW
⊤
t )xt+1∥p2

]
Et

[
∥T2Θ

⊤WtW
⊤
t xt+1∥p2

]
(a)

≤ Lp
(p
2

)p (
3Tr
(
T 2
1 (Irk − Gt)

)
Tr(T 2

2 Gt)
) p

2

,

where we used Corollary 7 in (a). By Proposition 33, we have for u ≥ 2e

Pt

[∥∥1|et+1|≤tut+1v
⊤
t+1

∥∥
2
≥ uL

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr(T 2

2 Gt)
]
≤ e−

u
e .

By choosing u = L
2 , we have the probability bound.

For the variance bound, we have

Et

[
Sym

(
T1Θ

⊤∇StLt+1M
⊤
t T2

)2]
= Et

[
Sym

(
ut+1v

⊤
t+1

)2]
.

By using Proposition 22, we have

Et

[
Sym

(
ut+1v

⊤
t+1

)2]
⪯ T1Θ

⊤(Id −WtW
⊤
t )Et

[
e2t+1∥T2Θ

⊤WtW
⊤
t xt+1∥22xt+1x

⊤
t+1

]
(Id −WtW

⊤
t )ΘT1

+ T2Θ
⊤WtW

⊤
t Et

[
e2t+1∥T1Θ

⊤(Id −WtW
⊤
t )xt+1∥22xt+1x

⊤
t+1

]
WtW

⊤
t ΘT2

(b)

⪯ C
(
Tr(T 2

2 Gt)T1(Irk − Gt)T1 +Tr
(
T 2
1 (Irk − Gt)

)
T2GtT2

)
,

where we used the Cauchy-Schwartz inequality in (b).

Second item. We define

T1MtPt+1M
⊤
t T2 = e2t+1∥

(
Id −WtW

⊤
t

)
xt+1∥22T1Θ

⊤WtW
⊤
t xt+1︸ ︷︷ ︸

:=ut+1

x⊤
t+1WtW

⊤
t ΘT2︸ ︷︷ ︸

:=v⊤
t+1

.

We have for p ≥ 2

Et

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥p
2

]
≤ L2pEt

[
∥
(
Id −WtW

⊤
t

)
xt+1∥2p2

]
Et

[
∥T1Θ

⊤WtW
⊤
t xt+1∥2p2

] 1
2 Et

[
∥T2Θ

⊤WtW
⊤
t xt+1∥2p2

] 1
2

(c)

≤ L2pp2p
(
3d
√
Tr(T 2

1 Gt)Tr(T 2
2 Gt)

)p
,
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where we use Corollary 7 in (c). By Proposition 33, we have for u ≥ (2e)2

Pt

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥
2
≥ uL23d

√
Tr(T 2

1 Gt)Tr(T 2
2 Gt)

]
≤ e−

u1/2

e .

By choosing u = L2

6 , we have the probability bound. For the variance bound, we have

Et

[(
Sym

(
T1MtPt+1M

⊤
t T2

) )2]
= Et

[
Sym

(
ut+1v

⊤
t+1

)2]
.

By using Proposition 22, we have

Et

[
Sym

(
ut+1v

⊤
t+1

)2]
⪯ T1Θ

⊤WtW
⊤
t Et

[
e4t+1∥

(
Id −WtW

⊤
t

)
xt+1∥42∥T2Θ

⊤WtW
⊤
t xt+1∥22xt+1x

⊤
t+1

]
WtW

⊤
t ΘT1

+ T2Θ
⊤WtW

⊤
t Et

[
e4t+1∥

(
Id −WtW

⊤
t

)
xt+1∥42∥T1Θ

⊤WtW
⊤
t xt+1∥22xt+1x

⊤
t+1

]
WtW

⊤
t ΘT2

(d)

⪯ Cd2
(
Tr(T 2

2 Gt)T1GtT1 +Tr(T 2
1 Gt)T2GtT2

)
,

where we use the Cauchy-Schwartz inequality in (d).

Third item. We define

T1Θ
⊤∇StLt+1∇StL

⊤
t+1ΘT2 = e2t+1∥W⊤

t xt+1∥22T1Θ
⊤(Id −WtW

⊤
t )xt+1︸ ︷︷ ︸

:=ut+1

x⊤
t+1(Id −WtW

⊤
t )ΘT2︸ ︷︷ ︸

:=v⊤
t+1

.

We have for p ≥ 2

Et

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥p
2

]
≤ L2pEt

[
∥W⊤

t xt+1∥2p2
]
Et

[
∥T1Θ

⊤(Id −WtW
⊤
t )xt+1∥2p2

] 1
2Et

[
∥T2Θ

⊤(Id −WtW
⊤
t )xt+1∥2p2

] 1
2

(e)

≤ L2pp2p
(
3rs

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr
(
T 2
2 (Irk − Gt)

))p

,

where we use Corollary 7 in (e). By Proposition 33, we have for u ≥ (2e)2

Pt

[∥∥1|et+1|≤Lut+1v
⊤
t+1

∥∥
2
≥ uL23rs

√
Tr
(
T 2
1 (Irk − Gt)

)
Tr
(
T 2
2 (Irk − Gt)

)]
≤ e−

u1/2

e .

By choosing u = L2

6 , we have the probability bound. For the variance bound, we have

Et

[(
Sym

(
T1Θ

⊤∇StLt+1∇StL
⊤
t+1ΘT2

) )2]
= Et

[
Sym

(
ut+1v

⊤
t+1
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.

By using Proposition 22, we have

Et

[
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(
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⊤
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⊤
t

)
Et

[
e4t+1∥W⊤
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⊤
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⊤
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] (
Id −WtW

⊤
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⊤
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[
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⊤(Id−WtW

⊤
t )xt+1∥22xt+1x

⊤
t+1

] (
Id−WtW

⊤
t

)
ΘT2

(f)
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(
Tr
(
T 2
2 (Irk − Gt)

)
T1(Irk − Gt)T1 +Tr

(
T 2
1 (Irk − Gt)

)
T2(Irk − Gt)T2

)
,

where we used the Cauchy-Schwartz inequality in (f).

Fourth item. We define

T1Θ
⊤∇StLt+1Pt+1M

⊤
t T2
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= e3t+1∥(Id −WtW
⊤
t )xt+1∥22∥W⊤

t xt+1∥22T1Θ
⊤(Id −WtW

⊤
t )xt+1︸ ︷︷ ︸

:=ut+1

x⊤
t+1WtW

⊤
t ΘT2︸ ︷︷ ︸

:=v⊤
t+1

.

We have for p ≥ 2

Et
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⊤
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∥∥p
2

]
≤ L3pEt

[
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⊤
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⊤
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√
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(√
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2
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√
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p
2

(√
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(
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)) p
2

= L3p(12
√
3)pp3p

(
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√
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(
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)
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(
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))p

.

By Proposition 33, we have for u ≥ (2e)3
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⊤
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∥∥
2
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√
3drs

√
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)
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e .

By choosing u = L3

24
√
3
, we have the probability bound. For the variance bound, we have
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⊤∇StLt+1Pt+1M
⊤
t T2

) )2]
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[
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.

By using Proposition 22, we have
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⊤
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.

Fifth item. We define

T1Θ
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⊤
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= e4t+1∥(Id −WtW
⊤
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By Proposition 33, we have for u ≥ (2e)4
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By choosing u = L4

2(2
√
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, we have the probability bound. For the variance bound, we have
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(
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.

By using Proposition 22, we have
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By recalling the definitions {Tt}t∈N, Λ, Λ11 in Sections F.2 and F.3, we define the event:

At+1 :=

At+1

(
T

−1
2

t ,T
−1
2

t

)
∩ At+1

(
Λ

1
2T

−1
2

t ,T
−1
2

t Λ
1
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)
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At+1
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2

t ,T
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2

t

)
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(
Λ

1
2
11T

−1
2

t ,T
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2

t Λ
1
2
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)
, α > 0.5.

We define the events Bt+1, Ct+1, Dt+1, and Ft+1 in the same way. Based on these events, we define the
clipped versions of the noise matrices:
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(
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⊤
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. (F.38)

Let X ∈
{

η/2√
rs
A, η2/16

rs
B, η2/16

rs
C, η3/32

r
3/2
s

D, η4/256
r2s

F
}

and

Γ1 :=

{
Ir, α ∈ [0, 0.5)

Iru α > 0.5
Γ2 :=

{
Λ

1
2 , α ∈ [0, 0.5)

Λ
1
2
11, α > 0.5.

For ℓ ∈ {1, 2}, we define:

Quad
(ℓ)
k,t(X) :=

k∑
j=1

Ej−1

[(
ΓℓT

−1
2

t XjT
−1
2

t Γℓ
)2]

.

We have the following corollary.

64



Corollary 4. Let rk ∈ {r, ru}, rk⋆ ∈ {r, rs} and

St := η

t∑
j=1

Gj−1 and η =
η

√
rs∥Λ∥F

and ru = ⌈log2.5 d⌉.

Assume the following conditions hold:
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t StT
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p1 = 1 and p2 = 1− α, α ∈ [0, 1)
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α = 1

p1 = 1 and p2 = 0 α > 1.
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α
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d log1.5 d
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, the following results hold:

(a) Quadratic variation bounds. We have:
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Proof. Quadratic variation bounds. We will use the variance bounds given in Proposition 18. For X = η/2√
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A,

we have

Quad
(ℓ)
t,t (

η/2√
rs
A) ⪯ Cη∥Λ∥F√

rs

(
Tr
(
Γ2ℓT

−1
2

t StT
−1
2

t

)
ΓℓT

−1
t Γℓ +Tr

(
Γ2ℓT

−1
t

)
ΓℓT

−1
2

t StT
−1
2

t Γℓ
)
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⪯ Cη∥Λ∥F√
rs

Cubrk
pℓrkα⋆ log d

κ2d

d

rs
Irk.

For X = η2/16
rs

B, we have

Quad
(ℓ)
t,t (

η2/16
rs

B) ⪯ CCubη
3d2∥Λ∥F
r
3/2
s

sup
j≤t

(
Tr
(
Γ2ℓT

−1
2

t Gj−1T
−1
2

t

))
ΓℓT

−1
2

t StT
−1
2

t Γℓ

⪯ Cη3d2∥Λ∥F
r
3/2
s

C2
ubrk

pℓrkα⋆ log d

κ2d
Irk.

For X = η2/16
rs

C, we have

Quad
(ℓ)
t,t (

η2/16
rs

C) ⪯ Cη4tTr(Γ2ℓT
−1
t )ΓℓT

−1
t Γℓ ⪯

Cη3d2∥Λ∥F
r
3/2
s

rkpℓrkα⋆ log d

κ2d
Irk.

For X = η3/32

r
3/2
s

D, we have

Quad
(ℓ)
t,t (

η3/32

r
3/2
s

D) ⪯ Cη5d2∥Λ∥F√
rs

(
Tr(Γ2ℓT

−1
2

t StT
−1
2

t )ΓℓT
−1
t Γℓ +Tr

(
Γ2ℓT

−1
t

)
ΓℓT

−1
2

t StT
−1
2

t Γℓ
)

⪯ Cη5d2∥Λ∥F√
rs

Cubrk
pℓrkα⋆ log d

κ2d

d

rs
Irk.

For X = η4/256
r2s

F, we have

Quad
(ℓ)
t,t (

η4/256
r2s

F) ⪯ Cη8d2tTr(Γ2ℓT
−1
t )ΓℓT

−1
t Γℓ ⪯

Cη7d2∥Λ∥F
r
3/2
s

rkpℓrkα⋆ log d

κ2d
Irk.

Operator Norm Bounds. We will use the events defined in Proposition 18. For X = η/2√
rs
A, we have

r
(ℓ)
j,t (

η/2√
rs
A) =

η/2
√
rs
L2

√
Tr(Γ2ℓT

−1
t )Tr(Γ2ℓT

−1
2

t Gj−1T
−1
2

t ) ≤ CL2

κd

√
Cubη

√
drkpℓ

rs
.

For X = η2/16
rs

B, we have

r
(ℓ)
j,t (

η2/16
rs

B) =
η2

16rs
L4dTr(Γ2ℓT

−1
2

t Gj−1T
−1
2

t ) ≤ CL4

κd

Cubη
2drkpℓ

rs
.

For X = η2/16
rs

C, we have

r
(ℓ)
j,t (

η2/16
rs

C) =
η2

16rs
L4Tr(Γ2ℓT

−1
t ) ≤ CL4

κd

η2drkpℓ

rs
.

For X = η3/32

r
3/2
s

D, we have

r
(ℓ)
j,t (

η3/32

r
3/2
s

D) =
η3

32
√
rs
L6d

√
Tr(Γ2ℓT

−1
2

t Gj−1T
−1
2

t )Tr(Γ2ℓT
−1
t ) ≤ CL6

κd

√
Cubη

3d3/2rkpℓ

rs
.

For X = η4/256
r2s

F, we have

r
(ℓ)
j,t (

η4/256
r2s

F) =
η4

256
L8dTr(Γ2ℓT

−1
t ) ≤ CL8

κd

η4d2rkpℓ

rs
.
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Proposition 19. Let {Yt, t = 1, 2 · · · } be a symmetric-matrix martingale with difference sequence {Xt :=
Yt+1 − Yt, t = 1, 2 · · · }, whose values are symmetric matrices with dimension r ≤ d. Let {Tt, t = 1, 2, · · · }
be a deterministic sequence, whose values are positive semi-definite matrices with the same dimensionality.
Assume that the difference sequence is uniformly bounded in the sense that for a predictable triangular
sequence {rj,t}j≤t, we have

λmax(T
−1
2

t XjT
−1
2

t ) ≤ rj,t for j = 1, 2, · · · , t.

Define the predictable uniform bound and quadratic variation process of the martingale:

Rk,t := max
j≤k

rj,t and Quadk,t(X) :=
k∑

j=1

Ej−1

[(
T

−1
2

t XjT
−1
2

t

)2]
for k ≤ t = 1, 2, · · · .

Let T ≤ d3 be a bounded stopping time. Then, for any deterministic σ2, L̃ > 0

P
[
∃t ≤ T ,Yt ̸⪯ uTt and max

t≤T
∥Quadt,t(X)∥2 ≤ σ2 and max

t≤T
Rt,t ≤ L̃

]
≤ d4 · exp

(
−u2/2

σ2 + L̃u/3

)
.

Proof. We have

Etarget ≡
{
∃t ≤ T ,Yt ̸⪯ uTt and max

t≤T
∥Quadt,t(X)∥2 ≤ σ2 and max

t≤T
Rt,t ≤ L̃

}
⊆

T⋃
t=0

{
∃k ≤ t,Yk ̸⪯ uTt and ∥Quadt,t(X)∥2 ≤ σ2 and Rt,t ≤ L̃

}
.

Therefore, we have

P
[
Etarget

]
≤

d3∑
n=1

P
[
∃k ≤ t, Yk ̸⪯ uTt and ∥Quadt,t(X)∥2 ≤ σ2 and Rt,t ≤ L̃

]
. (F.39)

In the following, we will bound the each term in the right hands-side of (F.39). By [Tro10, Lemma 6.7], we
have for k = 1, · · · , t and θ > 0,

1Rk,t≤L̃Ek−1

[
e

θ
LT

−1
2

t XkT
−1
2

t

]
⪯ 1Rk,t≤L̃ exp

(
eθ − θ − 1

L̃2
Ek−1

[
(T

−1
2

t XkT
−1
2

t )2
])

. (F.40)

For notational convenience call g(θ) := eθ − θ − 1. We define a super martingale such that for 0 < k ≤ t,

Sk := Tr

(
exp

(
θ

L
T

−1
2

t YkT
−1
2

t − g(θ)

L̃2
Quadk,t(X)

))
1Rk,t≤L̃,

with initial values R0,t = 0, Y0 = Quad0,t = 0, and thus, S0 = r. Note that by (F.40) and [Tro10, Corollary
3.3], we can show that Ek−1Sk ≤ Sk−1. We define a stopping time and an event

Thit := {k ≥ 0 | λmax(T
−1
2

t YkT
−1
2

t ) ≥ u} ∧ t, Ehit := {Thit ≤ t} ∩ {∥Quadt,t(X)∥2 ≤ σ2 and Rt,t ≤ L̃}.

We have

1Ehit
SThit

≥ 1Ehit
exp

(
θ

L̃
u− g(θ)

L̃2
σ2

)
(a)

⇒ r ≥ P [Ehit] exp
(
θ

L̃
u− g(θ)

L̃2
σ2

)
⇒ r inf

θ>0
exp

(
−θ u

L̃
+ g(θ)

σ2

L̃2

)
≥ P [Ehit] ,

where we use Doob’s optional sampling theorem in (a). Since the infimum is attained at θ > 0 and the
convex conjugate of g(θ) is g⋆(θ) = (θ + 1) log(θ + 1)− θ, we have

P [Ehit] ≤ r · exp

(
−σ2

L̃2
g⋆

(
uL̃

σ2

))
≤ r · exp

(
−u2/2

σ2 + L̃u/3

)
,

where we used g⋆(θ) ≥ u2/2
1+u/3 in the last step. By r ≤ d and (F.39), we have the statement.
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Proposition 20. Let P0 denote the conditional probability conditioned on W0. We consider ru = ⌈log2.5 d⌉,
and

α ∈ [0, 0.5) :
rs
r
→ φ, η ≍ 1

drα log20(1+d/rs)
, κd =

1

log3.5 d
, Cub = 12

(
1 + 1√

φ

)2
, d ≥ Ωα,φ,β(1)

α > 0.5 : rs ≍ 1, η ≍ 1
d r4α+3

u log18 d
, κd =

1

ru log
2.5 d

, Cub = 2α30ru, d ≥ Ωα,rs(1).

For α ∈ [0, 0.5), we define T := Tbad ∧ 1
2η

(
rs
(
1− log

−1
2 d
)
∧ r
)α

log
(

d log1.5 d
rs

)
. We have

P0

[
sup
t≤T
∥T

−1
2

t νtT
−1
2

t ∥2 ∨ r
α
2 ∥Λ 1

2T
−1
2

t νtT
−1
2

t Λ
1
2 ∥2 ≥ κdr

−α
2 and Ginit

]
≤ 20d4 exp(− log2 d).

For α > 0.5, we set T := Tbad ∧ 1
2ηr

α
s log

(
d log1.5 d

rs

)
. We have

P0

[
sup
t≤T
∥T

−1
2

t νtT
−1
2

t ∥2 ∨ r
α
2
u ∥Λ

1
2
11T

−1
2

t νtT
−1
2

t Λ
1
2
11∥2 ≥ κdr

−α
2

u and Ginit
]
≤ 20d4 exp(− log2 d).

Proof. For notational convenience, we introduce X :=
{ η/2√

rs
A, η2/16

rs
B, η2/16

rs
C, η3/32

r
3/2
s

D, η4/256
r2s

F
}
. For both

cases, we will set the clip threshold to L = log2 d. We introduce the notation R
(ℓ)
t := maxX∈X maxj≤t r

(ℓ)
j,t (X)

and ∥Quad
(ℓ)
t ∥2 := maxX∈X ∥Quad

(ℓ)
t,t (X)∥2 for ℓ = 1, 2.

For α ∈ [0, 0.5), we can write for all X ∈ X ,

P0

[
sup
t≤T
∥T

−1
2

t νtT
−1
2

t ∥2 ∨ r
α
2 ∥Λ 1

2T
−1
2

t νtT
−1
2

t Λ
1
2 ∥2 ≥ κdr

−α
2 and Ginit

]
≤
∑
X∈X

P0

[
sup
t≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

10
and Ginit

]
+
∑
X∈X

P0

[
sup
t≤T

∥∥∥Λ 1
2T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2

∥∥∥
2
≥ κdr

−α

10
and Ginit

]
.

By Propositions 14 and 16 and Corollary 4, Ginit implies the events

Eht,1 ≡
{
max
t≤T
∥Quad

(1)
t ∥2 ≤

Oα,β,φ (r−α)

log12 d
and max

t≤T
R

(1)
t ≤ Oα,β,φ (r−α)√

d log12.5 d

}

Eht,2 ≡
{
max
t≤T
∥Quad

(2)
t ∥2 ≤

Oα,β,φ

(
r−2α

)
log12 d

and max
t≤T

R
(2)
t ≤

Oα,β,φ

(
r−2α

)
√
d log12.5 d

}
.

Therefore, by using Proposition 19

P0

[
sup
t≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

10
and Ginit

]
≤ P0

[
sup
t≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

10
and Eht,1

]
≤ 2d4 exp

(
− log2 d

)
.

Similarly,

P0

[
sup
t≤T

∥∥∥Λ 1
2T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2

∥∥∥
2
≥ κdr

−α

10
and Ginit

]
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≤ P0

[
sup
t≤T

∥∥∥Λ 1
2T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2

∥∥∥
2
≥ κdr

−α

10
and Eht,2

]
≤ 2d4 exp

(
− log2 d

)
.

For α > 0.5, we can write for all X ∈ X ,

P0

[
sup
t≤T
∥T

−1
2

t νtT
−1
2

t ∥2 ∨ r
α
2
u ∥Λ

1
2
11T

−1
2

t νtT
−1
2

t Λ
1
2
11∥2 ≥ κdr

−α
2

u and Ginit
]

≤
∑
X∈X

P0

[
sup
t≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

u

10
and Ginit

]
+
∑
X∈X

P0

[
sup
t≤T

∥∥∥Λ 1
2
11T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2
11

∥∥∥
2
≥ κdr

−α
u

10
and Ginit

]
By Propositions 14 and 16 and Corollary 4, Ginit implies the events

Elt,1 ≡
{
max
t≤T
∥Quad

(1)
t ∥2 ≤

Oα,rs(r
−4α
u )

log12 d
and max

t≤T
R

(1)
t ≤ Ors(r

−4α−1
u )√

d log11.5 d

}

Elt,2 ≡
{
max
t≤T
∥Quad

(2)
t ∥2 ≤

Oα,rs(r
−4α−(α∧1)
u )

log12 d log−2 ru
and max

t≤T
R

(2)
t ≤ Ors(r

−4α−1
u r

−(α∧1)
u )√

d log11.5 d log−2 ru

}
.

Therefore, by using Proposition 19

P0

[
sup
t≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

u

10
and Ginit

]

≤ P0

[
sup
n≤T

∥∥∥T −1
2

t

(∑
j≤t

Xj

)
T

−1
2

t

∥∥∥
2
≥ κdr

−α
2

u

10
and Elt,1

]
≤ 2d4 exp

(
− log2 d

)
.

Similarly,

P0

[
sup
t≤T

∥∥∥Λ 1
2
11T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2
11

∥∥∥
2
≥ κdr

−α
u

10
and Ginit

]
≤ P0

[
sup
t≤T

∥∥∥Λ 1
2
11T

−1
2

t

(∑
j≤t

Xj

)
T

−1
2

t Λ
1
2
11

∥∥∥
2
≥ κdr

−α
u

10
and Elt,2

]
≤ 2d4 exp

(
− log2 d

)
.

Corollary 5. Consider rk⋆ = {r⋆ = ⌊rs
(
1− log

−1/2 d
)
∧ r⌋, ru⋆

= rs} and the parameters in Proposition 20.
We have

P0

[
Tbad ≥ 1

2η rk⋆ log
(

d log1.5 d
rs

)
and Ginit

]
≥ 1− 20d4 exp(− log2 d).

Proof. By using the first items in Proposition 15 and 16 ,and Lemma 6, Ginit implies that

Tbad ≥ Tnoise ∧ 1
2η rk⋆ log

(
d log1.5 d

rs

)
.

On the other hand, within the (negation) of the events given in Proposition 20, we have

Tnoise > Tbad ∧ 1
2η rk⋆ log

(
d log1.5 d

rs

)
.

Therefore, the statement follows.
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F.7 Stability near minima

In this section, we will establish that given (SGD) is near global minimum it will stay near global minimum.

For the statement, we (re)introduce the block matrix notation: rk⋆ = {r⋆ = ⌊rs
(
1− log

−1/8 d
)
∧r⌋, ru⋆

= rs},
we have

Gt =

[
Gt,11 Gt,12

G⊤
t,12 Gt,22

]
νt =

[
νt,11 νt,12

ν⊤
t,12 νt,22

]
Λ =

[
Λ11 0
0 Λ22

]
, Λℓj =

[
Λℓj ,11 0

0 Λℓj ,22

]
,

where Gt,11,νt,11,Λ11,Λℓj ,11 ∈ Rrk⋆×rk⋆ and Λℓj is introduced (F.2). We define the following iterations:

• Given G0 = Irk⋆ − 1
log d diagonal and V t = 2Λ

1
2

ℓ2,11
GtΛ

1
2

ℓ2,11
−Λℓ1,11, we define

V t+1 = V t

(
Irk⋆ +

η

1− 1.1η
V t

)−1

+
η

1− 1.1η

(
Λ2

ℓ1,11 −
5

rkα⋆ log d
Λℓ2,11 −

O(1)

log2 d
Λ2

ℓ2,11

)
.

• For ν0 = 0, νt+1 = νt +
η/2√
rs
νt+1,11.

• We define a sequence of events {Et}t≥0

Et :=

{
−rk−

α
2

⋆

log2 d
Irk⋆ ⪯ νt ⪯

rk
−α

2
⋆

log2 d
Irk⋆

}
∩
{
−rk−α

⋆

log4 d
Irk⋆ ⪯ Λ

1
2
11νtΛ

1
2
11 ⪯

rk−α
⋆

log4 d
Irk⋆

}
,

We define the stopping times

Tnoise(ω) := inf {t ≥ 0 | ω ̸∈ Et} ∧ d3 and Tbounded :=

{
t ≥ 0

∣∣∣∣ Gt ̸⪰ Irk⋆ −
5

log d
Irk⋆

}
.

and Tstable := Tnoise ∧ Tbounded.

We have the following statement:

Proposition 21. Consider the parameters in Proposition 20. (SGD) guarantees that if G0,11 ⪰ Irk⋆ − 1
log d ,

we have Gt,11 ⪰ Irk⋆ − 5
log d for t ≤ rkα⋆ log2 d

η with probability 1− d4 exp(− log2 d).

Proof. We define ζ
t
:= 2Λ

1
2

ℓ2,11
νtΛ

1
2

ℓ2,11
. We make the following observations observations:

• Since G2
t,11 +Gt,12G

⊤
t,12 ⪯ Irk⋆ for t ≤ Tbounded, we have

Gt,12G
⊤
t,12 ⪯

5

log d
Irk⋆

Therefore, by using (F.8), we have for t ≤ Tbounded

Gt+1,11 ⪰ Gt,11 + η
(
Λℓ1,11Gt,11 +Gt,11Λℓ1,11 − 2Gt,11Λℓ2,11Gt,11

)
− η

rkα⋆

5

log d
Irk⋆ +

η/2
√
rs
νt+1,11

Then, if we define V −
t := 2Λ

1
2

ℓ2,11
Gt,11Λ

1
2

ℓ2,11
−Λℓ1,11, we have

V −
t+1 ⪰ V −

t − η(V −
t+1)

2 + ηΛ2
ℓ1,11 −

5η

rkα⋆ log d
Λℓ2,11 +

η
√
rs
Λ

1
2

ℓ2,11
νt+1,11Λ

1
2

ℓ2,11

⪰ V −
t

(
Ir +

η

1− 1.1η
V −
t

)−1

+ η

(
Λ2

ℓ1,11 −
5

rkα⋆ log d
Λℓ2,11

)
+Λ

1
2

ℓ2,11
νt+1,11Λ

1
2

ℓ2,11

70



• To derive an upper-bound for Gt, assuming Gt ⪯ 1.1Irk⋆ , we have

V t+1 = V t −
η

1− 1.1η
V 2

t +
η2

(1− 1.1η)2
V 3

t

(
Irk⋆ +

η

1− 1.1η
V t

)−1

+
η

1− 1.1η

(
Λ2

ℓ1,11 −
5

rkα⋆ log dΛℓ2,11 −
O(1)
log2 d

Λ2
ℓ2,11

)
⪯ V t −

η

1− 1.1η
V 2

t +
η

1− 1.1η
Λ2

ℓ1,11.

Then, by Proposition 34, we have Gt+1 ⪯ 1.1Irk⋆ . Since the bound holds for t = 0, it holds for all t ∈ N.

• To derive a lower-bound, we first observe that by monotonicity V 0 ≻ 0 . Therefore,

Gt+1 ⪰ Gt −
η

1− 1.1η
(2Λ

1
2

ℓ2,11
GtΛ

1
2

ℓ2,11
−Λℓ1,11)

2 +
η/2

1− 1.1η

(
Λ2

ℓ1,11 −
5

rkα⋆ log dΛℓ2,11 −
O(1)
log2 d

Λ2
ℓ2,11

)
⪰ Gt −

η

1− 1.1η

(
2Λ

1
2

ℓ2,11
GtΛ

1
2

ℓ2,11
−
√(

Λ2
ℓ1,11

− 5
rkα⋆ log dΛℓ2,11 −

O(1)
log2 d

Λ2
ℓ2,11

))2

+
η/2

1− 1.1η

(
Λ2

ℓ1,11 −
5

rkα⋆ log d
Λℓ2,11 −

O(1)

log2 d
Λ2

ℓ2,11

)
.

Then, by Proposition 34, we have Gt ⪰ G0 = Irk⋆ − 1
log dIrk⋆ .

We start our proof by showing that V −
t ⪰ V t + ζ

t
for t ≤ Tstable. Assuming the statement holds for t ∈ N,

we have

V −
t+1 ⪰ (V t + ζ

t
)

(
Ir +

η

1− 1.1η
(V t + ζ

t
)

)−1

+ η

(
Λ2

ℓ1,11 −
5

rkα⋆ log d
Λℓ2,11

)
+Λ

1
2

ℓ2,11
νt+1,11Λ

1
2

ℓ2,11

= V t

(
Ir +

η

1− 1.1η
V t

)−1

+ η

(
Λ2

ℓ1,11 −
5

rkα⋆ log d
Λℓ2,11

)
+

(
Ir +

η

1− 1.1η
V t

)−1

ζ
t

(
Ir +

η

1− 1.1η
(V t + ζ

t
)

)−1

+Λ
1
2

ℓ2,11
νt+1,11Λ

1
2

ℓ2,11

We have for t ≤ Tstable(
Ir +

η

1− 1.1η
V t

)−1

ζ
t

(
Ir +

η

1− 1.1η
(V t + ζ

t
)

)−1

= ζ
t
− η

1− 1.1η
V t ζt

− η

1− 1.1η
ζ
t
V t −

η

1− 1.1η
ζ2

t

− η2

(1− 1.1η)2
V t

(
Ir +

η

1− 1.1η
V t

)−1

ζ
t

(
Ir +

η

1− 1.1η
(V t + ζ

t
)

)−1

(V t + ζ
t
)

⪰ ζ
t
− η

1− 1.1η

1

log2 d
V 2

t −
η

1− 1.1η
(1 + log2 d)ζ2

t
− η2

(1− 1.1η)2
O(rk−α

⋆ )

log4 d
Irk⋆

⪰ ζ
t
− η

1− 1.1η

O(1)

log2 d
Λ2

ℓ2,11.

Since V −
0 = V 0 + ζ

0
, the claim follows. Then, by the third item above, we have for t ≤ Tstable

Gt ⪰ G0 + νt ⪰ Irk⋆ −
1

log d
Irk⋆ −

rk
−α
2

⋆

log2 d
Irk⋆ ⪰ Irk⋆ −

5

log d
Irk⋆ ⇒ Tnoise ≤ Tbounded.

In the following, we will bound Tnoise. We have

Et

[
ν2
t+1

] (a)

⪯ ν2
t +O(η2)Irk⋆ ⇒ E

[
ν2
t

]
⪯ O(η2t)Irk⋆
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By clipping strategy we used with L = log2 d in (F.38), and defining Γ1 := Irk⋆ , Γ2 := Λ
1
2
11, and

Quad
(ℓ)
k,t(X) :=

k∑
j=1

Ej−1

[(
ΓℓT

−1
2

t XjT
−1
2

t Γℓ
)2]

, ℓ ∈ {1, 2},

we can show that the following events hold: For any T ∈ N,

Êht,1 ≡
{
max
t≤T
∥Quad

(1)
t,t ∥2 ≤ O(η2T ) and max

t≤T
R

(1)
t,t ≤ O(ηrk

1
2
⋆ log2 d)

}
Êht,2 ≡

{
max
t≤T
∥Quad

(2)
t,t ∥2 ≤ Oα(η

2T rkp2−1
⋆ ) and max

t≤T
R

(2)
t,t ≤ Oα(ηrk

p2− 1
2

⋆ log2 d)

}
.

where p2 is defined in Corollary 4. By using Proposition 19, we can show that with probability d4 exp(− log2 d),

Tnoise ≥ rkα⋆ log2 d
η .

G Auxiliary Statements

G.1 Matrix bounds

Proposition 22. For A,B ∈ Rd×r, we have

−A⊤A−B⊤B ⪯ A⊤B +B⊤A ⪯ A⊤A+B⊤B.

If r = d, then (A+A⊤)2 ⪯ 2A⊤A+ 2AA⊤. Moreover, if A1, · · · ,Ak are symmetric matrices,(
k∑

i=1

Ai

)2

⪯ k

k∑
i=1

A2
i .

Proof. We have

(A−B)⊤(A−B) ⪰ 0⇒ A⊤A+B⊤B ⪰ A⊤B +B⊤A.

By using A← −A, we obtain the left inequality too. For the second inequality, we have

(A+A⊤)2 = A⊤A+AA⊤ +AA+A⊤A⊤

(A−A⊤)⊤(A−A⊤) = A⊤A+AA⊤ −AA−A⊤A⊤

Therefore, (A+A⊤)2 ⪯ 2
(
A⊤A+AA⊤). For the last statement,(

k∑
i=1

Ai

)2

=

k∑
i=1

A2
i +

k∑
i=1

k∑
j=i+1

AiAj +

k∑
i=1

k∑
j=i+1

AjAi ⪯ k

k∑
i=1

A2
i ,

where we use the first statement in the last inequality.

Proposition 23. Consider a symmetric square matrix with block partition

M =

[
A B
B⊤ C

]
.

If A is invertible, then M ≻ 0 if and only if A ≻ 0 and C −B⊤A−1B ≻ 0.
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Proof. If A is invertible, we have[
A B
B⊤ C

]
=

[
I 0

B⊤A−1 I

] [
A 0
0 C −B⊤A−1B

] [
I A−1B
0 I

]
.

Note that [
I 0

B⊤A−1 I

]−1

=

[
I 0

−B⊤A−1 I

]
.

Therefore, the statement follows.

Proposition 24. Let ru < r and Z ∈ Rr×rs such that

Z =

[
Z1

Z2

]
, where Z1 ∈ Rru×rs ,Z2 ∈ Rr−ru×rs .

For ant 0 ≤ ε < 1

ZZ⊤ ⪰ ε

[
Z1Z

⊤
1 0

0 0

]
+ (1− ε)

[
Z1Z

⊤
1 −Z1Z

⊤
2 (Z2Z

⊤
2 )+Z2Z

⊤
1 0

0 0

]
− ε

1− ε

[
0 0
0 Z2Z

⊤
2

]
,

where A→ A+ denotes the pseudo inverse operator.

Proof. We will denote x ∈ Rr as

x =

[
x1

x2

]
where x1 ∈ Rru ,x2 ∈ Rr−ru .

We have

x⊤ZZ⊤x =

(
x⊤
1 Z1Z

⊤
1 x1 + 2x⊤

1 Z1Z
⊤
2 x2 +

1

1− ε
x⊤
2 Z2Z

⊤
2 x2

)
− ε

1− ε
x⊤
2 Z2Z

⊤
2 x2

(a)

≥
(
x⊤
1 Z1Z

⊤
1 x1 − (1− ε)x⊤

1 Z1Z
⊤
2 (Z2Z

⊤
2 )+Z2Z

⊤
1 x1

)
− ε

1− ε
x⊤
2 Z2Z

⊤
2 x2,

where we minimized the first term in the first line over x2 in (a). Since (a) holds for all x, the statement
follows,

Proposition 25. Let A ∈ Rr×r be a symmetric matrix. For S ≻ −A, S → −(S +A)−1 is monotone.

Proof. Let S1 ≻ S2 ≻ −A . We have

−(S1 +A)−1 + (S2 +A)−1 = (S2 +A)−1((S1 − S2)
−1 + (S2 +A)−1)−1(S2 +A)−1 ≻ 0. (G.1)

For S1 ⪰ S2, we can use S1 + εIr in (G.1) and take ε ↓ 0

G.1.1 Additional bounds for continuous-time analysis

Proposition 26. For a symmetric positive definite D1, D2, and C > 0, we have

D1

(
D1 +Z1

(
CIrs +Z⊤

2 D−1
2 Z2

)−1
Z⊤

1

)−1

Z1Z
⊤
2

(
Z2Z

⊤
2 + CD2

)−1
D2

= Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1
Z⊤

2 .
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Proof. We have(
D1 +Z1

(
CIrs +Z⊤

2 D−1
2 Z2

)−1
Z⊤

1

)−1

= D−1
1 −D−1

1 Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1
Z⊤

1 D−1
1 .

Therefore,

D1

(
D1+Z1

(
Irs+Z⊤

2 D−1
2 Z2

)−1
Z⊤

1

)−1

Z1= Z1

(
Irs−

(
CIrs+Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1
Z⊤

1 D−1
1 Z1

)
= Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1(
CIrs +Z⊤

2 D−1
2 Z2

)
Then,

Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1(
CIrs +Z⊤

2 D−1
2 Z2

)
Z⊤

2

(
Z2Z

⊤
2 + CD2

)−1
D2

= Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1
Z⊤

2 .

Proposition 27. For some diagonal positive definite A := diag({aj}ruj=1) and B := diag({bj}d−ru
j=1 ), we let

D1 :=
A exp(−tA)

Iru − exp(−tA)
, D2 :=

B exp(−tB)

Id−ru − exp(−tB)
,

For some Z1 ∈ Rru×rs , Z2 ∈ R(d−ru)×rs , and C > 0, we define

M := exp(0.5tA)Z1

(
CIrs +Z⊤

2 D−1
2 Z2 +Z⊤

1 D−1
1 Z1

)−1
Z⊤

2 exp(0.5tB).

We have

∥M∥2F ≤ C̃

ru∧rs∑
i=1

(
λmax(Z1Z

⊤
1 ) exp(t(ai + bi)) ∧

(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

) ai exp(t(ai + bi))

exp(tai)− 1

)
where

C̃ =
λmax(Z

⊤
2 Z2)(

C +
λmin(Z

⊤
2 Z2)

λmax(D2)

)2
Proof. For convenience, we will use

D̃1 :=
A

Iru − exp(−tA)
, D̃2 =

B

Id−ru − exp(−tB)
, Z̃1 := exp(0.5tA)Z1, Z̃2 := exp(0.5tB)Z2

We let

M1 := Z̃1

(
CIrs + Z̃⊤

2 D̃−1
2 Z̃2 + Z̃⊤

1 D̃−1
1 Z̃1

)−1
2

,

M2 :=
(
CIrs + Z̃⊤

2 D̃−1
2 Z̃2 + Z̃⊤

1 D̃−1
1 Z̃1

)−1
2

Z̃⊤
2

We observe that

∥M∥2F = Tr(M⊤
1 M1M2M

⊤
2 ) ≤

ru∧rs∑
i=1

λi(M1M
⊤
1 )λi(M

⊤
2 M2)

where we used that rank(M1M
⊤
1 ) ≤ ru ∧ rs and Von Neumann’s trace inequality in the last part. We have

M⊤
2 M2 ⪯ exp(0.5tB)Z⊤

2

(
CIrs +

1
λmax(D2)

Z⊤
2 Z2

)−1
Z2 exp(0.5tB) ⪯ λmax(Z

⊤
2 Z2)

C +
λmax(Z⊤

2 Z2)
λmax(D2)

exp(tB)
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On the other hand,

M1M
⊤
1 ⪯ Z̃1

((
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
Irs + Z̃⊤

1 D̃−1
1 Z̃1

)−1

Z̃⊤
1

=
1

C +
λmin(Z

⊤
2 Z2)

λmax(D2)

Z̃1

(
Irs + Z̃⊤

1

((
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1

)−1

Z̃1

)−1

Z̃⊤
1

=
1

C +
λmin(Z

⊤
2 Z2)

λmax(D2)

Z̃1Z̃
⊤
1

((
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1 + Z̃1Z̃

⊤
1

)−1 ((
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1

)
We have the following at the same time:

• Z̃1Z̃
⊤
1

((
C+

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1 + Z̃1Z̃

⊤
1

)−1(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1 ⪯

(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1

• Z̃1Z̃
⊤
1

((
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1 + Z̃1Z̃

⊤
1

)−1(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

)
D̃1 ⪯ λmax(Z1Z

⊤
1 ) exp(tA)

Therefore, for i ≤ r ∧ rs, we have

λi(M1M
⊤
1 ) ≤ 1

C +
λmin(Z

⊤
2 Z2)

λmax(D2)

(
λmax(Z1Z

⊤
1 ) exp(tai) ∧

(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

) ai exp(tai)

exp(tai)− 1

)

Therefore,

∥M∥2F ≤ C̃

ru∧rs∑
i=1

(
λmax(Z1Z

⊤
1 ) exp(t(ai + bi)) ∧

(
C +

λmin(Z
⊤
2 Z2)

λmax(D2)

) ai exp(t(ai + bi))

exp(tai)− 1

)
.

G.1.2 Additional bounds for discrete-time analysis

Proposition 28. For some positive definite diagonal matrices D0,D1 ∈ Rr×r and symmetric matrices
G,ν ∈ Rr×r, we let

V := 2D
1
2
0 GD

1
2
0 −D1 and ζ := D

1
2
0 νD

1
2
0 and V̀ := V + ζ,

where

• ∥G∥2 ≤ LG and ∥ν∥2 ≤ Lν and ∥D0∥2 ≤ L0.

• ∥D−1
0 D1∥2 ≤ L1/0 and ∥D0D

−1
1 ∥2 ≤ L0/1.

• For notational convenience, let LF := 2LG + L1/0 and LF̀
:= 2(LG + Lν) + L1/0 .

For 0 ≤ η < 1
LF̀L0

, we have that (Ir + ηV ) and (Ir + ηV̀ ) are invertible and the following bounds holds:

− C1D1 ⪯ V 2 (Ir + ηV )
−1
ζV̀

(
Ir + ηV̀

)−1

⪯ C1D1 and − C2D1⪯V ζV̀ 2
(
Ir + ηV̀

)−1

⪯ C2D1(G.2)

− C3D1 ⪯ V 3 (Ir + ηV )
−1
ζ ⪯ C3D1 and − C4D1⪯ζV̀ 3

(
Ir + ηV̀

)−1

⪯ C4D1 (G.3)

where

C1 =
LνL0/1L

2
FLF̀L

3
0(

1− ηLFL0

)(
1− ηLF̀L0

) , C2 =
LνL0/1LFL

2
F̀
L3
0

1− ηLF̀L0
, C3 =

LνL0/1L
3
FL

3
0

1− ηLFL0
, C4 =

LνL0/1L
3
F̀
L3
0

1− ηLF̀L0
.

75



Proof. Note that ∥V ∥2 ∨∥V̀ ∥2 ≤ LF̀L0, therefore, if 0 ≤ η < 1
LF̀L0

, (Ir + ηV ) and (Ir + ηV̀ ) are invertible.

For the following, we introduce the notation

G̀ := G+ ν and F = 2G+D−1
0 D1 and F̀ = 2G̀+D−1

0 D1.

Note that we have ∥F ∥2 ≤ LF and ∥F̀ ∥2 ≤ LF̀ . For the left part of (G.2), we write

D
− 1

2
0 V 2 (Ir + ηV )

−1
ζV̀

(
Ir + ηV̀

)−1

D
− 1

2
0 = FD0FD0 (Ir + ηFD0)

−1
νD0F̀

(
Ir + ηD0F̀

)−1

.

Therefore, we have∥∥∥∥FD0FD0 (Ir + ηFD0)
−1

νD0F̀
(
Ir + ηD0F̀

)−1
∥∥∥∥
2

≤ ∥F ∥22∥F̀ ∥2∥D0∥32∥ν∥2(
1− η∥F ∥2∥D0∥2

)(
1− η∥F̀ ∥2∥D0∥2

)
≤

L2
FLF̀L

3
0Lν

(1− ηLFL0)(1− ηLF̀L0)
.

Therefore, we have the bound. For the right part of (G.2), we write

D
− 1

2
0 V ζV̀ 2

(
Ir + ηV̀

)−1

D
− 1

2
0 = FD0νD0F̀D0F̀

(
Ir + ηD0F̀

)−1

Therefore, we have∥∥∥∥FD0νD0F̀D0F̀
(
Ir + ηD0F̀

)−1
∥∥∥∥
2

≤ ∥F ∥2∥F̀ ∥
2
2∥D0∥32∥ν∥2

1− η∥F̀ ∥2∥D0∥2
≤

LFL
2
F̀
L3
0Lν

1− ηLF̀L0
,

which gives us the bound. For the left part of (G.3), we write

D
− 1

2
0 V 3 (Ir + ηV )

−1
ζD

− 1
2

0 = (FD0)
3 (Ir + ηFD0)

−1
ν

Therefore, we have ∥∥∥(FD0)
3 (Ir + ηFD0)

−1
ν
∥∥∥
2
≤ ∥F ∥

3
2∥D0∥32∥ν∥2

1− η∥F ∥2∥D0∥2
≤ LνL

3
FL

3
0

1− ηLFL0
,

which gives us the bound. The the right part of (G.3) can be derived similarly.

Proposition 29. Let V , V̀ ∈ Rr×r be symmetric matrices such that V̀ = V + ζ . We have

V̀
(
Ir + ηV̀

)−1

− V (Ir + ηV )
−1

= (Ir + ηV )
−1

ζ
(
Ir + ηV̀

)−1

.

Moreover, given that

M := ζ − ηV ζ − ηζV − ηζ2 + η2ζV ζ + η2ζ3 + η2V ζV

under the conditions of Proposition 28, we have for any κd > 0,

− 2

κ2d
η2ζ2 − η2κ2dV

4 − η2κ2dV ζ2V − Cη3D1 ⪯ (Ir + ηV )
−1

ζ
(
Ir + ηV̀

)−1

−M

⪯ 2

κ2d
η2ζ2 + η2κ2dV

4 + η2κ2dV ζ2V + Cη3D1

where C = C1 + C2 + C3 + C4, i.e., the sum of the constants given in Proposition 28.
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Proof. We write

V̀
(
Ir + ηV̀

)−1 −
(
Ir + ηV

)−1
V =

(
Ir + ηV

)−1
((

Ir + ηV
)
(V + ζ)− V

(
Ir + ηV̀

))(
Ir + ηV̀

)−1

= (Ir + ηV )
−1

ζ
(
Ir + ηV̀

)−1

.

For the second part, we write

(Ir + ηV )
−1

ζ
(
Ir + ηV̀

)−1

=
(
Ir − ηV (Ir + ηV )

−1
)
ζ

(
Ir − ηV̀

(
Ir + ηV̀

)−1
)

= ζ − ηV
(
Ir − ηV + η2V 2 (Ir + ηV )

−1
)
ζ

− ηζV̀
(
Ir − ηV̀ + η2V̀ 2 (Ir + ηV )

−1
)
+ η2V (Ir + ηV )

−1
ζV̀

(
Ir + ηV̀

)−1

= ζ − ηV ζ − ηζV − ηζ2 + η2V 2ζ + η2ζV̀ 2 − η3V 3 (Ir + ηV )
−1

ζ − η3ζV̀ 3
(
Ir + ηV̀

)−1

+ η2V (Ir + ηV )
−1

ζV̀
(
Ir + ηV̀

)−1

We have

η2V 2ζ + η2ζV̀ 2 = η2V 2ζ + η2ζ(V + ζ)2 = η2V 2ζ + η2ζV 2 + η2ζ2V︸ ︷︷ ︸
:=M1

+η2ζV ζ + η2ζ3.

Moreover,

η2V (Ir + ηV )
−1

ζV̀
(
Ir + ηV̀

)−1

= η2V ζV̀
(
Ir + ηV̀

)−1

− η3V 2 (Ir + ηV )
−1

ζV̀
(
Ir + ηV̀

)−1

= η2V ζV̀ − η3V ζV̀ 2
(
Ir + ηV̀

)−1

− η3V 2 (Ir + ηV )
−1

ζV̀
(
Ir + ηV̀

)−1

= η2V ζV + η2V ζ2︸ ︷︷ ︸
:=M2

−η3V ζV̀ 2
(
Ir + ηV̀

)−1

− η3V 2 (Ir + ηV )
−1

ζV̀
(
Ir + ηV̀

)−1

By Proposition 22, we have

−2η2ζ2 − η2V 4 − η2V ζ2V ⪯M1 +M2 ⪯ 2η2ζ2 + η2V 4 + η2V ζ2V .

Therefore by Proposition 28, we have

− 2

κ2d
η2ζ2 − η2κ2dV

4 − η2κ2dV ζ2V − Cη3D1 ⪯ (Ir + ηV )
−1

ζ
(
Ir + ηV̀

)−1

−M

⪯ 2

κ2d
η2ζ2 + η2κ2dV

4 + η2κ2dV ζ2V + Cη3D1.

Proposition 30. By using the notation in Proposition 28, we consider

η <
1

LFL0
and 0 < ε <

0.5/η

LFL0
− 1

Then,

V (Ir + ηV )
−1 − εηV 2 ⪰ V (Ir + η(1 + ε)V )

−1 − 2.5εη2CD1

V (Ir + ηV )
−1

+ εηV 2 ⪯ V (Ir + η(1− ε)V )
−1

+ 1.5εη2CD1,

where C =
L0/1L

3
FL3

0

1−ηLFL0
.
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Proof. For the lower bound, we have

V (Ir + ηV )
−1 − εηV 2 = V − (1 + ε)ηV 2 + η2V 3(Ir + ηV )−1

= V − (1 + ε)ηV 2 + (1 + ε)2η2V 3(Ir + (1 + ε)ηV )−1

− (2ε+ ε2)η2V 3(Ir + ηV )−1 + (1 + ε)2εη3V 4(Ir + (1 + ε)ηV )−1 (Ir + ηV )
−1

⪰ V (Ir + η(1 + ε)V )
−1 − 2.5εη2CD1,

where we used C3 with Lν = 1 in Proposition 28 in the last step. For the upper bound,

V (Ir + ηV )
−1

+ εηV 2 = V − (1− ε)ηV 2 + η2V 3(Ir + ηV )−1

= V − (1− ε)ηV 2 + (1− ε)2η2V 3(Ir + (1− ε)ηV )−1

+ (2ε− ε2)η2V 3(Ir + ηV )−1 − (1− ε)2εη3V 4(Ir + (1− ε)ηV )−1 (Ir + ηV )
−1

⪯ V (Ir + η(1 + ε)V )
−1

+ 1.5εη2CD1.

Lemma 7. For any η ∈ R and t ∈ N, we have[
Ir ηIr
ηΛ2 Ir

]t
=

 (Ir+ηΛ)t+(Ir−ηΛ)t

2 Λ−1 (Ir+ηΛ)t−(Ir−ηΛ)t

2

Λ (Ir+ηΛ)t−(Ir−ηΛ)t

2
(Ir+ηΛ)t+(Ir−ηΛ)t

2

 . (G.4)

Proof. We observe that

A :=

[
0 Ir
Λ2 0

]
⇒ (G.4) =

t∑
k=0

(
t

k

)
ηkAk.

Note that

A2k =

[
Λ2k 0
0 Λ2k

]
and A2k+1 =

[
0 Λ2k

Λ2k+2 0

]
.

Therefore,

t∑
k=0

(
t

k

)
ηkAk =

 ∑t
k=0

k even

(
t
k

)
ηkΛk

∑t
k=0
k odd

(
t
k

)
ηkΛk−1

∑t
k=0
k odd

(
t
k

)
ηkΛk+1

∑t
k=0

k even

(
t
k

)
ηkΛk



=

 (Ir+ηΛ)t+(Ir−ηΛ)t

2 Λ−1 (Ir+ηΛ)t−(Ir−ηΛ)t

2

Λ (Ir+ηΛ)t−(Ir−ηΛ)t

2
(Ir+ηΛ)t+(Ir−ηΛ)t

2

 .

G.2 Some moment bounds and concentration inequalities

Lemma 8 (Hypercontractivity). Let Pk : Rd → R be a polynomial of degree-k and x ∼ N (0, Id). For q ≥ 2,

we have E [Pk(x)
q]

1/q ≤ (q − 1)k/2E
[
Pk(x)

2
]1/2

.

Lemma 9. Let x ∼ N (0, Id) and S ∈ Rd×d be a symmetric matrix. For u > 0,

P
[
|x⊤Sx− Tr(S)| ≥ 2∥S∥Fu+ 2∥S∥2u2

]
≤ 2e−u2

.

Proof. We note that x⊤Sx−Tr(S) has the same distribution with
∑d

i=1 λi(S)(Z
2
i −1), where Zi ∼iid N (0, 1).

By using the Laurent-Massart lemma [LM00], we have the result.
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Corollary 6. Let y = x⊤Sx− Tr(S) and x ∼ N (0, Id). For p ≥ 2, we have E[|y|p]
1
p ≤ (p− 1)

√
2∥S∥F .

Proof. By observing that E[|y|2] = 2∥S∥2F , we have the result.

Corollary 7. For A ∈ Rd×r, p ≥ 2 and x ∼ N (0, Id), we have E[∥A⊤x∥2p2 ]
1
p ≤
√
3(p− 1)tr(A⊤A).

Proof. By Lemma 8, we have E[∥A⊤x∥2p2 ]
1
p ≤ (p− 1)E[∥A⊤x∥42]

1
2 . For S = AA⊤, we have

E[∥A⊤x∥42] = E[(x⊤Sx)2] = Tr(E[(x⊤Sx)xx⊤]S).

We have

E[(x⊤Sx)xx⊤] = Tr(S)Id + 2S ⇒ E[∥A⊤x∥42] = Tr(S)2 + 2∥S∥2F
(a)

≤ 3Tr(S)2,

where (a) follows that S is positive semi-definite. Since tr(S) = tr(A⊤A), we have the statement.

Proposition 31. Let xj ∼i.i.d N (0, Ir), for j ∈ [N ]. There exists a constant c > 0 such that for δ =
u(r+

√
Cr log d+C log d)√

N
, we have

P

 sup
S∈Rr×r

∥S∥F=1

∣∣∣∣∣∣ 1N
N∑
j=1

1
2Tr
(
S(xjx

⊤
j − Ir)

)2 − 1

∣∣∣∣∣∣ ≥ max{2δ, δ2}+ 10d−C/2

 ≤ d2 exp(−cu2) + 2Nd−C .

Proof. We observe that

1

2
∥xjx

⊤
j − Ir∥F ≤

1

2

(
∥xj∥22 + r

)
.

By using Lemma 9, we can derive

P
[
∥xj∥22 ≤ r + 2

√
r
√
C log d+ 2C log d︸ ︷︷ ︸

=:Ej

]
≥ 1− 2d−C .

We have

|E
[
1
2Tr
(
S(xjx

⊤
j − Ir)

)2
1Ej

]
− 1| = 1

2E
[
Tr
(
S(xjx

⊤
j − Ir)

)2
1Ec

j

]
≤ 1

2E
[
Tr
(
S(xjx

⊤
j − Ir)

)4]1/2√
2d−C/2

≤ 9
√
2d−C/2.

By using [Ver10, Theorem 5.41], for δ = u(r+
√
Cr log d+C log d)√

N
, we have

P

[
sup

S∈Rr×r

∥S∥F=1

∣∣∣∣∣∣ 1N
N∑
j=1

1
2Tr
(
S(xjx

⊤
j − Ir)

)2 − 1

∣∣∣∣∣∣ ≥ max{2δ, δ2}+ 10d−C/2

]

≤ P

[
sup

S∈Rr×r

∥S∥F=1

∣∣∣∣∣∣ 1N
N∑
j=1

1
2Tr
(
S(xjx

⊤
j − Ir)

)2
1Ej
− E

[
1
2Tr
(
S(xjx

⊤
j − Ir)

)2
1Ej

]∣∣∣∣∣∣ ≥ max{2δ, δ2}

]
+ 2Nd−C

≤ d2 exp(−cu2) + 2Nd−C .

Proposition 32. Let xj ∼i.i.d N (0, Id), for j ∈ [N ], and W ∈ Rd×r be an orthonormal matrix. For a fixed
S ∈ Rd×d, C ≥ 16 and N ≥ Cr log d, we have

P
[∥∥∥ 1

N

N∑
j=1

1

2
Tr
(
S(xjx

⊤
j − Id)

)
W⊤(xjx

⊤
j − Id)W −W⊤SW

∥∥∥
2
≥24e∥S∥F

(√
Cr
N + d

−C
2

)]
≤ 2e

−Cr
8 + 2Nd−C .
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Proof. Without loss of generality, we assume ∥S∥F = 1. By using Lemma 9, we have

P
[
|Tr
(
S(xjx

⊤
j − Id)

)
| ≤ 4

√
C log d︸ ︷︷ ︸

=:Ej

]
≥ 1− 2d−C .

For the following, we fix a v ∈ Sd−1. First, to bound the bias due to clipping, we write:∣∣∣E [Tr(S(xjx
⊤
j − Id)

)
(⟨v,x⟩2 − 1)1Ec

j

]∣∣∣ ≤ E
[
Tr
(
S(xjx

⊤
j − Id)

)4] 1
4 E
[
(⟨v,x⟩2 − 1)4

] 1
4 √

2d−C/2

≤ 18
√
2d−C/2.

On the other hand, to bound the moments of the clipped random variable, we have for p ≥ 2,

E
[
|Tr
(
S(xjx

⊤
j − Id)

)
(⟨v,x⟩2 − 1)|p1Ej

]
≤ (4

√
C log d)p−2E

[
Tr
(
S(xjx

⊤
j − Id)

)2|(⟨v,x⟩2 − 1)|p
]

≤ (12e)2(8
√
2e
√

C log d)p−2 p!

2
.

By using [Tro10, Theorem 6.2], for a fixed v ∈ Sd−1, we have

P

∣∣∣ 1
N

N∑
j=1

1

2
Tr
(
S(xjx

⊤
j − Id)

)
(⟨v,xj⟩2 − 1)1Ej

− E
[1
2
Tr
(
S(xx⊤

j − Id)
)
(⟨v,xj⟩2 − 1)1Ej

]∣∣∣ ≥ 12eu


≤ 2 exp

( −Nu2/2

1 + u
√
C log d

)
.

By using ε-cover argument, we can derive

P

∥∥∥ 1

N

N∑
j=1

1

2
Tr
(
S(xjx

⊤
j − Id)

)
W⊤(xjx

⊤
j − Id)W −W⊤SW

∥∥∥
2
≥ 24eu+ 18

√
2d−C/2


≤ 2 · 9r exp

( −Nu2/2

1 + u
√
C log d

)
+ 2Nd−C .

By using u =
√

Cr/N , we have the result.

Proof. Without loss of generality, we assume ∥S∥F = 1. We have

∥∥∥ N∑
j=1

yj(xjx
⊤
j − Id)− S

∥∥∥2
F
≤ sup

S∈Rr×r

∥S∥F=1

∣∣∣∣∣∣ 1N
N∑
j=1

1
2Tr
(
S(xjx

⊤
j − Ir)

)2 − 1

∣∣∣∣∣∣
2

.

Hence, by considering the event in Proposition 31, we have the statement.

Proposition 33. Let X ∈ R be a random variable such that for some K,C > 0, E[|X|p] ≤ CKpppc for

some c > 0 and p ≥ k. Then, P [|X| ≥ Ku] ≤ Ce−
u1/c

e for u ≥ (ke)c.

Proof. Use Markov inequality with p = u1/c

e .

G.3 Miscellaneous

Proposition 34. We consider η ≤ 1
10 . The following statements holds:
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• For 0.2 ≥ δ > 0, let

ut+1 = ut + ηut(1− ut), 1 + δ ≥ u0 ≥ 0.

We have 1 +
(
δ ∨ η2

4

)
≥ supt ut ≥ 0. Moreover, t∗ = inf{t : ut ≥ 1}, we have ut+1 ≥ ut for t < t∗ and

ut∗ ≥ ut ≥ 1 for t ≥ t∗.

• For 0.5 > ε > 0 and 1.1 > u0 ≥ u0 ≥ u0 > 0, let

ut+1 = ut + η(1 + ε)ut(1− ut) and ut+1 = ut + ηut(1− ut).

and

ut + ηut(1− ut) ≤ ut+1 ≤ ut + η(1 + ε)ut(1− ut).

We have

1

2

(
1 ∧ u0e

ηt
1+η

)
≤ ut ≤ ut ≤ ut ≤

(
1.1 ∧ u0e

η(1+ε)t
)
.

Proof. If t ≥ t∗, by monotonicity of the update, we have 1 ≤ ut+1 ≤ ut ≤ ut∗ . If t
∗ > 0, then for t < t∗, we

have 1 ≥ ut ≥ 0 and ut(1−ut) ≥ 0, and thus, we have ut+1 ≥ ut ≥ 0. Next, we observe that ut∗ ≤ 1+0.25η
and by monotonicity of the update for t ≥ t∗, we have 1 ≤ ut ≤ ut∗. Hence, it is sufficient to bound ut∗ to
bound supt ut. Note that, we have 1 ≥ ut∗−1 ≥ 1− 0.25η, and thus,

ut∗

ut∗−1
= 1 + η(1− ut∗−1) ≤ 1 + η2 ⇒ ut∗ ≤ 1 +

η2

4
.

For the second item, by monotonicity, we have 0 < ut ≤ ut ≤ ut < 1.1. Moreover, by [AGP24, Lemma A.2],
we have for t < tu := inf{t : ut ≥ 0.5}

u0e
ηt

1+η

1 + u0e
ηt

1+η

≤ ut ⇒
u0

2
e

ηt
1+η ≤ u0.

For t ≥ tu, by the first item, we have ut ≥ 0.5. Therefore, we have

1

2

(
u0e

ηt
1+η ∧ 1

)
≤ ut.

On the other hand, for all t ∈ N, we have ut ≤ u0e
η(1+ε)t. By the first item, we have ut ≤ u0e

η(1+ε)t∧1.1.

Proposition 35. For t, λ > 0, we have

1

t exp(tλ)
≤ λ

exp(tλ)− 1
≤ 1

t
.

Proof. The upper bound follows exp(tλ)− 1 ≥ tλ. For the lower bound,

1

t
− λ

exp(tλ)− 1
=

exp(tλ)− tλ− 1

t
(
exp(tλ)− 1

) . (G.5)

We have

exp(tλ)− tλ− 1 ≤
∞∑
k=2

(tλ)k

k!
= tλ

∞∑
k=1

(tλ)k

(k + 1)!
≤ tλ

∞∑
k=1

(tλ)k

k!
= tλ

(
exp(tλ)− 1

)
.

Therefore,

(G.5) ≤ λ⇒ 1

t
≤ λ

exp(tλ)− 1
+ λ⇒ 1

t exp(tλ)
≤ λ

exp(tλ)− 1
.
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Lemma 10. Let rs ≍ dγ , γ ∈ [0, 1), and log−1 d≪ Cd ≪ log10 d. We define Fd, Gd, Hd as

Fd(u) :=

(
1− 1

1 +
(

dCd

rs
1
u − 1

)(
d
rs

)− 1
u

)2

, Gd(u) := 1− 1

1 +
(

dCd

rs
− 1
)(

d
rs

)− 1
u

,

Hd(u) :=

(
1− Cd

(
d
rs

) 1
u−1

)
+

,

We have

• For any C > 0, supu≤logCd|Fd(u)| ≤ 1 for d ≥ ΩC(1).

• supu|Gd(u)| ∨ |Hd(u)| ≤ 1.

• For any δ ∈ (0, 0.5), let Cδ := {u ≥ 0 : |u − 1| < δ}. For any compact K ⊂ (0,∞] \ Cδ, we have

Fd(u)
d→∞−−−→ 1{u > 1} uniformly on K.

• For any compact K ⊆ [0,∞] \ Cδ, we have

Gd(u), Hd(u)
d→∞−−−→ 1{u > 1}, G2

d(u)
d→∞−−−→ 1{u > 1}

all uniformly on K.

Proof. For the first item, if u ≤ logC d, for d ≥ ΩC(1)

dCdu

rs
− 1 ≥ d

rs

t

logC+1 d
− 1 > 0 .

Therefore, |Fd(u)| ≤ 1. For the second item, since dCd

rs
> 1 for d ≥ Ω(1), the item follows.

For the third item, since E := [0,∞) \ Cδ is closed in [0,∞), it suffices to establish the result on small open
intervals around each point of of E within [0,∞). Fix u0 ∈ E and choose ϵ ∈ (0, δ/2). Since B(u0, ϵ) :=
(u0 − ϵ, u0 + ϵ) ∩ [0,∞) is convex it can be either in P> := {u : u > 1 + δ/2} or P< := {u : u < 1 − δ/2}.
Without loss of generality let us assume it is in P<. Then,

sup
u∈B(u0,ϵ)⊂P<

|Fd(u)| ≤ 1− 1

1 +

(
Oδ(Cd)−

(
d
rs

)−1
)(

d
rs

)−Oδ(1)
→ 0.

A similar step can be repeated if Bϵ ⊂ P<.

For the last item, we first observe that uniform convergence of Gd(u) implies the uniform convergence of
G2

d(u). Therefore, we will only prove the first result. Since E := [0,∞] \ Cδ, is compact, and thus, P> ∩ E
and P< ∩ E are also compact, we can directly use these sets. Without loss of generality let us use P< ∩ E.
Then,

sup
u∈P<∩E

|Gd(u)| ∨ |Hd(u)| ≤
(
1− Cd

d
rs

Oδ(1)
)
+
→ 0.

A similar step can be repeated if P> ∩ E. Therefore, the statement follows.

Proposition 36. Let ru ≤ r and

t ∈

{
(0,∞), α ∈ [0, 0.5)

(0,∞) \ {jα : j ∈ N}, α > 0.5,
κeff :=

{
rα, α ∈ [0, 0.5)

1, α > 0.5.

We have
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• For K ∈ {G,H} and t ̸= limd→∞
1

λjκeff
, we have

Kd(
1

λjtκeff
)− 1{ 1

λj
> tκeff} = od(1).

• For K ∈ {F,G,H},

1

∥Λ∥2F

ru∑
j=1

λ2
j

(
Kd(

1
λjtκeff

)− 1{ 1
λj

> tκeff}
)
= od(1). (G.6)

Proof. The first item immediately follows Lemma 10. In the following, we will prove the second item for the
heavy and light tailed cases separately.

For α ∈ [0, 0.5): We define a sequence of measures µd{j/r} ∝ j−2α, j ≤ [r]. We observe that

• We have µd → µ weakly such that µ is supported on [0, 1] and µ([0, τ ]) = τ1−2α for τ ∈ [0, 1].

• Moreover, (G.6) = EX∼µd

[
(Kd(X

α/t)− 1{Xα > t})1{X ≤ ru
r }}

]
.

By using the Cδ definition in Lemma 10:∣∣EX∼µd

[
(Kd(X

α/t)− 1{Xα > t})1{X ≤ ru
r }}

]∣∣ ≤ EX∼µd
[|Kd(X

α/t)− 1{Xα > t}|1{Xα ∈ [0, 1] \ Cδ}]
+ EX∼µd

[|Kd(X
α/t)− 1{Xα > t}|1{Xα ∈ Cδ}]

(a)

≤ od(1) + PX∼µ[X
α ∈ Cδ],

where we used the second item in Lemma 10 for (a). Since PX∼µ[X
α ∈ Cδ]

δ→0−−−→ 0, we have the first result.

For α > 0.5: We define a sequence of measures µd{j} ∝ j−2α, j ≤ [r]. We observe that

• We have µd → µ weakly such that µ{j} ∝ j−2α for j ∈ N.

• Moreover, (G.6) = EX∼µd

[
(Kd(X

α/t)− 1{Xα > t})1{X ≤ ru}
]
.

Let t ∈
(
(j − 1)α, jα

)
for some j ∈ N. For small enough δ > 0, we have∣∣EX∼µd

[
(Kd(X

α/t)− 1{Xα > t})1{X ≤ ru}
]∣∣

= EX∼µd
[|Kd(X

α/t)− 1{Xα>t}|1{X∈ [0, ru]}1{Xα ̸∈Cδ}]
(b)

= od(1),

where we used both items in Lemma 10 for (b).

Corollary 8. For 1 ≥ cd ≫ log−5 d, we define

gd(λ, t) :=
−λ exp(−tλ)
1− exp(−tλ)

+
λ2 exp(−tλ)

(1− exp(−tλ))2
(cd
t

rs
d

+
λ exp(−tλ)
1− exp(−tλ)

)−1

Let ru ≤ r and

κeff :=

{
rα, α ∈ [0, 0.5)

1, α > 0.5
, Teff := κeff log d/rs.

We have

1

∥Λ∥2F

 ru∑
j=1

g2d(λj ; tTeff)−
ru∑
j=1

λ2
j1{ 1

λj
> tκeff}

 = od(1)

for any fixed

t ∈

{
(0,∞), α ∈ [0, 0.5)

(0,∞) \ {jα : j ∈ N}, α > 0.5.
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Proof. We observe that

gd(λ; t) = λ

(
1− 1

1− exp(−tλ) + d
rs

λt
cd

exp(−tλ)

)

Therefore, we have g2d(λ; tTeff) = λ2Fd(
1

λjtκeff
). Then, by Proposition 36

1

∥Λ∥2F

 ru∑
j=1

g2d(λj ; tTeff)−
ru∑
j=1

λ2
j1{ 1

λj
≥ tκeff}

 =
1

∥Λ∥2F

ru∑
j=1

λ2
j

(
Fd(

1
λjtκeff

)− 1{ 1
λj

> tκeff}
)
= od(1).
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