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Abstract

Classically, the continuous-time Langevin diffusion converges exponentially fast to its stationary dis-
tribution π under the sole assumption that π satisfies a Poincaré inequality. Using this fact to provide
guarantees for the discrete-time Langevin Monte Carlo (LMC) algorithm, however, is considerably more
challenging due to the need for working with chi-squared or Rényi divergences, and prior works have
largely focused on strongly log-concave targets. In this work, we provide the first convergence guarantees
for LMC assuming that π satisfies either a Lata la–Oleszkiewicz or modified log-Sobolev inequality, which
interpolates between the Poincaré and log-Sobolev settings. Unlike prior works, our results allow for
weak smoothness and do not require convexity or dissipativity conditions.

1 Introduction

The task of sampling from a target distribution π ∝ exp(−V ) on R
d, known only up to a normalizing

constant, is fundamental in many areas of scientific computing [Mac03; RC04; Bro+11; Gel+13]. As such,
there has been a considerable amount of research dedicated to this task, yielding precise and non-asymptotic
algorithmic guarantees when the potential V is strongly convex (see e.g. [Dal17; DMM19; Dwi+19; SL19;
HBE20; LST20; Che+21a; Che+21b; CLW21; WSC21]). Many distributions encountered in practice, how-
ever, are non-log-concave, and it is therefore of central importance to provide sampling guarantees for such
distributions. In this work, we address this problem by working under the assumption that π satisfies a
suitable functional inequality, which we now motivate.

The canonical sampling algorithm, Langevin Monte Carlo (LMC), is based on a discretization of the
continuous-time Langevin diffusion, which is the solution to the stochastic differential equation

dzt = −∇V (zt) dt+
√

2 dBt . (1.1)

Here, (Bt)t≥0 is a standard Brownian motion in R
d. Classically, if π satisfies a functional inequality such

as a Poincaré inequality or a log-Sobolev inequality, then the law of the Langevin diffusion (1.1) converges
exponentially fast to the target distribution π [BGL14]. Namely, a Poincaré inequality implies exponential
convergence in chi-squared divergence, whereas a log-Sobolev inequality (which is stronger than a Poincaré
inequality) implies exponential convergence in KL divergence.

The class of measures satisfying a Poincaré inequality is quite large, including all strongly log-concave
measures (due the Bakry–Émery criterion) and, more generally, all log-concave measures [KLS95; Bob99;
Che21]. It also includes many examples of non-log-concave distributions such as Gaussian convolutions of
measures with bounded support [Bar+18; CCN21], and it is closed under bounded perturbations of the
log-density. Owing to its broad applicability and its favorable continuous-time convergence properties, this
class of measures is thus a natural goal for providing quantitative guarantees for non-log-concave sampling.
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Sampling guarantees under functional inequalities. Our work is inspired by [VW19], which advo-
cated the use of a functional inequality paired with a smoothness condition as a minimal set of assumptions
for obtaining sampling guarantees; in their work, Vempala and Wibisono prove convergence of LMC un-
der a log-Sobolev inequality. This result was then improved using the proximal Langevin algorithm under
higher-order smoothness in [Wib19] and extended to Riemannian manifolds in [LE20].

Despite the appeal of this program, however, the majority of works on non-log-concave sampling instead
make an additional assumption on the growth of the potential known as a dissipativity condition (e.g. [RRT17;
EMS18; Mou+19; EH21; EHZ21; NDC21]). A representative example of such a condition is 〈∇V (x), x〉 ≥
a ‖x‖ − b for some constants a, b > 0. Although useful for discretization proofs, dissipativity conditions
are arguably less natural from the standpoint of the quantitative theory of Markov processes [BGL14], and
ultimately redundant in the presence of an appropriate functional inequality. Other drawbacks include
the fact that b is typically dimension-dependent, and that dissipativity conditions are not as stable under
perturbations (see Section 4 for an example). Hence, we avoid such conditions in our work.

In our first main result (Theorem 7), we assume that the target π satisfies a Lata la–Oleszkiewicz (LO)
inequality with parameter α ∈ [1, 2]. LO inequalities are well-studied functional inequalities that elegantly
interpolate between Poincaré and log-Sobolev inequalities [LO00]. Notably, the α = 1 case reduces to the
Poincaré inequality, while the α = 2 case reduces to the log-Sobolev inequality; intermediate values of α
enable capturing potentials with growth V (x) ≈ ‖x‖α (see Section 2.2). We also complement our result by
proving a sampling guarantee (Theorem 8) under the modified log-Sobolev inequalities considered in [EH21],
which is useful for treating examples in which the LO constant is dimension-dependent.

Towards weaker notions of smoothness. Since the assumption of a Poincaré inequality allows for a
variety of non-convex potentials with at least linear growth, it is restrictive to pair this assumption with the
gradient Lipschitz assumption which is usually invoked in the sampling literature. Hence, following [DGN14;
Nes15; Cha+20; EH21], we instead assume that ∇V is Hölder-continuous with exponent s ∈ (0, 1].

An analysis in Rényi divergence. We now describe the main technical challenge of this work. Recall
that a log-Sobolev inequality (LSI) implies exponential ergodicity of the diffusion (1.1) in KL divergence, and
consequently the analysis of LMC under a LSI naturally proceeds with the KL divergence as the performance
metric [VW19; Wib19; LE20]. Similarly, a Poincaré inequality implies exponential ergodicity of (1.1) in chi-
squared divergence, and accordingly we analyze LMC in chi-squared divergence, or equivalently, in Rényi
divergence. In turn, the techniques we develop for the analysis may be useful for other situations in which
only a Poincaré-type inequality is available, such as the state-of-the-art convergence rate for the underdamped
Langevin diffusion [CLW20] or for the mirror-Langevin diffusion [Che+20b].

Via standard comparison inequalities, a convergence guarantee in Rényi divergence implies convergence
for other common divergences (e.g. total variation distance, 2-Wasserstein distance, or KL divergence),
and is therefore more desirable. Of particular interest in this regard is the role of Rényi divergence guar-
antees for providing “warm starts” for high-accuracy samplers such as the Metropolis-adjusted Langevin
algorithm [Che+21a; WSC21] and the zigzag sampler [LW20].

Unfortunately, working with Rényi divergences introduces substantial new technical hurdles as it prevents
the use of standard coupling-based discretization arguments; as such, there are not many prior works to draw
upon. The convergence of the diffusion (1.1) in Rényi divergence was first proven in [CLL19; VW19]. The
paper [VW19] also takes a first step towards discretization by introducing a technique based on differential
inequalities for the Rényi divergence for a continuous-time interpolation of LMC. Although this strategy
succeeds for obtaining KL convergence under an LSI, it falls short for Rényi divergence; indeed, the analysis
of [VW19] only holds under the (currently unverifiable) assumption that the biased stationary distribution
of the LMC algorithm satisfies a Poincaré inequality. Moreover, their result only establishes quantitative
convergence of LMC to its biased limit; to recover a convergence guarantee to π, this also requires an estimate
of the “Rényi bias” (the Rényi divergence between the biased stationary distribution and π), which was
unresolved. Instead, [GT20] provided the first Rényi guarantee for LMC by using the adaptive composition
theorem from differential privacy to control the discretization error, albeit suboptimally. Subsequently, their
result was sharpened in [EHZ21] via a two-stage analysis combining the two papers [VW19; GT20].

In this paper, we first show how to modify the interpolation method of [VW19] to yield a genuine Rényi
convergence guarantee for LMC under an LSI, thereby yielding a stronger result than [GT20; EHZ21] with a
shorter and more elegant proof. We further extend this to the case when π is log-concave, but this technique
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is unable to cover the setting of a weaker functional inequality and smoothness condition. For this, we
instead draw inspiration from the stochastic calculus-based analysis of [DT12; Che+21a]. At the heart of
our proofs is the introduction of new change-of-measure inequalities which intriguingly rely on the very fact
that the analysis is carried out in Rényi divergence (and not any weaker metric). Thus, although the use of
Rényi divergences introduces new technical obstructions, it also provides the key tool for overcoming them.

1.1 Contributions

Convergence of the diffusion under functional inequalities. Our first contribution is to establish
quantitative Rényi convergence bounds for the Langevin diffusion (1.1) under the following functional in-
equalities: (1) the Lata la–Oleszkiewicz (LO) inequalities [LO00], which interpolate between the Poincaré
and log-Sobolev inequalities (Theorem 2), and the modified log-Sobolev inequality (MLSI) used in [EH21]
(Theorem 3). LO and MLSI have relative merits, and they capture the tail behavior of the potential, pro-
viding an accurate characterization of the speed of convergence for both the diffusion as well as the LMC
algorithm.

Improved guarantees for LMC under an LSI or log-concavity. As our second principal contribution
(Theorem 4), we provide an elegant proof that under an LSI, the LMC algorithm (with appropriate step

size) achieves ε error in Rényi divergence in Õ(d/ε) iterations. This improves upon past works in several
respects. First, in the LSI case, a Rényi convergence guarantee for LMC was previously unknown; thus,
our work strengthens [VW19] by proving convergence in a stronger metric (Rényi divergence rather than
KL divergence). Second, even when the target π is strongly log-concave, our proof is both sharper and
significantly shorter than the prior works [GT20; EHZ21] on Rényi convergence; moreover, our guarantee
for fixed step size LMC does not degrade if the number of iterations is taken too large. As a corollary, we
resolve an open question of [VW19] on the size of the “Rényi bias” in this setting (see Corollary 5).

With additional effort, we are able to extend the techniques to the case when π is (weakly) log-concave,
and we obtain a guarantee with explicit dependence on the Poincaré constant of π (however, our guarantee
is no longer stable); see Theorem 6. Our result is the state-of-the-art guarantee for LMC for sampling from
isotropic log-concave targets.

Convergence of LMC under a functional inequality and weak smoothness. Our main contribution
is to provide general sampling guarantees assuming that the potential has a Hölder-continuous gradient of
exponent s ∈ (0, 1] and that π either satisfies LO (Theorem 7) or MLSI (Theorem 8). As noted previously,
these assumptions are considerably more general than what are usually considered in the sampling literature
and do not require dissipativity. In particular, Theorem 7 completes the program of [VW19] by establishing
the first sampling guarantees for LMC under a Poincaré inequality and a weak smoothness condition.

Generically, our final rate is Õ(d(2/α) (1+1/s)−1/s/ε1/s), where s is the Hölder continuity exponent of ∇V
and α captures the growth of the potential at infinity. We give a number of illustrative examples in Section 4
and show that our results improve upon the ones in [EH21].

1.2 Notation and organization

Throughout the paper, π ∝ exp(−V ) denotes the target distribution on R
d; the function V : Rd → R is

referred to as the “potential”. We abuse notation by identifying a measure with its density (w.r.t. Lebesgue
measure on R

d). We write a . b and a = O(b) to indicate that a ≤ Cb for a universal constant C > 0; also,

we use Õ(·) as a shorthand for O(·) logO(1)(·). Similar remarks apply to the notations &, Ω, Ω̃, and ≍, Θ, Θ̃.
The paper is organized as follows. In Section 2, we begin by reviewing functional inequalities and their

implications for the continuous-time convergence of the diffusion (1.1) in Rényi divergence. We then state
our main theorems on the LMC algorithm in Section 3, and illustrate them with examples in Section 4.
We give a technical exposition of our proof techniques in Section 5 and fill in the details in Section 6, with
additional lemmas deferred to the Appendix. We conclude in Section 7 with a discussion of future directions
of research.
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2 Functional inequalities and continuous-time convergence

Our focus in this section is the convergence of the continuous-time Langevin diffusion (1.1) under various
functional inequalities. Throughout the paper, we use the Rényi divergence as a measure of distance between
two probability laws. The Rényi divergence of order q ∈ (1,∞) of µ from π is defined to be

Rq(µ ‖ π) :=
1

q − 1
ln
∥∥∥

dµ

dπ

∥∥∥
q

Lq(π)
,

where Rq(µ ‖ π) is understood to be +∞ if µ 6≪ π. Although the Rényi divergence is not a genuine metric
(it is not symmetric and it does not satisfy the triangle inequality), it has the property that Rq(µ ‖ π) ≥ 0,
with equality if and only if µ = π.

Rényi divergence is monotonic in the order: if 1 < q ≤ q′, then Rq ≤ Rq′ . Notable special cases include:

• as q ց 1, the Rényi divergence Rq(µ ‖ π) approaches the KL divergence KL(µ ‖ π) between µ and π;

• for q = 2, the Rényi divergence is related to the chi-squared divergence via R2(µ‖π) = ln(1+χ2(µ‖π));

• and as q → ∞, we have Rq(µ ‖ π) → R∞(µ ‖ π) := ln ‖dµ
dπ‖L∞(π).

These divergences are particularly of interest because they conveniently upper bound a variety of distance
measures to be discussed shortly.

2.1 Poincaré and log-Sobolev inequalities

In the context of sampling, the most well-studied functional inequalities are the Poincaré inequality (PI) and
the log-Sobolev inequality (LSI). We say that π satisfies a PI with constant CPI if, for all smooth functions
f : Rd → R, it holds that

varπ(f) ≤ CPI Eπ[‖∇f‖2] . (PI)

Similarly, we say that π satisfies an LSI with constant CLSI if for all smooth f : Rd → R,

entπ(f2) ≤ 2CLSI Eπ[‖∇f‖2] , (LSI)

where entπ(f2) := Eπ[f2 ln(f2/Eπ(f2))]. An LSI implies a PI with the same constant.
These functional inequalities are classically related to the ergodicity properties of the Langevin diffu-

sion (1.1). Indeed, if πt denotes the law of the diffusion at time t, then a PI is equivalent to

χ2(πt ‖ π) ≤ exp
(
− 2t

CPI

)
χ2(π0 ‖ π) , for all t ≥ 0 ,

whereas an LSI is equivalent to

KL(πt ‖ π) ≤ exp
(
− 2t

CLSI

)
KL(π0 ‖ π) , for all t ≥ 0 .

Functional inequalities are particularly useful for high-dimensional non-log-concave sampling because
they tensorize (if two measures satisfy the same functional inequality, then their product also satisfies the
functional inequality with the same constant) and they are stable under common operations such as bounded

perturbation (replacing the potential V with Ṽ , with sup |V − Ṽ | <∞) and Lipschitz mapping (replacing π
with T#π where T : Rd → R

d is Lipschitz and the pushforward T#π is the distribution of T (x) when x ∼ π).
We refer to [BGL14] for a comprehensive treatment.

Before stating the convergence results, we remark that under (PI), the result of [Liu20] together with
standard comparison inequalities imply

max
{

2 ‖µ− π‖2TV, ln
(
1 +

1

2CPI

W 2
2 (µ, π)

)
, KL(µ ‖ π)

}
≤ R2(µ ‖ π) .
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Note that in the Poincaré case, a T2 transportation inequality does not necessarily hold, so a KL guarantee
does not imply a matching W2 guarantee; by working with Rényi divergences, we are able to provide a
unified guarantee for all of these metrics simultaneously.

Improving upon the prior result of [CLL19], Vempala and Wibisono [VW19] showed that these inequalities
also imply Rényi convergence for the diffusion.

Theorem 1 ([VW19, Theorems 3 and 5]). Let q ≥ 2, and let πt denote the law of the continuous-time
Langevin diffusion (1.1) at time t.

1. If π satisfies (LSI), then

∂tRq(πt ‖ π) ≤ − 2

qCLSI

Rq(πt ‖ π) .

2. If π satisfies (PI), then

∂tRq(πt ‖ π) ≤ − 2

qCPI

×
{

1 , if Rq(πt ‖ π) ≥ 1 ,

Rq(πt ‖ π) , if Rq(πt ‖ π) ≤ 1 .

The above result states that under LSI, the Rényi divergence decays exponentially fast whereas under PI,
dissipation can be explained in two phases; an initial phase of slow decay followed by exponential convergence.
Thus, to obtain Rq(πT ‖ π) ≤ ε, it suffices to have

1. T ≥ Ω
(
qCLSI ln

Rq(π0 ‖ π)

ε

)
and 2. T ≥ Ω

(
qCPI

(
Rq(π0 ‖ π) + ln

1

ε

))

under LSI and PI respectively.

2.2 Lata la–Oleszkiewicz inequalities

In this paper, in order to interpolate between the Poincaré and log-Sobolev cases, we consider a family of
functional inequalities known as Lata la–Oleszkiewicz (LO) inequalities [LO00]. We say that π satisfies an
LO inequality of order α ∈ [1, 2] and constant CLO(α) if for all smooth f : Rd → R,

sup
p∈(1,2)

Eπ(f2) − Eπ(fp)2/p

(2 − p)
2 (1−1/α)

≤ CLO(α) Eπ[‖∇f‖2] . (LO)

It is known that an LO inequality of order 1 is equivalent to a PI, and an LO inequality of order 2 is
equivalent to an LSI. More generally, an LO inequality of order α captures measures whose potentials
“have tail growth α”; indeed, two notable examples of distributions satisfying the LO inequality of order
α are π(x) ∝ exp(−∑d

i=1|xi|α) and π(x) ∝ exp(−‖x‖α) [LO00; Bar01]. LO inequalities are well-studied
because they capture intermediate forms of concentration and are related to a number of other important
inequalities, such as Sobolev inequalities; we refer readers to [LO00; Bar01; BR03; Cha04; Bou+05; Wan05;
BCR06; BCR07; CGG07; Goz10].

As our first result in this section, we extend Theorem 1 to cover LO inequalities. Our proof, which uses
as an intermediary the super Poincaré inequality introduced in [Wan00], is deferred to Section 6.1.

Theorem 2. Let q ≥ 2, and let πt denote the law of the continuous-time Langevin diffusion (1.1) at time t.
Suppose that π satisfies (LO) with order α. Then,

∂tRq(πt ‖ π) ≤ − 1

68qCLO(α)
×
{
Rq(πt ‖ π)

2−2/α
, if Rq(πt ‖ π) ≥ 1 ,

Rq(πt ‖ π) , if Rq(πt ‖ π) ≤ 1 .

The above theorem can be used to obtain Rq(πT ‖ π) ≤ ε whenever

T ≥ Ω
(
qCLO(α)

(
Rq(µ0 ‖ π)2/α−1 − 1

2/α− 1
+ ln

1

ε

))
;

we refer to Lemma 28 for details. We also remark that Theorem 2 reduces to Theorem 1 in the edge cases
α = 2 (LSI) and α = 1 (PI) up to an absolute constant. For α ∈ (1, 2), the initial phase of convergence
interpolates between the slow decay induced by PI and the exponential decay under LSI.
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2.3 Modified log-Sobolev inequalities

In addition, we also consider the modified log-Sobolev inequality (MLSI) used in [EH21]. The MLSI of order
α0 ∈ [−1, 2] states that for all f : Rd → R with Eπ(f2) = 1,

entπ(f2) ≤ 2CMLSI inf
p≥2

{
Eπ[‖∇f‖2]

1−δ(p)
m̃p

(
(1 + f2)π

)δ(p)}
, δ(p) :=

2 − α0

p+ 2 − 2α0
, (MLSI)

where for a measure µ (not necessarily a probability measure) we write m̃p(µ) :=
∫

(1 + ‖·‖2)p/2 dµ. The in-
equality (MLSI) is a careful refinement of [TV00], and provides convergence guarantees for both the Langevin
diffusion and LMC under various tail growth conditions [EH21]. Further, the functional inequalities in [BZ99;
Zeg01] are also similar to MLSI (termed log-Nash inequalities), yet their main focus is infinite-dimensional
semigroups. We focus on (MLSI) as used in [EH21] as other MLSI-type results are stated by absorbing
various dimension-dependent constants into CMLSI, and thus they cannot provide sharp rates for LMC.

For technical reasons, we also pair this assumption with a concentration property of the target: for some
m ≥ 0 and α ∈ [0, 1],

π{‖·‖ ≥ m + λ} ≤ 2 exp
{
−
( λ

Ctail

)α1
}
, for all λ ≥ 0 . (α1-tail)

The parameters α0 and α1 are analogous to the parameter α in the LO inequality; we refer to [EH21] and
the examples in Section 4 for further discussion of (MLSI).

Similarly to Theorem 2, we can prove a quantitative continuous-time convergence rate for the Langevin
diffusion (1.1) under an MLSI. The proof is deferred to Section 6.5.

Theorem 3. Suppose that π satisfies (MLSI) and (α1-tail), and assume that ε−1,m, CMLSI ≥ 1 and that
m, Ctail,R2q(π0 ‖ π) ≤ dO(1). Let (πt)t≥0 denote the law of the continuous-time Langevin diffusion (1.1).
Then, it holds that Rq(πT ‖ π) ≤ ε for

T ≥ Ω
(
qC2

MLSI

(
m + qCtail R2q(π0 ‖ π)1/α1

)2−α0
polylog

dRq(π0 ‖ π)

ε

)
.

We remark that when α0 = α1 = α, the dependence on the Rényi divergence at initialization in Theo-
rems 2 and 3 match up to a logarithmic factor, and hence LO and MSLI provide similar results in continuous
time. However, as we discuss in Section 4, MLSI is useful for treating certain examples in which the LO
constant CLO(α) may be dimension-dependent whereas CMLSI is not.

3 Main results on Langevin Monte Carlo

In this section, we present our main results on the Rényi convergence of LMC. Denoting the step size with
h > 0, the LMC algorithm is defined by the iteration

x(k+1)h = xkh − h∇V (xkh) +
√

2h ξk , k ∈ N , (LMC)

where (ξk)k∈N
is a sequence of i.i.d. standard Gaussian random variables. Here, the indexing of the LMC

iterates is chosen so that the iterate xkh is comparable to the continuous-time diffusion (1.1) at time kh. We
let µkh denote the law of xkh.

Our first result deals with the LSI and gradient Lipschitz case.

Theorem 4. Assume that π satisfies (LSI) and that ∇V is L-Lipschitz; assume for simplicity that CLSI, L ≥ 1
and q ≥ 3. Let µNh denote the N -th iterate of LMC with step size h satisfying 0 < h < 1/(192q2CLSIL

2).
Then, for all N ≥ N0, it holds that

Rq(µNh ‖ π) ≤ exp
(
− (N −N0)h

4CLSI

)
R2(µ0 ‖ π) + Õ(dhqCLSIL

2) ,

where N0 = ⌈ 2CLSI

h ln q−1
2 ⌉. In particular, if we choose h = Θ̃( ε

dqCLSIL2 min(1, dqε )), then

Rq(µNh ‖ π) ≤ ε , for all N ≥ Ω̃
(dqC2

LSI
L2 logR2(µ0 ‖ π)

ε
max

{
1,
qε

d

})
.

6



The comparison of Theorem 4 with [VW19; GT20; EHZ21] is summarized as Table 1. Since our guarantee
is stable with respect to the number of iterations N , we can let N → ∞ and obtain an estimate on the
asymptotic bias of (LMC) in Rényi divergence; this answers an open question of [VW19].

Corollary 5. Assume that π satisfies (LSI) and that ∇V is L-Lipschitz; assume for simplicity that CLSI, L ≥
1. Let µ

(h)
∞ denote the stationary distribution of LMC with step size h satisfying 0 < h < 1/(192q2CLSIL

2).
Then,

Rq(µ
(h)
∞ ‖ π) ≤ Õ(dhqCLSIL

2) .

Source Assumption Metric Complexity Stable Bound

[VW19] (LSI) KL divergence (q = 1) dC2
LSI
L2/ε ✓

[GT20] C−1
SC

-strongly log-concave Rényi divergence dq2C4
SC
L4/ε2 ✗

[EHZ21] C−1
SC

-strongly log-concave Rényi divergence dq4C4
SC
L4/ε ✗

Theorem 4 (LSI) Rényi divergence dqC2
LSI
L2/ε ✓

Table 1: We compare the guarantee of Theorem 4 with prior results, omitting polylogarithmic factors. The
last column refers to whether the bound is stable as the number of iterations of LMC tends to infinity. The
complexity bound in the last row is stated for moderate values of q; when q ≫ d/ε, then the dependence on

q becomes Õ(q2).

Extending the techniques of Theorem 4, we next give a result for the log-concave (which implies (PI))
and gradient Lipschitz case.

Theorem 6. Assume that π is log-concave (and hence satisfies (PI)) and that ∇V is L-Lipschitz. For
simplicity, assume that V is minimized at 0. Let µNh denote the N -th iterate of LMC with step size h
satisfying h = Θ̃( ε

dq2CPIL2 min{1, 1
qε ,

dCPI

εL }) and initialized at µ0 = normal(0, L−1Id). Then,

Rq(µNh ‖ π) ≤ ε after N = Θ̃
(d2q3C2

PI
L2

ε
max

{
1, qε,

εL

dCPI

})
iterations .

In Table 2, we compare Theorem 6 with the prior works [DMM19; Dwi+19; Che+20a; DKR20]. The-
orem 6 is the state-of-the-art result for algorithms based on discretizations of Langevin or underdamped
Langevin, only beaten by the result for modified MALA (for which our result reads Õ(d2/ε2) whereas the

result for modified MALA is Õ(d2/ε3/2)). Moreover, our result is given in the strongest metric (Rényi
divergence).

Source Algorithm Metric Complexity

[DMM19] averaged LMC
√

KL d2/ε4

[Dwi+19; Che+20a] modified MALA TV d2/ε3/2

[DKR20] modified LMC W1 d2/ε4

[DKR20] modified LMC W2 d2/ε6

[DKR20] modified ULMC W1 d2/ε3

[DKR20] modified ULMC W2 d2/ε5

Theorem 6 LMC
√

Rényi d2/ε2

Table 2: We compare convergence guarantees for sampling from an isotropic log-concave distribution with
CPI, L = O(1). MALA refers to the Metropolis-adjusted Langevin algorithm, whereas ULMC refers to
underdamped Langevin Monte Carlo algorithm.

Subsequently, we consider the general case of an LO inequality. We also assume weak smoothness for
some s ∈ (0, 1] and L > 0:

‖∇V (x) −∇V (y)‖ ≤ L ‖x− y‖s for all x, y ∈ R
d . (s-Hölder)

We note that the LO order α and the Hölder exponent s need to satisfy s+ 1 ≥ α.
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Theorem 7. Assume that the potential satisfies ∇V (0) = 0, (LO) of order α, and (s-Hölder). For simplicity,
assume that ε−1,m, CLO(α), L,R2(µ0 ‖ π̂) ≥ 1 and q ≥ 2; here, m :=

∫
‖·‖ dπ and π̂ is a slightly modified

version of π which is introduced in the analysis (Section 6.4). Then, LMC with an appropriate step size
(given in (6.11)) satisfies Rq(µNh ‖ π) ≤ ε after

N = Θ̃s

(dq1+2/sC
1+1/s
LO(α) L

2/sR2q−1(µ0 ‖ π)
(2/α−1) (1+1/s)

ε1/s
max

{
1, q1/sε1/s,

m
s

d
,
R2(µ0 ‖ π̂)

s/2

d

})

iterations. Here, Θ̃s(·) hides polylogarithmic factors and constants depending only on s.

We now make a few remarks to simplify the rate. First, although initialization is more subtle in the non-
log-concave case, it is reasonable to take R2(µ0 ‖ π̂),R2q−1(µ0 ‖ π) = Õ(d); we defer a detailed discussion
of initialization to Appendix A. Next, it is also reasonable to assume1 m = O(d), in which case the third
term in the maximum will never dominate. Focusing on the dependence on the dimension and target
accuracy, we therefore obtain the simplified rate Õ(d(2/α) (1+1/s)−1/s/ε1/s); in particular, in the smooth

(s = 1) case, the rate is Õ(d4/α−1/ε). Regarding prior works which handle a wide variety of growth rates
and smoothness conditions for the potential, the closest to the present work is [EH21], which obtains a rate

of Õ(d(2/α+1{α=1}) (1+1/s)−1/ε1/s) for potentials of tail growth α satisfying (s-Hölder); note that our rate is
strictly better as soon as s < 1 and avoids the jump in the rate at α = 1. We emphasize, however, that
despite the superficial similarity with [EH21], our result is the first one under a purely functional analytic
condition on the target (together with weak smoothness).

Remark. The case α = 1 yields the convergence rate Õ(d2+1/sq1+2/sC
1+1/s
PI

L2/s/ε1/s) for LMC under the
Poincaré inequality and weak smoothness. In the case α = 2 and s = 1 (LSI and smooth case), the rate

reduces to Õ(dq3C2
LSI
L2/ε), which recovers the guarantee of Theorem 4 up to the dependence on q.

When the LO constant CLO(α) is dimension-dependent, Theorem 7 may not give the sharpest rates. We
therefore complement Theorem 7 with a result assuming (MLSI).

Theorem 8. Assume that the potential satisfies ∇V (0) = 0, (MLSI) of order α0, (α1-tail), and (s-Hölder).
For simplicity, assume that ε−1,m, CMLSI, Ctail, L,R2(µ0 ‖ π̂) ≥ 1, q ≥ 2, and m, Ctail,R2(π0 ‖π) ≤ dO(1); here,
π̂ is a slightly modified version of π which is introduced in the analysis (Section 6.4). Then, LMC with an
appropriate step size (given in (6.12)) satisfies Rq(µNh ‖ π) ≤ ε after

N = Θ̃
(dR2q(µ0 ‖ π)

(2−α0) (1+1/s)/α1

ε1/s
max

{
1, ε1/s,

m
s

d
,
R2(µ0 ‖ π̂)

s/2

d
,
( m

R2q(µ0 ‖ π)1/α1

)(2−α0)/s
})

iterations. Here, the Θ̃(·) notation hides polylogarithmic factors as well as constants depending on α0, α1, q,
s, CMLSI, Ctail, and L; a more precise statement is given in Section 6.5.

For potentials of tail growth α ∈ (1, 2], we can suppose that (MLSI) and (α1-tail) are satisfied with
α0 = α1 = α, where we take m = O(d1/α). Also, assuming R2(µ0 ‖ π̂),R2q(µ0 ‖ π) = O(d), the rate is then

simplified to Õ(d(2/α) (1+1/s)−1/s/ε1/s) as before. As discussed in the next section, the case α = 1 is special
and (MLSI) may not hold with α0 = α.

Remark. A number of recent works [DMM19; Cha+20; LC21; Leh21; NDC21] consider non-smooth and
mixed-smooth potentials. By incorporating Gaussian smoothing, it seems possible to extend our techniques
to cover these settings, but we do not pursue this direction here.

4 Examples

In this section, we illustrate our results on simple examples and compare our guarantees with prior work.

1This holds for e.g. the potentials V (x) = ‖x‖α for all α ∈ [1, 2].
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Example 9 (tail growth α ∈ (1, 2]). Consider the target πα(x) ∝ exp(−‖x‖α) for α ∈ (1, 2], which satis-
fies (LO) of order α and (s-Hölder) with s = α − 1. Since πα satisfies (PI) with CPI = Θ(d2/α−1) [Bob03],
then Theorem 7 does not yield a good result. Previously, [EH21] showed that πα satisfies (MLSI) of order

α, obtaining the complexity Õ(d(3−α)/(α−1)/ε1/(α−1)) to achieve ε-accuracy in KL divergence for this target.

From Theorem 8, we have improved this rate to Õ((d/ε)
1/(α−1)

) in Rényi divergence. Since (MLSI) is stable
under bounded perturbations, the same rate holds for the perturbed potential V (x) = ‖x‖α + cos ‖x‖.

Due to the use of the CKP inequality [BV05], their KL bound yields Õ(d(5−α)/(α−1)/εα/(α−1)) complexity
to reach ε accuracy in the W 2

α metric. On the other hand, Theorem 8 together with the Poincaré inequality

yields the complexity Õ(d2/(α (α−1))/ε1/(α−1)) to obtain ε accuracy in the W 2
2 metric. Hence, we have both

improved the rate in Wα and proven a new guarantee in W2 which previously could not be reached at all.

Example 10 (tail growth α ∈ (1, 2] for smoothed potential). Consider πα(x) ∝ exp(−(1 + ‖x‖2)α/2), which
satisfies (LO) of order α and (s-Hölder) with s = 1 (i.e. ∇V is Lipschitz). Previously, [EH21] obtained the

complexity Õ(d(4−α)/α/ε) in KL divergence and Õ(d(4+α)/α/εα) in W 2
α. From Theorem 8, we have obtained

the rate Õ(d(4−α)/α/ε) in Rényi divergence and Õ(d(6−2α)/α/ε) in W 2
2 . As before, this rate is stable under

suitable perturbations of the potential.

Example 11 (tail growth α = 1 for smoothed potential). The case of α = 1 is worth considering separately
for comparison purposes. Consider the target π1(x) ∝ exp(−

√
1 + ‖x‖2), which satisfies (s-Hölder) with

s = 1 (i.e. ∇V is Lipschitz). Previously, [EH21] showed that π1 satisfies (MLSI) with α0 = −O( 1
log d) and

CMLSI = O(log d); also, π1 satisfies (α1-tail) with α1 = 1. Using this, they obtained the complexity Õ(d5/ε)
in KL divergence, whereas Theorem 8 implies the same rate in Rényi divergence. We also remark that their
rate only holds for sufficiently small perturbations (e.g. their analysis does not cover V (x) = ‖x‖ + cos ‖x‖)
due to the need to preserve a dissipativity assumption, whereas our result has no such requirement. This
highlights a benefit of working without dissipativity conditions.

Here, Theorem 6 applies to π1 with CPI = O(d) [Bob03] and yields a rate of Õ(d4/ε) in Rényi divergence; in

contrast, [DMM19] yields a rate of Õ(d3/ε2) in KL divergence (started from a distribution with W 2
2 (µ0, π1) =

O(d2)) for averaged LMC, and [Dwi+19; Che+20a] yields a rate of Õ(d3.5/ε0.75) in ‖·‖2
TV

for modified MALA,
although none of these rates is stable under perturbation.

Example 12 (tail growth α ∈ [1, 2] for smoothed product potential). For x ∈ R
d, let 〈x〉i :=

√
1 + x2i .

Consider the target πα(x) ∝ exp(−‖〈x〉‖αα), which satisfies (LO) of order α (see [LO00]) and (s-Hölder) with

s = 1 (i.e. ∇V is Lipschitz). The result of [EH21] implies a complexity of Õ(d(4−α)/α/ε) in KL divergence

and Õ(d(4+α)/α/εα) in W 2
α for α ∈ (1, 2], and Õ(d5/ε) in KL divergence when α = 1. From Theorem 7, we

have obtained the rate Õ(d(4−α)/α/ε) in Rényi divergence and hence also W 2
2 for all α ∈ [1, 2]; in particular,

there is no jump in the rate at α = 1.

Example 13 (LSI case with weakly smooth potential). We also compare the results when α = 2 and

s ∈ (0, 1]. In this case, [Cha+20] obtained the rate Õ(d(2+s)/s/ε1/s) in ‖·‖2
TV

for strongly log-concave

distributions, whereas [EH21] obtained the rate Õ((d/ε)
1/s

) in KL divergence for perturbations of strongly

log-concave distributions. In contrast, Theorem 7 yields the rate Õ(d/ε1/s) in Rényi divergence under (LSI).
An example of such a potential is given by V (x) = 1

2 ‖x‖2 + cos(‖x‖1+s).

5 Technical overview

5.1 Adapting the interpolation method to Rényi divergences

In the proof of Theorem 4, we follow the interpolation method of [VW19]. Namely, we introduce the following
interpolation of (LMC): for t ∈ [kh, (k + 1)h], let

xt = xkh − (t− kh)∇V (xkh) +
√

2 (Bt −Bkh) , (5.1)
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where (Bt)t≥0 is a standard Brownian motion, and let µt denote the law of xt. Then, [VW19] derives the
following differential inequality for the KL divergence:

∂tKL(µt ‖ π) ≤ −3

4
× 4Eπ[‖∇√

ρt‖2]︸ ︷︷ ︸
Fisher information

+E[‖∇V (xt) −∇V (xkh)‖2]︸ ︷︷ ︸
discretization error

, t ∈ [kh, (k + 1)h] , (5.2)

where we write ρt := dµt

dπ . This inequality is an analogue of the celebrated de Bruijn identity from information
theory for the interpolated process. Assuming that π satisfies (LSI) and that ∇V is L-Lipschitz, the Fisher
information upper bounds the KL divergence and the discretization error is shown to be of order O(dh2L2);
this then yields a convergence guarantee in KL divergence.

The analogous differential inequality for the Rényi divergence is, for t ∈ [kh, (k + 1)h],

∂tRq(µt ‖ π) ≤ − 3

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )︸ ︷︷ ︸
Rényi Fisher information

+ q
E[ρq−1

t (xt) ‖∇V (xt) −∇V (xkh)‖2]

Eπ(ρqt )︸ ︷︷ ︸
discretization error

. (5.3)

(See the proof of [EHZ21, Lemma 6]; to make the paper more self-contained, we also provide a derivation in
Proposition 15.) Note that the q = 1 case of the above inequality formally corresponds to (5.2). Next, as
shown in [VW19, Lemma 5], the Rényi Fisher information indeed upper bounds the Rényi divergence under
an LSI. However, the discretization term is now far trickier to control.

Write ψt := ρq−1
t /Eπ(ρqt ). Observing that Eψt(xt) = 1, the discretization term can be written as an

expectation under a change of measure:

discretization error = q Ẽ[‖∇V (xt) −∇V (xkh)‖2] ,

where Ẽ is the expectation under the measure P̃ defined via dP̃
dP = ψt(xt). Also, using the Lipschitzness of

∇V , we obtain ‖∇V (xt)−∇V (xkh)‖2 ≤ 2h2L2 ‖∇V (xkh)‖2 + 4L2 ‖Bt−Bkh‖2. Hence, our task is to bound
the expectation of these two terms under a complicated change of measure.

Towards that end, consider first the Brownian motion term. Using the Donsker–Varadhan variational
principle, for any random variable X ,

ẼX ≤ KL(P̃ ‖ P) + lnE expX .

Applying this to X = c (‖Bt −Bkh‖ − E‖Bt −Bkh‖)
2

for a constant c > 0 to be chosen later, we can bound

Ẽ[‖Bt −Bkh‖2] ≤ 2E[‖Bt −Bkh‖2] +
2

c
ẼX

≤ 2E[‖Bt −Bkh‖2] +
2

c

{
KL(P̃ ‖ P) + lnE exp

(
c (‖Bt −Bkh‖ − E‖Bt −Bkh‖)

2)}
.

(5.4)

Note that the first and third terms in the right-hand side of the above expression are expectations under
the original measure P, and can therefore be controlled; to ensure that the third term is bounded, we can
take c ≍ 1/h. For the second term, a surprising calculation involving a judicious application of the LSI for
π (see (6.3), (6.4), and (6.5)) shows that it is bounded by h times the Rényi Fisher information, and can
therefore be absorbed into the first term of the differential inequality (5.3) for h sufficiently small.

The expectation of the drift term ‖∇V (xkh)‖2 under the change of measure can also be handled via
similar methods, but this can be bypassed via a duality principle for the Fisher information; see Lemma 16.
We also remark that näıvely, this proof incurs a cubic dependence on q, but this can be sharpened via an
argument based on hypercontractivity (Proposition 17).

In the above proof outline, the LSI for π plays a crucial role in the arguments. In Theorem 6, we show
that the method can be somewhat extended to the case when π does not satisfy an LSI, but is instead
assumed to be (weakly) log-concave. In this case, we show that with an appropriate Gaussian initialization,
the law µkh of the iterate xkh of (LMC) satisfies an LSI, albeit with a constant which grows with the number
of iterations (Lemma 18). In turn, this fact together with a suitable modification of the preceding proof
strategy also allows us to obtain a convergence guarantee in this case (see Section 6.3 for details).
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5.2 Controlling discretization error via Girsanov’s theorem

In the general case of a weaker functional inequality and smoothness condition, the preceding arguments do
not apply. Instead, we start with the weak triangle inequality for the Rényi divergence:

Rq(µT ‖ π) ≤ R2q(µT ‖ πT ) + R2q−1(πT ‖ π) .

Here, (µt)t≥0 is the law of the interpolated process (5.1), whereas (πt)t≥0 is the law of the continuous-time
Langevin diffusion (1.1) initialized at a draw from µ0. The second term is handled via the continuous-time
convergence results, either under the LO inequality (Theorem 2) or under the MLSI (Theorem 3), and the
crux of the proof is to control the first term (the discretization error).

The discretization error R2q(µT ‖ πT ) was controlled in the prior works [GT20; EHZ21] via the adap-
tive composition theorem, albeit under stronger assumptions (strong convexity/dissipativity). Briefly, this
theorem controls the Rényi divergence between the paths of the interpolated and original (continuous-time)
processes by summing up the contribution to the Rényi divergence in each infinitesimal time step. In turn,
due to the Brownian motion driving the SDEs, this reduces to a computation of the Rényi divergence between
Gaussians. Making this approach rigorous, however, requires first applying it to the discrete-time algorithm
and then performing a cumbersome limiting argument. In this paper, we streamline this technique by instead
invoking Girsanov’s theorem from stochastic calculus.

First, the data processing inequality implies that R2q(µT ‖ πT ) ≤ R2q(PT ‖QT ), where PT and QT are
measures on path space representing the laws of the trajectories (on the interval [0, T ]) of the interpolated
and diffusion processes respectively. Next, Girsanov’s theorem provides a closed-form formula for the Radon-
Nikodym derivative dPT

dQT
, which leads to the inequality

R2q(PT ‖QT ) ≤ 1

2 (2q − 1)
lnE exp

(
4q2

∫ T

0

‖∇V (zt) −∇V (z⌊t/h⌋h)‖2 dt
)
,

where (zt)t≥0 is the continuous-time Langevin diffusion (1.1). The use of Girsanov’s theorem for deriving
quantitative estimates on the discretization error in this manner was likely first introduced in [DT12] for the
KL divergence, although the current application to Rényi divergences is closer to the calculation for MALA
in [Che+21a]. However, to the best our knowledge, this paper is the first to adapt the Girsanov technique
to provide a complete Rényi convergence result for LMC.

Controlling the discretization error over an interval [0, h] corresponding to a single iteration of LMC is
straightforward using the tools of stochastic calculus, and was in fact carried out in [Che+21a]. Extending
this to the full time interval [0, T ] is more challenging; indeed, if we bound the discretization error on [h, 2h]
conditional on (zt)t∈[0,h], then the resulting bound depends on ‖zh‖2, which prevents us from straightfor-
wardly iterating the one-step discretization bound. To address this, we instead control intermediate error
terms conditioned on the event Eδ,T := maxk∈N, kh≤T ‖zkh‖ ≤ Rδ,T , and Rδ,T is chosen so that P(Eδ,T ) ≥ 1−δ.
Subsequently, we can use Lemma 22 to remove the conditioning, and hence providing a bound on R2q(PT ‖QT )

if Rδ,T does not grow too fast in 1/δ; in particular, it is required that Rδ,T .
√

log(1/δ).
The requirement on Rδ,T is equivalent to requiring that for each t ∈ [0, T ], the random variable zt has

sub-Gaussian tails. Observe however that the stationary distribution π may not have sub-Gaussian tails
under our assumption of an LO inequality (indeed, in the Poincaré case, π may only have subexponential
tails). Nevertheless, if the initialization µ0 has sub-Gaussian tails, then for each t ∈ [0, T ] it may still be the
case that πt has sub-Gaussian tails. This turns out to be true, but it is quite non-trivial to prove without
any dissipativity conditions on the potential V , and therefore constitutes our primary technical challenge.

To overcome this challenge, we introduce a novel technique based on comparison of the diffusion (1.1)
with an auxiliary Langevin diffusion (π̂t)t≥0 corresponding to a modified stationary distribution π̂. The
distribution π̂ is constructed to have sub-Gaussian tails. To transfer the sub-Gaussianity of π̂ to πt, we
apply the following change of measure inequality: for probability measures µ and ν, and any event E ⊆ R

d,

µ(E) = ν(E) +

∫
1E

(dµ

dν
− 1

)
dν ≤ ν(E) +

√
χ2(µ ‖ ν) ν(E) ,

where the last inequality is the Cauchy–Schwarz inequality. This simple inequality states that in order to
control the probability of an event E under a measure µ in terms of its probability under ν, it suffices to
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control the chi-squared divergence between µ and ν. Applying this to our context, we can establish sub-
Gaussian tail bounds for πt if we can control the Rényi divergences R2(πt ‖ π̂t) and R2(π̂t ‖ π̂); the former is
again controlled via Girsanov’s theorem. We stress that the auxiliary process (π̂t)t≥0 is introduced only for
analysis purposes and does not affect the implementation of the algorithm.

The details of this strategy are carried out in Section 6.4.

6 Proofs

6.1 Proof of Theorem 2

In this section, we prove Theorem 2 on the Rényi convergence of the continuous-time Langevin diffusion (1.1)
under an LO inequality. Using capacity inequalities as an intermediary, [BCR06; Goz10] established the
equivalence of LO inequalities with other functional inequalities such as modified Sobolev inequalities. For
our purposes, it is convenient to work with super Poincaré inequalities, which were introduced in [Wan00].

We say that π satisfies a super Poincaré inequality with function β : R+ → R+ if for all smooth
f : Rd → R,

Eπ(f2) ≤ β(s)Eπ[‖∇f‖2] + s (Eπ|f |)2 for all s ≥ 1 . (6.1)

For α ∈ [1, 2], define the function βα : R+ → R+ via

βα(s) :=
96CLO(α)

ln(e + s)2−2/α
.

Then, it is known that (LO) with order α implies a super Poincaré inequality with function βα (see [Goz10,
Remark 5.16]). The following proof is inspired by the proof of [VW19, Theorem 5].

Proof. [Proof of Theorem 2] From [VW19, Lemma 6], we have

∂tRq(πt ‖ π) = −4

q

Eπ [‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
,

where ρt := dπt

dπ . Applying the super Poincaré inequality (6.1) with f = ρ
q/2
t and β = βα yields

Eπ[‖∇(ρ
q/2
t )‖2] ≥ 1

βα(s)
Eπ(ρqt ) −

s

βα(s)
{Eπ(ρ

q/2
t )}2

=
1

βα(s)
exp{(q − 1)Rq(πt ‖ π)} − s

βα(s)
exp{(q − 2)Rq/2(πt ‖ π)} .

Using the fact that Rq/2 ≤ Rq, we can further lower bound this by

Eπ [‖∇(ρ
q/2
t )‖2] ≥ exp{(q − 1)Rq(πt ‖ π)}

βα(s)

(
1 − s exp{−Rq(πt ‖ π)}

)
=

Eπ(ρqt )

βα(s)

(
1 − s exp{−Rq(πt ‖ π)}

)
.

We now distinguish two cases. If Rq(πt ‖ π) ≥ 1, then we choose s = 1
2 exp{Rq(πt ‖ π)}, yielding

∂tRq(πt ‖ π) ≤ − 2

qβα(s)
= − ln(e + 1

2 expRq(πt ‖ π))
2−2/α

48qCLO(α)
≤ − 1

68qCLO(α)
Rq(πt ‖ π)

2−2/α
.

Otherwise, if Rq(πt ‖ π) ≤ 1, then we choose s = 1, yielding

∂tRq(πt ‖ π) ≤ − 4

qβα(1)

(
1 − exp{−Rq(πt ‖ π)}

)
≤ − 2

qβα(1)
Rq(πt ‖ π) ≤ − 1

68qCLO(α)
Rq(πt ‖ π) ,

where we used the elementary inequality 1 − exp(−x) ≥ x/2 for x ∈ [0, 1].
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6.2 Proof of Theorem 4

Throughout this section, recall the notation ρt := dµt

dπ and ψt := ρq−1
t /Eπ(ρqt ).

We begin by proving the differential inequality (5.3). Although this has appeared in the previous
works [VW19; EHZ21], we include the proofs for the sake of completeness.

Proposition 14. Let (µt)t≥0 denote the law of the interpolation (5.1) of LMC. Then, for t ∈ [kh, (k+ 1)h],

∂tµt = div
({

∇ ln
dµt
dπ

+ E[∇V (xkh) −∇V (xt) | xt = ·]
}
µt
)
.

Proof. For s, t ∈ R+, let µt|s(· | xs) denote the conditional law of xt given xs, and let µs,t denote the joint
law of (xs, xt). Conditioned on xkh, the Fokker-Planck equation for the interpolation (5.1) takes the form

∂tµt|kh(· | xkh) = ∆µt|kh(· | xkh) + div
(
∇V (xkh)µt|kh(· | xkh)

)
.

Taking the expectation over xkh yields

∂tµt = ∆µt + div(∇V µt) +

∫
div

(
{∇V (xkh) −∇V (·)}µt|kh(· | xkh)

)
dµkh(xkh)

= div
(
∇ ln

dµt
dπ

µt
)

+ div
((∫

{∇V (xkh) −∇V (·)} dµkh|t(xkh | ·)
)
µt(·)

)

= div
(
∇ ln

dµt
dπ

µt
)

+ div
(
{E[∇V (xkh) | xt = ·] −∇V }µt

)
.

Combining the two terms yields the result.

Proposition 15. Let (µt)t≥0 denote the law of the interpolation (5.1) of LMC. Also, let ρt := dµt

dπ and

ψt := ρq−1
t /Eπ(ρqt ). Then, for t ∈ [kh, (k + 1)h],

∂tRq(µt ‖ π) ≤ −3

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ q E[ψt(xt) ‖∇V (xt) −∇V (xkh)‖2] .

Proof. For brevity, in this proof we write ∆t := E[∇V (xkh) | xt = ·] − ∇V . Elementary calculus together
with Proposition 14 yields

∂tRq(µt ‖ π) =
q

(q − 1)Eπ(ρqt )

∫ (dµt
dπ

)q−1
∂tµt =

q

(q − 1)Eπ(ρqt )

∫
ρq−1
t div({∇ ln ρt + ∆t}µt)

= − q

(q − 1)Eπ(ρqt )

∫
〈∇(ρq−1

t ),∇ ln ρt + ∆t〉dµt

= − 1

Eπ(ρqt )

{4

q
Eπ[‖∇(ρ

q/2
t )‖2] + 2Eµt [ρ

q/2−1
t 〈∇(ρ

q/2
t ),∆t〉]

}
.

For the second term, Young’s inequality implies

−Eµt [ρ
q/2−1
t 〈∇(ρ

q/2
t ),∆t〉] = −

∫∫
ρ
q/2−1
t (xt) 〈∇(ρ

q/2
t )(xt),∇V (xkh) −∇V (xt)〉µkh|t(dxkh | xt)µt(dxt)

= −
∫∫

ρ
q/2−1
t (xt) 〈∇(ρ

q/2
t )(xt),∇V (xkh) −∇V (xt)〉µkh,t(dxkh, dxt)

= −E[ρ
q/2−1
t (xt) 〈∇(ρ

q/2
t )(xt),∇V (xkh) −∇V (xt)〉]

≤ 1

2q
Eπ[‖∇(ρ

q/2
t )‖2] +

q

2
E[ρq−1

t (xt) ‖∇V (xkh) −∇V (xt)‖2] .

Substituting this into the previous expression completes the proof.

Next, we formulate a lemma to control the expectation of ‖∇V ‖2 under a change of measure. Although
this is not strictly necessary for the proof, it streamlines the argument.
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Lemma 16. Assume that ∇V is L-Lipschitz. For any probability measure µ, it holds that

Eµ[‖∇V ‖2] ≤ 4Eπ
[∥∥∇

√
dµ

dπ

∥∥2] + 2dL = Eµ

[∥∥∇ ln
dµ

dπ

∥∥2]
+ 2dL .

Proof. Let L denote the infinitesimal generator of the Langevin diffusion (1.1), i.e. Lf = 〈∇V,∇f〉 − ∆f .
Observe that LV = ‖∇V ‖2 − ∆V . Applying integration by parts and recalling that Eπ Lf = 0 for any f ,

Eµ[‖∇V ‖2] = EµLV + Eµ ∆V ≤
∫

LV
(dµ

dπ
− 1

)
dπ + dL =

∫ 〈
∇V,∇dµ

dπ

〉
dπ + dL

= 2

∫ 〈
√

dµ

dπ
∇V,∇

√
dµ

dπ

〉
dπ + dL ≤ 1

2
Eµ[‖∇V ‖2] + 2Eπ

[∥∥∇
√

dµ

dπ

∥∥2]
+ dL .

Rearrange this inequality to obtain the desired result.

We are now ready to give the proof of Theorem 4. In order to emphasize the main ideas, we first present
a proof which incurs a suboptimal dependence on q and explain how to sharpen the argument afterwards.

Proof. [Proof of Theorem 4] As encapsulated in the differential inequality of Proposition 15, the crux of
the proof is to control the discretization error term E[ψt(xt) ‖∇V (xt) − ∇V (xkh)‖2] for t ∈ [kh, (k + 1)h].

Since ∇V is L-Lipschitz, we have ‖∇V (xt) − ∇V (xkh)‖2 ≤ 2L2 (t− kh)
2 ‖∇V (xkh)‖2 + 4L2 ‖Bt − Bkh‖2.

However, it is more convenient to have a bound in terms of ‖∇V (xt)‖ rather than ‖∇V (xkh)‖, so we use

‖∇V (xkh)‖ ≤ ‖∇V (xt)‖ + L ‖xt − xkh‖ ≤ ‖∇V (xt)‖ + hL ‖∇V (xkh)‖ +
√

2L ‖Bt −Bkh‖ .

If h ≤ 1/(3L), we can rearrange this inequality to obtain ‖∇V (xkh)‖ ≤ 3
2 ‖∇V (xt)‖ + 3L√

2
‖Bt −Bkh‖, so

‖∇V (xt) −∇V (xkh)‖2 ≤ 9L2 (t− kh)2 ‖∇V (xt)‖2 + (18h2L4 + 4L2) ‖Bt −Bkh‖2

≤ 9L2 (t− kh)
2 ‖∇V (xt)‖2 + 6L2 ‖Bt −Bkh‖2 .

We will control the two error terms in turn.
For the first error term, applying Lemma 16 to the measure ψtµt yields

Eψtµt [‖∇V ‖2] ≤ Eµt

[
ψt

∥∥∇ ln
(
ψt

dµt
dπ

)∥∥2] + 2dL =
Eπ[ρqt ‖∇ ln(ρqt )‖2]

Eπ(ρqt )
+ 2dL =

4Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 2dL .

Note the calculation

Eµt

[
ψt

∥∥∇ ln
(
ψt

dµt
dπ

)∥∥2] =
4Eπ[‖∇(ρ

q/2
t )‖2]

Eπ(ρqt )
, (6.2)

which will be used below as well.
For the second error term, we apply the Donsker–Varadhan variational principle as in (5.4).

E[ψt(xt) ‖Bt −Bkh‖2] ≤ 2E[‖Bt −Bkh‖2] +
2

c

{
KL(P̃ ‖ P) + lnE exp

(
c (‖Bt −Bkh‖ − E‖Bt −Bkh‖)2

)}

≤ 2d (t− kh) +
2

c

{
KL(P̃ ‖ P) + lnE exp

(
c (‖Bt −Bkh‖ − E‖Bt −Bkh‖)

2)}
,

where dP̃
dP = ψt(xt). Due to Gaussian concentration, if we set c = 1

8 (t−kh) , then

E exp
(‖Bt −Bkh‖ − E‖Bt −Bkh‖)

2

8 (t− kh)
≤ 2 ,
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c.f. [BLM13, Section 2.3, Theorem 5.5]. Next, using the LSI for π, we compute

KL(P̃ ‖ P) = Eψtµt lnψt = Eψtµt ln
ρq−1
t

Eµt(ρ
q−1
t )

=
q − 1

q
Eψtµt ln

ρqt

Eµt(ρ
q−1
t )

q/(q−1)
(6.3)

=
q − 1

q

{
Eψtµt ln

ρqt

Eµt(ρ
q−1
t )

− 1

q − 1
lnEµt(ρ

q−1
t )

︸ ︷︷ ︸
≥0

}
≤ q − 1

q
KL(ψtµt ‖ π) (6.4)

≤ (q − 1)CLSI

2q
Eψtµt

[∥∥∇ ln(ψt
dµt
dπ

)∥∥2]
=

2 (q − 1)CLSI

q

Eπ [‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
, (6.5)

where the last equality is (6.2). We have proved

E[ψt(xt) ‖Bt −Bkh‖2] ≤ 2d (t− kh) +
32h (q − 1)CLSI

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ (16 ln 2) (t− kh)

≤ 14d (t− kh) + 32hCLSI

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
.

Finally, collecting together the error terms and applying Proposition 15, we see that

∂tRq(µt ‖ π) ≤ −3

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 9qL2 (t− kh)

2
{4Eπ[‖∇(ρ

q/2
t )‖2]

Eπ(ρqt )
+ 2dL

}

+ 6qL2
{

14d (t− kh) + 32hCLSI

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )

}
.

Assuming for simplicity that CLSI, L ≥ 1, then h ≤ 1/(192q2CLSIL
2) implies

∂tRq(µt ‖ π) ≤ −1

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 18dqL3 (t− kh)

2
+ 84dqL2 (t− kh)

≤ − 1

2qCLSI

Rq(µt ‖ π) + 18dqL3 (t− kh)
2

+ 84dqL2 (t− kh) ,

where the last line uses the fact that π satisfies LSI (see [VW19, Lemma 5]). This then implies the differential
inequality

∂t
{

exp
( t− kh

2qCLSI

)
Rq(µt ‖ π)

}
≤ exp

( t− kh

2qCLSI

)
{18dqL3 (t− kh)2 + 84dqL2 (t− kh)

}

≤ 19dqL3 (t− kh)
2

+ 85dqL2 (t− kh) .

Integrating this inequality over t ∈ [kh, (k + 1)h] yields the recursion

Rq(µ(k+1)h ‖ π) ≤ exp
(
− h

2qCLSI

)
Rq(µk ‖ π) +

19

3
dh3qL3 +

85

2
dh2qL2

≤ exp
(
− h

2qCLSI

)
Rq(µk ‖ π) + 43dh2qL2 .

Iterating this yields

Rq(µNh ‖ π) ≤ exp
(
− Nh

2qCLSI

)
Rq(µ0 ‖ π) + 86dhq2CLSIL

2,

which completes the proof.

We now outline the hypercontractivity argument to improve the dependence on q.
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Proposition 17 (Hypercontractivity). Let (µt)t≥0 denote the law of the interpolation (5.1) of LMC. Also,

let q(t) := 1 + (q0 − 1) exp t
2CLSI

for t ≥ 0, and write ρt := dµt

dπ , ψt := ρ
q(t)−1
t /Eπ(ρ

q(t)
t ). Then, for t ∈

[kh, (k + 1)h],

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
≤ −2 (q(t) − 1)

q(t)
2

Eπ[‖∇(ρ
q(t)/2
t )‖2]

Eπ(ρ
q(t)
t )

+ (q(t) − 1)E[ψt(xt) ‖∇V (xt) −∇V (xkh)‖2] .

Proof. Using calculus together with Proposition 14, we compute the derivative in time as in Proposition 15,
only now taking into account the additional time-dependent function q. Since the calculation is very similar
to Proposition 15, we only record the final result:

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
= − 1

Eπ(ρ
q(t)
t )

∫
〈∇(ρ

q(t)−1
t ),∇ ln ρt + ∆t〉dµt +

q̇(t) entπ(ρ
q(t)
t )

q(t)
2
Eπ(ρ

q(t)
t )

≤ −3 (q(t) − 1)

q(t)
2

Eπ [‖∇(ρ
q(t)/2
t )‖2]

Eπ(ρ
q(t)
t )

+ (q(t) − 1)E[ψt(xt) ‖∇V (xt) −∇V (xkh)‖2] +
q̇(t) entπ(ρ

q(t)
t )

q(t)
2
Eπ(ρ

q(t)
t )

,

where q̇ is the derivative of q, we write ∆t := E[∇V (xkh) | xt = ·] − ∇V , and the entropy functional is
defined in Section 2. Applying (LSI),

q̇(t) entπ(ρ
q(t)
t )

q(t)
2
Eπ(ρ

q(t)
t )

≤ 2q̇(t)CLSI Eπ[‖∇(ρ
q(t)/2
t )‖2]

q(t)
2
Eπ(ρ

q(t)
t )

=
q(t) − 1

q(t)
2

Eπ[‖∇(ρ
q(t)/2
t )‖2]

Eπ(ρ
q(t)
t )

where the last equality follows from our choice of q.

Proof. [Proof of Theorem 4] Initial waiting phase. Let q̄ ≥ 3. We apply Proposition 17 with q0 = 2 and
for t ≤ N0h, where N0 = ⌈ 2CLSI

h ln(q̄−1)⌉. As in the earlier proof of Theorem 4, we take h ≤ 1/(192q2CLSIL
2);

note that, q̄ ≤ q(N0h) ≤ 2q̄. Then, the bound on the error term from the previous proof implies

∂t

( 1

q(t)
ln

∫
ρ
q(t)
t dπ

)
≤ 18dq(t)L3 (t− kh)

2
+ 84dq(t)L2 (t− kh) .

Integrating this over t ∈ [kh, (k + 1)h] yields

1

q((k + 1)h)
ln

∫
ρ
q((k+1)h)
(k+1)h dπ − 1

q(kh)
ln

∫
ρ
q(kh)
kh dπ ≤ 12dh3q̄L3 + 84dh2q̄L2 ≤ 85dh2q̄L2 .

Iterating this yields

1

q(N0h)
ln

∫
ρ
q(N0h)
N0h

dπ − 1

2
ln

∫
ρ20 dπ ≤ 85dh2q̄L2N0 ≤ 170dhq̄CLSIL

2 ln q̄ .

Remainder of the convergence analysis. After shifting the time indices and applying the preceding
proof of Theorem 4 with q = 2,

Rq̄(µ(N+N0)h ‖ π) ≤ 3

2q̄
ln

∫
ρq̄(N+N0)h

dπ ≤ 3

4
R2(µNh ‖ π) + 255dhq̄CLSIL

2 ln q̄

≤ 3

4
exp

(
− Nh

4CLSI

)
R2(µ0 ‖ π) + 258dhCLSIL

2 + 255dhq̄CLSIL
2 ln q̄

≤ exp
(
− Nh

4CLSI

)
R2(µ0 ‖ π) + 513dhq̄CLSIL

2 ln q̄ .

This completes the proof.
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6.3 Proof of Theorem 6

To prove Theorem 6, we show that the iterates of LMC satisfy (LSI) with a growing constant.

Lemma 18. Assume that V is convex and ∇V is L-Lipschitz. Let (µkh)k∈N
denote the law of the iterates of

LMC initialized at µ0 = normal(0, L−1Id) and run with step size h ≤ 1/L. Then, the LSI constant CLSI(µkh)
of µkh satisfies CLSI(µkh) ≤ L+ 2kh.

Proof. With the condition on the step size, id − h∇V is a contraction. Using standard facts about the
behavior of the log-Sobolev constant under contractions ([BGL14, Proposition 5.4.3]) and convolutions (see
e.g. [Cha04, Corollary 3.1]), we obtain

CLSI(µ(k+1)h) ≤ CLSI

(
(id − h∇V )#µkh

)
+ 2h ≤ CLSI(µkh) + 2h .

The result follows via iteration.

We are now ready to prove Theorem 6, which builds upon the proof of Theorem 4.

Proof. [Proof of Theorem 6] Using again the differential inequality of Proposition 15, assuming h ≤ 1/(3L),
we want to control the error term

E[ψt(xt) ‖∇V (xt) −∇V (xkh)‖2] ≤ 9L2 (t− kh)
2
E[ψt(xt) ‖∇V (xt)‖2] + 6L2

E[ψt(xt) ‖Bt −Bkh‖2] ,

see the first proof of Theorem 4. For the first term, an application of Lemma 16 again yields

E[ψt(xt) ‖∇V (xt)‖2] ≤ 4Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 2dL .

For the second term, the Donsker–Varadhan variational principle (5.4) implies

E[ψt(xt) ‖Bt −Bkh‖2] ≤ 2d (t− kh) + 16 (t− kh) {KL(P̃ ‖ P) + ln 2} .

Now comes a key difference in the proof: in Theorem 4, we bounded KL(P̃ ‖ P) ≤ q−1
q KL(ψtµt ‖ π) and

applied the LSI for π. Here, we instead use KL(P̃ ‖ P) = KL(ψtµt ‖ µt) and apply the LSI from Lemma 18
which worsens over time. We thus obtain

KL(P̃ ‖ P) ≤ 2CLSI(µt)
Eπ[‖∇(ρ

q/2
t )‖2]

Eπ(ρqt )
≤ 2 (L+ 2 (k + 1)h)

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
.

Let N denote the total number of iterations that we run LMC. Collecting together all of the error terms
and using Proposition 15, we see that

∂tRq(µt ‖ π) ≤ −3

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 9qL2 (t− kh)

2
{4Eπ[‖∇(ρ

q/2
t )‖2]

Eπ(ρqt )
+ 2dL

}

+ 6qL2
{

14d (t− kh) + 32h (L+ 2Nh)
Eπ[‖∇(ρ

q/2
t )‖2]

Eπ(ρqt )

}
.

Assuming h ≤ 1
384qL

√
N

min{1,
√
N

qL2 }, it yields

∂tRq(µt ‖ π) ≤ −1

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
+ 18dqL3 (t− kh)

2
+ 84dqL2 (t− kh)

≤ − 1

qCPI

{1 − exp(−Rq(µt ‖ π))} + 18dqL3 (t− kh)
2

+ 84dqL2 (t− kh) ,

where the last inequality follows from [VW19, Lemma 17].
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We now split the analysis into two phases. In the first phase, we consider t ≤ N0h, where N0 is the
largest integer such that Rq(µN0h ‖ π) ≥ 1. Then,

∂tRq(µt ‖ π) ≤ − 1

2qCPI

+ 18dqL3 (t− kh)
2

+ 84dqL2 (t− kh) .

Integration yields

Rq(µ(k+1)h ‖ π) − Rq(µkh ‖ π) ≤ − h

2qCPI

+ 6dh3qL3 + 42dh2qL2 ≤ − h

2qCPI

+ 43dh2qL2 .

If h ≤ 1
172dq2CPIL2 , then we deduce that Rq(µkh ‖π) ≤ Rq(µ0 ‖π)− kh

4qCPI
, and hence that the first phase ends

after at most N0 ≤ 4qCPIRq(µ0 ‖ π)/h iterations.
In the second phase, we consider t such that Rq(µt ‖ π) ≤ 1. Using 1 − exp(−x) ≥ x/2 for x ∈ [0, 1], in

this phase we have the inequality

∂tRq(µt ‖ π) ≤ − 1

2qCPI

Rq(µt ‖ π) + 18dqL3 (t− kh)
2

+ 84dqL2 (t− kh) .

As in the proof of Theorem 4, it implies

Rq(µNh ‖ π) ≤ exp
(
− (N −N0 − 1)h

2qCPI

)
Rq(µ(N0+1)h ‖ π) + 88dhq2CPIL

2

≤ exp
(
− (N −N0 − 1)h

2qCPI

)
+ 88dhq2CPIL

2 .

To make this at most ε, we take h ≤ ε
176dq2CPIL2 and N ≥ N0 + 1 + 2qCPI

h ln(2/ε).

From Lemma 29, we see that Rq(µ0 ‖ π) = Õ(d), so that N = Θ̃(dqCPI

h ). Substituting this into our earlier
constraints on h, we see that if we take

h = Θ̃
( ε

dq2CPIL2
min

{
1,

1

qε
,
dCPI

εL

})
,

then the iteration complexity is

N = Θ̃
(d2q3C2

PI
L2

ε
max

{
1, qε,

εL

dCPI

})
.

This completes the proof.

6.4 Proof of Theorem 7

6.4.1 Girsanov’s theorem and change of measure

As discussed in Section 5.2, our main technical tool is Girsanov’s theorem, stated below in a form which is
convenient for our purposes.

Theorem 19 (Girsanov’s theorem, [Oks13, Theorem 8.6.8]). Let (xt)t≥0, (bPt )t≥0, (bQt )t≥0 be stochastic

processes adapted to the same filtration. Let PT and QT be probability measures on the path space C([0, T ];Rd)
such that (xt)t≥0 evolves according to

dxt = bPt dt+
√

2 dBPt under PT ,

dxt = bQt dt+
√

2 dBQt under QT ,

where BP is a PT -Brownian motion and BQ is a QT -Brownian motion. Assume that Novikov’s condition

E
QT exp

(1

4

∫ T

0

‖bPt − bQt ‖2 dt
)
<∞

18



holds. Then,

dPT
dQT

= exp
( 1√

2

∫ T

0

〈bPt − bQt , dB
Q
t 〉 −

1

4

∫ T

0

‖bPt − bQt ‖2 dt
)
.

Remark. In our applications of Girsanov’s theorem, although we do not check Novikov’s condition explicitly,
the validity of Novikov’s condition follows from the proof.

Actually, we only need the following corollary.

Corollary 20. For any event E and q ≥ 1,

E
QT

[( dPT
dQT

)q
1E

]
≤

√

E

[
exp

(
q2

∫ T

0

‖bPt − bQt ‖2 dt
)
1E

]
.

Proof. Applying the Cauchy–Schwarz inequality,

E
QT

[( dPT
dQT

)q
1E

]
= E

QT

[
exp

( q√
2

∫ T

0

〈bPt − bQt , dB
Q
t 〉 −

q

4

∫ T

0

‖bPt − bQt ‖2 dt
)
1E

]

≤

√

E
QT

[
exp

((
q2 − q

2

) ∫ T

0

‖bPt − bQt ‖2 dt
)
1E

]

×

√

E
QT exp

(√
2q

∫ T

0

〈bPt − bQt , dB
Q
t 〉 − q2

∫ T

0

‖bPt − bQt ‖2 dt
)

︸ ︷︷ ︸
=1

≤

√

E
QT

[
exp

(
q2

∫ T

0

‖bPt − bQt ‖2 dt
)
1E

]
,

where we used Itô’s lemma to show that the underlined term equals 1.

Next, we state and prove the change of measure principle described in Section 5.2. This lemma will be
invoked repeatedly in the main arguments.

Lemma 21 (change of measure). Let µ, ν be probability measures and let E be any event. Then,

µ(E) ≤ ν(E) +
√
χ2(µ ‖ ν) ν(E) .

In particular, if µ and ν are probability measures on R
d and

ν{‖·‖ ≥ R0 + η} ≤ C exp(−cη2) for all η ≥ 0 ,

where C ≥ 1, then

µ
{
‖·‖ ≥ R0 +

√
1

c
R2(µ ‖ ν) + η

}
≤ 2C exp

(
−cη

2

2

)
for all η ≥ 0 .

Proof.

µ(E) = ν(E) +

∫
1E

(dµ

dν
− 1

)
dν ≤ ν(E) +

√
χ2(µ ‖ ν) ν(E) ,

where the last inequality is the Cauchy–Schwarz inequality.
For the second statement, applying the change of measure principle to E = {‖·‖ ≥ R0 + η̄} yields

µ{‖·‖ ≥ R0 + η̄} ≤ C exp(−cη̄2) +
√
C exp

{
−
(
cη̄2 − R2(µ ‖ ν)

)}
.

Now take η̄ =
√

1
c R2(µ ‖ ν) + η.

Finally, we use the following lemma used to remove the conditioning on events.

Lemma 22 ([GT20, Lemma 14]). Let Y > 0 be a random variable. Assume that for all 0 < δ < 1/2 there
exists an event Eδ with probability at least 1− δ such that E[Y 2 | Eδ] ≤ v

δξ
for some ξ < 1. Then, EY ≤ 4

√
v.
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6.4.2 Sub-Gaussianity of the Langevin diffusion

In this section, we introduce a modified distribution: for γ,R > 0,

π̂ ∝ exp(−V̂ ) , V̂ (x) := V (x) +
γ

2
(‖x‖ −R)

2
+ . (6.6)

Here, (‖x‖ −R)
2
+ is interpreted as max{‖x‖ −R, 0}2. Although π̂ and V̂ depend on the parameters γ and

R, we will suppress this in the notation for simplicity. Note that by construction, V = V̂ on the ball B(0, R)
of radius R centered at the origin. Also, the probability measure π̂ has sub-Gaussian tails. We record this
and other useful facts below.

Lemma 23 (properties of the modified potential). Let π̂ and V̂ be defined as in (6.6). Assume that ∇V (0) =
0 and that ∇V satisfies (s-Hölder). Then, the following assertions hold.

1. (sub-Gaussian tail bound) Assume that R is chosen so that π(B(0, R)) ≥ 1/2. Then, for all η ≥ 0,

π̂{‖·‖ ≥ R+ η} ≤ 2 exp
(
−γη

2

2

)
.

2. (gradient growth) The gradient ∇V̂ satisfies

‖∇V̂ (x)‖ ≤ L+ (L+ γ) ‖x‖ .

Proof.

1. We can write
∫

exp
(γ

2
(‖·‖ −R)

2
+

)
dπ̂ =

∫
exp(−V )

∫
exp(−V̂ )

.

Next, we bound

∫
exp(−V̂ )∫
exp(−V )

=

∫
exp

(
−γ

2
(‖·‖ −R)

2
+

)
dπ ≥ π

(
B(0, R)

)
≥ 1

2

by our assumption on R. The sub-Gaussian tail bound follows from Markov’s inequality via

π̂{‖·‖ −R ≥ η} ≤ π̂
{

exp
(γ

2
(‖·‖ −R)

2
+

)
≥ exp

γη2

2

}
≤ 2 exp

(
−γη

2

2

)
.

2. First, note that ‖∇V (x)‖ ≤ L ‖x‖s ≤ L (1 + ‖x‖), using ∇V (0) = 0 and (s-Hölder). Then,

‖∇V̂ (x)‖ ≤ ‖∇V (x)‖ + γ (‖x‖ −R)+ ≤ L+ (L+ γ) ‖x‖ .

Throughout this section, we will assume that R ≥ max{1, 2m}, where m :=
∫
‖·‖ dπ, so that the sub-

Gaussian tail bound in Lemma 23 is valid.
We now begin transferring the sub-Gaussianity of π̂ to πt. First, we establish sub-Gaussian tail bounds

for π̂t, where (π̂t)t≥0 is the law of the continuous-time Langevin diffusion

dx̂t = −∇V̂ (x̂t) dt+
√

2 dBt (6.7)

with potential V̂ , initialized at x̂0 ∼ µ0.

Lemma 24. Let (ẑt)t≥0 denote the modified diffusion (6.6) with potential V̂ . Assume that h ≤ 1/(2 (L+ γ))
and R ≥ max{1, 2m}. Then, for all δ ∈ (0, 1), with probability at least 1 − δ,

sup
t∈[0,Nh]

‖ẑt‖ ≤ R+ 4h (L+ γ)R+

√
8

γ
R2(µ0 ‖ π̂) +

√
(
96dh+

32

γ

)
ln

8N

δ
.
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Proof. Apply the change of measure principle (Lemma 21) together with the sub-Gaussian tail bound in
Lemma 23 to see that with probability at least 1 − δ,

‖ẑkh‖ ≤ R+

√
2

γ
R2(π̂t ‖ π̂) +

√
4

γ
ln

4

δ
.

Since the Rényi divergence is decreasing along the diffusion (6.7), then R2(π̂t ‖ π̂) ≤ R2(µ0 ‖ π̂). Therefore,
a union bound implies that with probability at least 1 − δ,

max
k=0,1,...,N−1

‖ẑkh‖ ≤ R+

√
2

γ
R2(µ0 ‖ π̂) +

√
4

γ
ln

4N

δ
. (6.8)

Next, for t ≤ h,

‖ẑkh+t − ẑkh‖ ≤
∫ t

0

‖∇V̂ (ẑkh+r)‖ dr +
√

2 ‖Bkh+t −Bkh‖

≤ hL+ (L + γ)

∫ t

0

‖ẑkh+r‖ dr +
√

2 ‖Bkh+t −Bkh‖

≤ hL+ (L + γ)
(
h ‖ẑkh‖ +

∫ t

0

‖ẑkh+r − ẑkh‖ dr
)

+
√

2 ‖Bkh+t −Bkh‖ ,

where we used Lemma 23. Grönwall’s inequality implies

sup
t∈[0,h]

‖ẑkh+t − ẑkh‖ ≤
(
hL+ h (L+ γ) ‖ẑkh‖ +

√
2 sup
t∈[0,h]

‖Bkh+t −Bkh‖
)

exp
(
h (L+ γ)

)

≤ 2hL+ 2h (L+ γ) ‖ẑkh‖ +
√

8 sup
t∈[0,h]

‖Bkh+t −Bkh‖

provided h ≤ 1/(2 (L+ γ)). Now, a union bound shows that

P
{

sup
t∈[0,Nh]

‖ẑt‖ ≥ η
}
≤ P

{
max

k=0,1,...,N−1
‖ẑkh‖ ≥ R′}

+

N−1∑

k=0

P

{
sup
t∈[0,h]

‖ẑkh+t − ẑkh‖ ≥ η −R′, max
k=0,1,...,N−1

‖ẑkh‖ ≤ R′
}

≤ P
{

max
k=0,1,...,N−1

‖ẑkh‖ ≥ R′}

+

N−1∑

k=0

P

{√
8 sup
t∈[0,h]

‖Bkh+t −Bkh‖ ≥ η −R′ − 2hL− 2h (L+ γ)R′
}
.

Taking R′ = R +
√

2
γ R2(µ0 ‖ π̂) +

√
4
γ ln 8N

δ and applying a standard bound on the tail probability of

Brownian motion (Lemma 32) shows that with probability at least 1 − δ, if R ≥ 1,

sup
t∈[0,Nh]

‖ẑt‖ ≤ R′ + 2hL+ 2h (L+ γ)R′ +

√
48dh ln

6N

δ

≤ R+ 4h (L+ γ)R+

√
8

γ
R2(µ0 ‖ π̂) +

√
(
96dh+

32

γ

)
ln

8N

δ

after simplifying some terms.

Next, we control the Rényi divergence between πt and π̂t, which ultimately allows us to transfer the
sub-Gaussianity to πt.
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Proposition 25. Let T := Nh. Let QT , Q̂T be the measures on path space corresponding to the original diffu-
sion (1.1) and the modified diffusion (6.7) respectively, both initialized at µ0. Assume that h ≤ 1

3 min{ 1
L+γ ,

T
d }

and γ ≤ 1
3072T . Also, suppose that R ≥ max{1, 2m} and R2(µ0 ‖ π̂) ≥ 1. Then,

R2(QT ‖ Q̂T ) ≤ h (L+ γ)
2
R2

d
+ 5R2(µ0 ‖ π̂) ln(8N) .

Proof. For all 0 < δ < 1/2, let Eδ denote the event that the conclusion of Lemma 24 holds, i.e.

Eδ :=
{

sup
t∈[0,Nh]

‖ẑt‖ ≤ R+ 4h (L+ γ)R+

√
8

γ
R2(µ0 ‖ π̂) +

√
(
96dh+

32

γ

)
ln

8N

δ

}
.

Then, we know that P(Eδ) ≥ 1 − δ. Applying Girsanov’s theorem in the form of Corollary 20,

lnE
[(dQT

dQ̂T

)4
1Eδ

]
≤ 1

2
lnE

[
exp

(
16

∫ T

0

‖∇V (ẑt) −∇V̂ (ẑt)‖2 dt
)
1Eδ

]

=
1

2
lnE

[
exp

(
16γ2

∫ T

0

(‖ẑt‖ −R)2+ dt
)
1Eδ

]

≤
(

384γ2h2 (L + γ)
2
R2 + 192γR2(µ0 ‖ π̂) + (2304γ2dh+ 768γ) ln

8N

δ

)
T .

In order to apply Lemma 22 and remove the conditioning, we require 2304γ2dhT + 768γT < 1. This can be
achieved by taking γ ≤ 1

3072T and h ≤ T
3d . Then, Lemma 22 implies

R2(QT ‖ Q̂T ) = lnE
[(dQT

dQ̂T

)2]

≤ ln 8 +
(
192γ2h2 (L + γ)2R2 + 96γ R2(µ0 ‖ π̂) + (1152γ2dh+ 384γ) ln(8N)

)
T

≤ ln 8 +
h2 (L+ γ)

2
R2

T
+ R2(µ0 ‖ π̂) +

dh ln(8N)

T
+ ln(8N)

≤ h (L+ γ)
2
R2

d
+ 5R2(µ0 ‖ π̂) ln(8N) ,

where we have combined terms using R2(µ0 ‖ π̂) ≥ 1 to simplify the final bound.

Proposition 26. Let (zt)t≥0 denote the continuous-time diffusion (1.1) initialized at µ0. Assume that

h ≤ 1
3 min{ 1

L+T−1 ,
T
d } and m,R2(µ0 ‖ π̂) ≥ 1. Then, for all δ ∈ (0, 1/2), with probability at least 1 − δ,

max
k=0,1,...,N−1

‖zkh‖ ≤ 2m + 490
√
TR2(µ0 ‖ π̂) ln(8N) +

230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ
,

where we write T := Nh.

Proof. Recall from the proof of Lemma 24 that with probability at least 1 − δ,

max
k=0,1,...,N−1

‖ẑkh‖ ≤ R+

√
2

γ
R2(µ0 ‖ π̂) +

√
4

γ
ln

4N

δ

(see (6.8)). Equivalently,

P

{
max

k=0,1,...,N−1
‖ẑkh‖ ≥ R+

√
2

γ
R2(µ0 ‖ π̂) + η

}
≤ 4N exp

(
−γη

2

4

)
.
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Applying the change of measure principle (Lemma 21) again to QT and Q̂T with the choice γ = 1
3072T and

R = 2m reveals that for all δ ∈ (0, 1/2), with probability at least 1 − δ,

max
k=0,1,...,N−1

‖zkh‖ ≤ R+

√
2

γ
R2(µ0 ‖ π̂) +

√
4

γ
R2(QT ‖ Q̂T ) +

√
8

γ
ln

8N

δ

≤ 2m + 490
√
TR2(µ0 ‖ π̂) ln(8N) +

230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ
,

after simplifying the bound.

6.4.3 Bounding the discretization error

In this section, we prove our main bound on the discretization error.

Proposition 27. Let (µt)t≥0 denote the law of the interpolated process (5.1) and let (πt)t≥0 denote the law
of the continuous-time Langevin diffusion (1.1), both initialized at µ0. Assume that ∇V satisfies ∇V (0) = 0
and (s-Hölder). For simplicity, assume that ε−1,m, L, T,R2(µ0 ‖ π̂) ≥ 1 and q ≥ 2. If the step size h satisfies

h ≤ Õs

( ε1/s

dq1/sL2/sT 1/s
min

{
1,

1

q1/sε1/s
,
d

m
s
,

d

R2(µ0 ‖ π̂)s/2

})
,

where the notation Õs hides constants depending on s as well as polylogarithmic factors, then for T := Nh,

Rq(µT ‖ πT ) ≤ ε .

Proof. Let P , Q denote the measures on path space corresponding to the interpolated process (5.1) and the
continuous-time diffusion (1.1) respectively, both initialized at µ0. Also, let

Gt :=
1√
2

∫ r

0

〈∇V (zr) −∇V (z⌊r/h⌋h), dBr〉 −
1

4

∫ r

0

‖∇V (zr) −∇V (z⌊r/h⌋h)‖2 dr ,

where (zt)t≥0 is the continuous-time diffusion (1.1). By applying Girsanov’s theorem (Theorem 19) and Itô’s
formula, we obtain

E
QT

[( dPT
dQT

)q]− 1 = E exp(qGT ) − 1 =
q (q − 1)

4
E

∫ T

0

exp(qGt) ‖∇V (zt) −∇V (z⌊t/h⌋h)‖2 dt

≤ q2

4

∫ T

0

√
E[exp(2qGt)]E[‖∇V (zt) −∇V (z⌊t/h⌋h)‖4] dt .

(6.9)

We bound the two expectations in turn. From Corollary 20 and (s-Hölder),

E exp(2qGt) ≤
√

E exp
(

4q2
∫ t

0

‖∇V (zr) −∇V (z⌊r/h⌋h)‖2 dr
)
≤

√

E exp
(

4q2L2

∫ t

0

‖zr − z⌊r/h⌋h‖2s dr
)

and we control this term by conditioning on the event

Eδ,kh :=
{

max
j=0,1,...,k−1

‖zjh‖ ≤ 2m + 490
√
TR2(µ0 ‖ π̂) ln(8N) +

230h1/2m (L+ T−1)T 1/2

d1/2
+ 160

√
T ln

1

δ︸ ︷︷ ︸
=:Rδ

}
.

By Proposition 26, we know that P(Eδ,kh) ≥ 1 − δ.
One step error. We first consider the error over an interval [0, h] conditionally on z0, corresponding to a

single step of the LMC algorithm. This step requires bounding the exponential moment of supt∈[0,h] ‖zt − z0‖2s,
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which is a slightly tedious exercise in stochastic calculus; hence, we postpone the calculation to Appendix B.

We quote the final result here: assuming that h . 1/(dsq2L2)
1/(1+s)

, Lemma 33 implies

lnE exp
(

8q2L2

∫ h

0

‖zt − z0‖2s dt
)
≤ lnE exp

(
8hq2L2 sup

t∈[0,h]

‖zt − z0‖2s
)

. h2s+1q2L2s+2 (1 + ‖z0‖2s
2

) + dshs+1q2L2 .

Iterating the bound. Let (Ft)t≥0 denote the filtration and write Ht :=
∫ t
0‖xr − x⌊r/h⌋h‖2s dr. By

conditioning on F(N−1)h, we can apply the one step bound to derive the bound

lnE[exp{8q2L2HNh}1Eδ,Nh
]

≤ lnE
[
exp

{
8q2L2H(N−1)h +O

(
h2s+1q2L2s+2 (1 + ‖z(N−1)h‖2s

2

) + dshs+1q2L2
)}

1Eδ,Nh

]

≤ lnE[exp{8q2L2H(N−1)h}1Eδ,(N−1)h
] +O

(
h2s+1q2L2s+2 (1 +R2s2

δ ) + dshs+1q2L2
)
.

Iterating this recursion yields

lnE[exp{8q2L2HNh}1Eδ,Nh
] . h2sq2L2s+2R2s2

δ T + dshsq2L2T .

where we recall T := Nh. In order to apply Lemma 22 to remove the conditioning, we require the step size
to satisfy h .s 1/(q1/sL(s+1)/sT (s2+1)/(2s)), where the notation .s hides a constant depending only on s.
Applying the lemma then yields

lnE exp{4q2L2HNh} . 1 + dshsq2L2T

+ h2sq2L2s+2T
(
m +

√
TR2(µ0 ‖ π̂) ln(8N) +

h1/2m (L+ T−1)T 1/2

d1/2

)2s2

.

We pause here to give a remark which may clarify the proof. The +1 term above arises for two reasons.
First, Lemma 22 requires a bound on the conditional expectation E[exp{8q2L2HNh} | Eδ,Nh] whereas we have
bounded E[exp{8q2L2HNh}1Eδ,Nh

]; passing from the latter to the former incurs a factor of 2 (for δ ≤ 1/2).
Second, the conclusion of Lemma 22 also contributes a factor of 4. This shows that the application of
Lemma 22 inherently adds a constant to the bound on the logarithm of the expectation. This also explains
why, at the beginning of this proof in (6.9), we first applied Itô’s formula to exp(qGT ) rather than applying
Lemma 22 to E exp(qGT ) directly. If we had done the latter, then it would not be possible to make the
Rényi divergence Rq(PT ‖QT ) arbitrarily small with an appropriate choice of h.

We now choose h in order to make E exp{4q2L2HNh} . 1. This is accomplished by taking

h ≤ Õs

( 1

dq2/sL2/sT 1/s
min

{
1,

d

m
s
,

d

R2(µ0 ‖ π̂)s/2
,
d(2s+2)/(s+2)

m
2s/(s+2)

})
. (6.10)

The last term in the minimum can also be eliminated; indeed, if d(2s+2)/(s+2)/m2s/(s+2) ≥ 1, then it is not
active in the minimum. Otherwise, raising this expression to the power (s+ 2)/2 ≥ 1,

d(2s+2)/(s+2)

m
2s/(s+2)

≥ ds+1

m
s

≥ d

m
s
.

Controlling the remaining term. Next, we must bound E[‖∇V (zt)−∇V (zkh)‖4] for t ∈ [kh, (k+1)h].
Although this can also be handled directly via stochastic calculus, we will deduce the bound from Lemma 33
to avoid repeating work. This yields

E[exp(λ ‖zt − zkh‖2s) | zkh] . 1 ,

provided that λ is chosen as

λ ≍ 1

dshs
∧ 1

h2sL2s (1 + ‖zkh‖2s2)
.
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In turn, it implies the tail bound

P{‖zt − zkh‖4s ≥ η | zkh} . exp(−λ√η)

which is integrated to yield

√
E[‖∇V (zt) −∇V (zkh)‖4] ≤ L2

√
E[‖zt − zkh‖4s] . L2

√
E

1

λ2
. dshsL2 + h2sL2s+2

√
1 + E[‖zkh‖4s2 ] .

Integrate the sub-Gaussian tail bound from Proposition 26 to obtain

√
1 + E[‖zkh‖4s2 ] ≤ Õ

(
m

2s2 + T s
2

R2(µ0 ‖ π̂)s
2

+
hs

2

m
2s2L2s2T s

2

ds2

)
.

Finishing the proof. Combining together the previous steps, we have proven

E
QT

[( dPT
dQT

)q]− 1 ≤ Õ
(
dshsq2L2T + h2sq2L2s+2T

(
m

2s2 + T s
2

R2(µ0 ‖ π̂)
s2

+
hs

2

m
2s2L2s2T s

2

ds2
))
.

The step size condition from (6.10) makes the right-hand side of the above expression . 1. Taking logarithms,

Rq(PT ‖QT ) ≤ Õ
(
dshsqL2T + h2sqL2s+2T

(
m

2s2 + T s
2

R2(µ0 ‖ π̂)
s2

+
hs

2

m
2s2L2s2T s

2

ds2
))
.

We now choose h to make the Rényi divergence at most ε. By similar reasoning as before, it suffices to take

h ≤ Õs

( ε1/s

dq1/sL2/sT 1/s
min

{
1,

d

m
s
,

d

R2(µ0 ‖ π̂)s/2

})
.

This completes the proof.

6.4.4 Finishing the proof

Finally, we use Theorem 2 on the continuous-time convergence of the Langevin diffusion (1.1) in Rényi
divergence under an LO inequality. Together with our discretization bound, it will imply Theorem 7.

Lemma 28. Let (πt)t≥0 denote the law of the continuous-time diffusion (1.1) initialized at µ0, and assume
that π satisfies (LO) with order α. If

T ≥ 68qCLO(α)

(
Rq(µ0 ‖ π)2/α−1 − 1

2/α− 1
+ ln

1

ε

)
,

we obtain Rq(πT ‖ π) ≤ ε.

Proof. Recall from Theorem 2 that

∂tRq(πt ‖ π) ≤ − 1

68qCLO(α)
×
{
Rq(πt ‖ π)2−2/α , if Rq(πt ‖ π) ≥ 1 ,

Rq(πt ‖ π) , if Rq(πt ‖ π) ≤ 1 .

In general, if R : R+ → R+ satisfies the ODE R′ = −CRβ for some β ∈ (0, 1), then a calculation shows that

R(t) = {R(0)
1−β − C (1 − β) t}1/(1−β) .

Thus, if α < 2, we obtain Rq(πT0 ‖ π) ≤ 1 at time

T0 =
68qCLO(α)

2/α− 1
{Rq(µ0 ‖ π)2/α−1 − 1} .
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Observe that as α → 2, then T0 → 68qCLO(2) lnRq(µ0 ‖ π) which recovers the continuous-time convergence
under (LSI). Then, at time T = T0 + 68qCLO(α) ln(1/ε), we obtain Rq(πT ‖ π) ≤ ε.

Proof. [Proof of Theorem 7] Let (µt)t≥0 denote the law of the interpolated process (5.1) and let (πt)t≥0

denote the law of the continuous-time Langevin diffusion (1.1), both initialized at µ0. By the weak triangle
inequality, we can bound

Rq(µNh ‖ π) ≤ R2q(µNh ‖ πNh) + R2q−1(πNh ‖ π) .

For T := Nh, we can make the second term at most ε/2 if we choose T = Θ̃(qCLO(α) R2q−1(µ0 ‖ π)
2/α−1

) by
Lemma 28. Then, by Proposition 27, we can make the first term at most ε/2 taking

h = Θ̃s

( ε1/s

dq2/sC
1/s
LO(α)L

2/sR2q−1(µ0 ‖ π)
(2/α−1)/s

min
{

1,
1

q1/sε1/s
,
d

m
s
,

d

R2(µ0 ‖ π̂)s/2

})
. (6.11)

Then, the total number of iterations of LMC is

N =
T

h
= Θ̃s

(dq1+2/sC
1+1/s
LO(α) L

2/s
R2q−1(µ0 ‖ π)

(2/α−1) (1+1/s)

ε1/s
max

{
1, q1/sε1/s,

m
s

d
,
R2(µ0 ‖ π̂)

s/2

d

})
.

This completes the proof.

6.5 Proof of Theorems 3 and 8

We first prove the continuous-time convergence for the Langevin diffusion (1.1) under (MLSI) and (α1-tail).

Proof. [Proof of Theorem 3] From [VW19, Lemma 6], we have

∂tRq(πt ‖ π) = −4

q

Eπ [‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
,

where ρt := dπt

dπ . Following the calculations of [VW19, Lemma 5] and applying (MLSI) to f2 = ρqt/Eπ(ρqt ),

4

q

Eπ[‖∇(ρ
q/2
t )‖2]

Eπ(ρqt )
≥ 4

q

( entπ(ρqt )

2CMLSI Eπ(ρqt ) m̃p((1 + ρqt/Eπ(ρqt ))π)
δ(p)

)1/(1−δ(p))

≥ 1

qC2
MLSI

m̃p((1 + ρqt )π)
δ(p)/(1−δ(p))

(entπ(ρqt )

Eπ(ρqt )

)1/(1−δ(p))

≥ 1

qC2
MLSI

m̃p((1 + ρqt )π)
δ(p)/(1−δ(p)) Rq(πt ‖ π)

1/(1−δ(p))

≥ εδ(p)/(1−δ(p))

qC2
MLSI

m̃p((1 + ρqt )π)
δ(p)/(1−δ(p)) Rq(πt ‖ π)

as long as Rq(πt ‖ π) ≥ ε. Next, we bound the moments. It is a standard exercise (see [Ver18, Exercise

2.7.3]) to show that (α1-tail) implies m̃p(π)
1/p

. m+Ctail p
1/α1 . Also, by a slight modification of the change

of measure principle (Lemma 21), we can show that m̃p(ρ
q
tπ)

1/p
. m+CtailR2(ρqtπ ‖ π)

1/α1 +Ctail p
1/α1 , and

that R2(ρqtπ ‖ π) . qR2q(πt ‖ π) ≤ qR2q(π0 ‖ π). Therefore,

m̃p

(
(1 + ρqt )π

)δ(p)/(1−δ(p)) ≤ m̃p(π)
δ(p)/(1−δ(p))

+ m̃p(ρ
q
tπ)

δ(p)/(1−δ(p))

. {m + qCtailR2q(π0 ‖ π)
1/α1 + Ctail p

1/α1}
(2−α0) (1+α0/(p−α0))

.

Using the assumption that m, Ctail,R2q(π0 ‖ π) ≤ dO(1), if we choose p & log d, then

m̃p

(
(1 + ρqt )π

)δ(p)/(1−δ(p))
. {m + qCtail R2q(π0 ‖ π)

1/α1 + Ctail p
1/α1}

2−α0

.
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Together, it implies that Rq(πT ‖ π) ≤ ε whenever

T ≥ Ω
(qC2

MLSI

ε2δ(p)
{m + qCtailR2q(π0 ‖ π)

1/α1 + Ctail p
1/α1}

2−α0

ln
Rq(π0 ‖ π)

ε

)
.

Next, choosing p ≍ ln(d/ε), we obtain ε2δ(p) & 1, so that

T ≥ Ω
(
qC2

MLSI {m + qCtail R2q(π0 ‖ π)
1/α1 + Ctail ln(d/ε)

1/α1}
2−α0

ln
Rq(π0 ‖ π)

ε

)
,

completing the proof.

With the continuous-time result in hand, it is now straightforward to combine it with the discretization
result (Proposition 27) from the previous section.

Proof. [Proof of Theorem 8] Let (µt)t≥0 denote the law of the interpolated process (5.1) and let (πt)t≥0

denote the law of the continuous-time Langevin diffusion (1.1), both initialized at µ0. By the weak triangle
inequality, we can bound

Rq(µNh ‖ π) ≤ R2q(µNh ‖ πNh) + R2q−1(πNh ‖ π) .

For T := Nh, we can make the second term at most ε/2 if we choose

T = Θ̃(qC2
MLSI {m + qCtail R2q(µ0 ‖ π)

1/α1}
2−α0

)

by Theorem 3. Then, by Proposition 27, we can make the first term at most ε/2 taking

h = Θ̃s

( ε1/s

dq(4−α0)/sC
2/s
MLSI

C
(2−α0)/s
tail

L2/sR2q(µ0 ‖ π)
(2−α0)/(α1s)

× min
{

1,
1

q1/sε1/s
,
d

m
s
,

d

R2(µ0 ‖ π̂)s/2
,
(R2q(µ0 ‖ π)1/α1

m

)(2−α0)/s
})

.

(6.12)

Then, the total number of iterations of LMC is

N =
T

h
= Θ̃s

(dq(1+(3−α0) (1+s))/sC
2 (1+1/s)
MLSI

C
(2−α0) (1+1/s)
tail

L2/sR2q(µ0 ‖ π)(2−α0) (1+1/s)/α1

ε1/s

× max
{

1, q1/sε1/s,
m
s

d
,
R2(µ0 ‖ π̂)

s/2

d
,
( m

R2q(µ0 ‖ π)1/α1

)(2−α0)/s
})

.

This completes the proof.

7 Conclusion

In this work, we have given a suite of sampling guarantees for the LMC algorithm which assume only that
a functional inequality and a smoothness condition hold. In particular, no such guarantees were previously
known beyond the LSI case considered in [VW19]. Consequently, we have resolved the open questions of
estimating the Rényi bias of LMC (Corollary 5) and establishing quantitative convergence guarantees for
LMC under a Poincaré inequality. Our results and techniques are also of interest because they work with a
stronger metric (namely, Rényi divergence) than what is usually considered in the sampling literature.

To conclude, we list a few directions for future research.

• Towards the goal of understanding non-log-concave sampling, it is important to establish sampling
guarantees for other algorithms, such as underdamped Langevin Monte Carlo, under suitable functional
inequalities. Similarly, it is not clear how sharp our bounds are, and it is worth investigating whether
our techniques can be improved.
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• As discussed in the introduction, obtaining guarantees in Rényi divergence is useful for applications
to differential privacy, as well as for obtaining warm starts for high-accuracy algorithms. Hence, we
ask whether Rényi convergence guarantees can be proved for more sophisticated algorithms, such as
randomized midpoint discretizations [SL19; HBE20].
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A Initialization

In this section, we give bounds on the Rényi divergence at initialization. We begin with the convex case.

Lemma 29. Suppose that V is convex with V (0) = 0 and ∇V (0) = 0, and assume that ∇V is L-Lipschitz.
Let m :=

∫
‖·‖ dπ. Then, for µ0 = normal(0, L−1Id),

R∞(µ0 ‖ π) ≤ 2 +
d

2
ln(2m2L) .

Proof. We can write

sup
µ0

π
= sup
x∈Rd

exp
{
V (x) − L

2
‖x‖2

} ∫
exp(−V )∫

exp(−V − δ ‖·‖2)

∫
exp(−V − δ ‖·‖2)

(2π/L)
d/2

(A.1)

for some δ > 0 to be chosen later. We bound the three ratios in turn. First,

exp
{
V (x) − L

2
‖x‖2

}
≤ 1

using V (x) ≤ L ‖x‖2/2. Next,

∫
exp(−V − δ ‖·‖2)∫

exp(−V )
=

∫
exp(−δ ‖·‖2) dπ ≥ exp(−4δm2)π{‖·‖ ≤ 2m} ≥ 1

2
exp(−4δm2)

by Markov’s inequality. Finally, since V ≥ 0,

∫
exp(−V − δ ‖·‖2)

(2π/L)d/2
≤

∫
exp(−δ ‖·‖2)
(2π/L)d/2

=
( L

2δ

)d/2
.

Taking δ = 1/(4m2), we obtain

R∞(µ0 ‖ π) = ln sup
µ0

π
≤ 2 +

d

2
ln(2m2L) ,

which is O(d), up to a logarithmic factor.

We next extend this result to the general case.

Lemma 30. Suppose that ∇V (0) = 0 and that ∇V satisfies (s-Hölder) with constant L > 0. Let m :=∫
‖·‖ dπ. Then, for µ0 = normal(0, (2L)−1Id),

R∞(µ0 ‖ π) ≤ 2 + L+ V (0) − minV +
d

2
ln(4m2L) .

Proof. We consider the same decomposition as in (A.1). First, for some λ ∈ [0, 1], we have

|V (x) − V (0)| = |〈∇V (λx), x〉| ≤ ‖∇V (λx) −∇V (0)‖ ‖x‖ ≤ L ‖x‖1+s .

Therefore,

exp{V (x) − L ‖x‖2} ≤ exp{V (x) − V (0) + V (0) − L ‖x‖2} ≤ exp{V (0) + L ‖x‖1+s − L ‖x‖2}
≤ exp{V (0) + L}

using t1+s ≤ 1 + t2 for all t ≥ 0. Next,

∫
exp(−V − δ ‖·‖2)∫

exp(−V )
≥ 1

2
exp(−4δm2)
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as before. Lastly,
∫

exp(−V − δ ‖·‖2)
(π/L)

d/2
≤ exp(−minV )

∫
exp(−δ ‖·‖2)

(π/L)
d/2

= exp(−minV )
(L
δ

)d/2
.

This yields

R∞(µ0 ‖ π) = ln sup
µ0

π
≤ 2 + L+ V (0) − minV +

d

2
ln(4m2L) ,

with the choice δ = 1/(4m2).

In order to obtain an initialization with R∞(µ0 ‖ π) = Õ(d), the lemma requires finding a stationary
point x ∈ R

d such that the optimality gap V (x) − minV is not too large, i.e. of order O(d). Since ∇V
satisfies (s-Hölder), it suffices to find a stationary point which lies in a ball of radius O(d1/(1+s)) centered
at the minimizer of V . Based on this result, it seems reasonable to assume that the initialization typically
satisfies R∞(µ0 ‖ π) = Õ(d).

Actually, in the setting of Theorem 7, we also need a bound on the Rényi divergence R2(µ0 ‖ π̂), where
π̂ is a slight modification of π (see Section 6.4). The following lemma is proven just as in Lemma 30, so the
proof is omitted.

Lemma 31. Suppose that ∇V (0) = 0 and that ∇V satisfies (s-Hölder) with constant L > 0. For some

γ > 0, let V̂ (x) := V (x) + γ
2 (‖x‖ −R)

2
+, and let π̂ ∝ exp(−V̂ ). Also, let m̂ :=

∫
‖·‖ dπ̂. Then, for

µ0 = normal(0, (2L+ γ)
−1
Id),

R∞(µ0 ‖ π̂) ≤ 2 + L+
γ

2
+ V (0) − min V +

d

2
ln(4m̂2L) .

From the tail bound in Lemma 23, we can deduce an upper bound for m̂ as follows

m̂ =

∫ ∞

0

π̂(‖ · ‖ ≥ t) dt

=

∫ R

0

π̂(‖ · ‖ ≥ t) dt+

∫ ∞

0

π̂(‖ · ‖ ≥ R+ η) dη

≤ R+

∫ ∞

0

2 exp
(
−γη

2

2

)
dη

. R+

√
1

γ
.

In Proposition 26, we eventually take γ roughly of order 1/d . γ . 1, and R . m. Hence, if L + V (0) −
minV = Õ(d) and m ≤ dO(1), then R∞(µ0 ‖ π̂) = Õ(d).

B Additional technical lemmas

In this section, we collect together technical lemmas which appear in the proofs of Section 6.4. The proofs
rely on standard arguments from stochastic calculus. The first lemma extends [Che+21a, Lemma 23].

Lemma 32. Let (Bt)t≥0 be a standard Brownian motion in R
d. Then, if λ ≥ 0 and h ≤ 1/(4λ),

E exp
(
λ sup
t∈[0,h]

‖Bt‖2
)
≤ exp(6dhλ) .

In particular, for all η ≥ 0,

P
{

sup
t∈[0,h]

‖Bt‖ ≥ η
}
≤ 3 exp

(
− η2

6dh

)
.

Next, for s ∈ (0, 1) and 0 ≤ λ < 1/(12dh)
s
,

E exp
(
λ sup
t∈[0,h]

‖Bt‖2s
)
≤ exp(144dshsλ) .
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Proof. The first statement follows from [Che+21a, Lemma 23], and the second follows from the first by
taking λ = 1/(6dh) and applying Markov’s inequality.

We now turn towards the proof of the third statement. Using the tail bound

P
{

sup
t∈[0,h]

‖Bt‖2s ≥ η
}
≤ 3 exp

(
−η

1/s

6dh

)

we now bound E exp(λ supt∈[0,h] ‖Bt‖2s).

E exp
(
λ sup
t∈[0,h]

‖Bt‖2s
)

= 1 + λ

∫ ∞

0

exp(λη)P
{

sup
t∈[0,h]

‖Bt‖2s ≥ η
}

dη ≤ 1 + 3λ

∫ ∞

0

exp
(
λη − η1/s

6dh

)
dη .

Split the integral into whether or not η ≥ (12dhλ)
s/(1−s)

. For the first part,

λ

∫ (12dhλ)s/(1−s)

0

exp(λη) dη ≤ (12dh)
s/(1−s)

λ1/(1−s) exp{(12dh)
s/(1−s)

λ1/(1−s)} ≤ 3 (12dh)
s/(1−s)

λ1/(1−s)

provided that λ ≤ 1/(12dh)s. For the second part, using the change of variables τ = η1/s/(12dh),

λ

∫ ∞

(12dhλ)s/(1−s)

exp
(
λη − η1/s

6dh

)
dη ≤ λ

∫ ∞

(12dhλ)s/(1−s)

exp
(
− η1/s

12dh

)
dη ≤ (12dh)ssλ

∫ ∞

0

exp(−τ)

τ1−s
dτ

= (12dh)
s
sλΓ(s) = (12dh)

s
λΓ(1 + s) ≤ (12dh)

s
λ ,

where we used Gautschi’s inequality to obtain Γ(1 + s) ≤ 1. We have therefore proven

E exp
(
λ sup
t∈[0,h]

‖Bt‖2s
)
≤ 1 + 9 (12dh)

s/(1−s)
λ1/(1−s) + 3 (12dh)

s
λ ≤ 1 + 144dshsλ ,

which implies the result.

The following lemma extends [Che+21a, Lemma 24].

Lemma 33. Let (zt)t≥0 denote the continuous-time Langevin diffusion (1.1) started at z0, and assume that
the gradient ∇V of the potential satisfies ∇V (0) = 0 and (s-Hölder). Also, assume that h ≤ 1/(6L) and
λ ≤ 1/(96dshs). Then,

E exp
(
λ sup
t∈[0,h]

‖zt − z0‖2s
)
≤ exp{8h2sL2s (1 + ‖z0‖2s

2

)λ+ 1152dshsλ} .

Proof. Let f(t) := supr∈[0,t] ‖zr − z0‖2. Then, for 0 ≤ t ≤ h, since ‖∇V (x)‖ ≤ L ‖x‖s,

‖zt − z0‖2 =
∥∥∥−

∫ t

0

∇V (zr) dr +
√

2Bt

∥∥∥
2

≤ 2t

∫ t

0

‖∇V (zr)‖2 dr + 4 ‖Bt‖2

≤ 4t

∫ t

0

‖∇V (zr) −∇V (z0)‖2 dr + 4t2 ‖∇V (z0)‖2 + 4 ‖Bt‖2

≤ 4tL2

∫ t

0

‖zr − z0‖2s dr + 4t2L2 ‖z0‖2s + 4 ‖Bt‖2

≤ 4tL2

∫ t

0

‖zr − z0‖2 dr + 4t2L2 (1 + ‖z0‖2s) + 4 ‖Bt‖2 ,

which yields

f(t) ≤ 4t2L2 (1 + ‖z0‖2s) + 4 sup
r∈[0,t]

‖Br‖2 + 4tL2

∫ t

0

f(r) dr .

31



Grönwall’s inequality yields

f(h) ≤
(
4h2L2 (1 + ‖z0‖2s) + 4 sup

r∈[0,h]

‖Br‖2
)

exp(2h2L2) ≤ 8h2L2 (1 + ‖z0‖2s) + 8 sup
r∈[0,h]

‖Br‖2

using h ≤ 1/(6L). It also yields

sup
t∈[0,h]

‖zt − z0‖2s ≤ 8h2sL2s (1 + ‖z0‖2s
2

) + 8 sup
r∈[0,h]

‖Br‖2s .

The result now follows from Lemma 32.
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