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Abstract

Particle-based inference algorithm is a promising method to efficiently generate samples for
an intractable target distribution by iteratively updating a set of particles. As a noticeable
example, Stein variational gradient descent (SVGD) provides a deterministic and computa-
tionally efficient update, but it is known to underestimate the variance in high dimensions,
the mechanism of which is poorly understood. In this work we explore a connection be-
tween SVGD and MMD-based inference algorithm via Stein’s lemma. By comparing the
two update rules, we identify the source of bias in SVGD as a combination of high vari-
ance and deterministic bias, and empirically demonstrate that the removal of either factors
leads to accurate estimation. In addition, for learning high-dimensional Gaussian target,
we analytically derive the converged variance for both algorithms, and confirm that only
SVGD suffers from the curse of dimensionality.

1. Introduction

The Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) is a deterministic
particle-based inference algorithm that iteratively transports the particles by the functional
gradient in the reproducing kernel Hilbert space (RKHS) of KL-divergence, which takes
the form of a kernelized Stein’s operator. In contrast to the empirical successes (Liu et al.,
2017; Haarnoja et al., 2017; Kim et al., 2018), very few convergence guarantees have been
established for SVGD except for the mean-field regime (Liu and Wang, 2018; Lu et al.,
2019). Moreover, it has been observed that the variance estimated by SVGD scales inversely
with the dimensionality of the problem. This is a highly undesirable property for two

c© J. Ba, M.A. Erdogdu, M. Ghassemi, T. Suzuki, D. Wu, S. Sun & T. Zhang.



Characterizing Particle Inference Algorithms

reasons: 1) underestimating the variance leads to failures of explaining the uncertainty of
model predictions; 2) modern inference problems are usually high-dimensional. For example,
Bayesian neural networks (MacKay, 1992) could be more than millions of dimensions.

We study the algorithmic bias of SVGD that leads to the variance underestimation
in high dimensions. We construct another kernel-based inference algorithm termed MMD-
descent, which closely resembles SVGD but estimate the variance accurately. By comparing
their updates, we identify the cause of variance collapse in SVGD as a combination of high
variance due to Stein’s lemma, and deterministic bias, i.e. the inability to resample particles.
We empirically verify that removing either of these two factors, while computationally ex-
pensive, leads to accurate variance estimation. Then, under mild assumptions, we derive the
equilibrium variance of SVGD and MMD-descent in matching high-dimensional Gaussians,
and confirm that variance estimated by SVGD scales inversely with the dimensionality.

2. Connecting SVGD and MMD-Descent

Particle variational inference approximates an intractable distribution p(x) with a set of
particles X = {xi}ni=1. Specifically, we iteratively optimize a set of particles X = {xi}ni=1

under the deterministic update: xi = xi + ε∆(xi), where ε is the stepsize, and ∆(·) : Rd →
Rd represents the update direction. SVGD defines the update direction as

∆SVGD(x) =
1

n

n∑
i=1

[∇xi log p(xi)k(xi,x)︸ ︷︷ ︸
driving force

+∇xik(xi,x)︸ ︷︷ ︸
repulsive force

] :=
1

n

n∑
i=1

[S1(xi,x)+S2(xi,x)], (1)

where k is a positive definite kernel. Intuitively, the log derivative term S1(xi,x) corresponds
to a driving force that guides particles towards high likelihood regions, whereas the kernel
derivative term S2(xi,x) provides a repulsive force to prevent the particles from collapsing.

We now introduce another particle inference algorithm MMD-descent, motivated from
kernel herding (Welling, 2009). Instead of selecting particles one by one to minimize the
mean maximum discrepancy (MMD) (Gretton et al., 2012) with respect to the target, we
jointly optimize all particles together to minimize MMD via gradient descent. For symmetric
kernel, such as the Euclidean distance kernel (Definition 3), the update can be written as:

∆MMD(x)=Ey∼p [−∇yk(x,y)]︸ ︷︷ ︸
driving force

+
1

n

n∑
i=1

∇xik(xi,x)︸ ︷︷ ︸
repulsive force

=−Ey∼p[S2(y,x)]+
1

n

n∑
i=1

S2(xi,x). (2)

Note that MMD-descent is not practical since integration under the target distribution
is usually infeasible. When the kernel k is in the Stein class of p, we have the equivalence:

−Ey∼p[S2(y,x)] = −Ey∼p[∇yk(x,y)] = Ey∼p[∇y log p(y)k(x,y)] = Ey∼p[S1(y,x)], (3)

SVGD vs. MMD-descent. Observe that 1) the repulsive force term in SVGD and
MMD-descent is identical; 2) in MMD-descent, the driving force is integrated under the
target distribution p, whereas in SVGD under the current particle distribution q.

It is clear that at the infinite particle limit, q = p is the fixed point for both updates.
However, such asymptotic property does not entail 1) the two algorithms reliably approxi-
mate the target distribution in high dimensions, i.e. when n, d are both large ; 2) the two
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algorithms converges to similar stationary points under finite samples. Given the similar up-
dates, it is natural to ask: do SVGD and MMD-descent approximate the target distribution
reliably in high dimensions and are their approximations similar?

The answer is in the negative: SVGD and MMD-descent converge to different stationary
points. Specifically, SVGD underestimates the marginal variance in high dimensions (Zhuo
et al., 2017). For unit Gaussian targets, although both algorithms correctly estimates
the mean, Figure 1(a) illustrates that SVGD particles have decreasing marginal variance as
dimensionality increases whereas MMD-descent particles approximate the marginal variance
accurately. In the following we characterize the sources of this pitfall of SVGD.

3. Understanding the Pitfall of SVGD

Variance from Integration by Parts The convergence of SVGD crucially depends on
the equality Ey∼p[S1(y,x)] = −Ey∼p[S2(y,x)] obtained via integration by parts. Never-
theless, the variance of S1 and S2 may differ drastically, hence invoking convergence issues
under finite particles. In general, S1 can have much larger magnitude, resulting in large
variance of the driving force term in SVGD. In contrast, in MMD-descent the driving force
can be computed via integration S2, and thus the high variance term is not involved. We
visualize the difference in the variance of estimating S1 and S2 in Figure 1(b), and provide
the following characterization for the Gaussian RBF kernel and Gaussian target.

Proposition 1 Define the mean squared error as: MSEp[f(y)] = Ep(y) ‖f(y)− Ep[f(y)]‖22.

Then for p(y) = N (y |µ, Id), Gaussian kernel k(x,y) = exp
(
σ−2 ‖x−y‖22 /2

)
with σ ∈

Θ(
√
d), and x ∈ Sd−1(

√
d), we have MSEp[S2(y,x)] ∈ Θ(d−1); MSEp[S1(y,x)] ∈ Θ(d).

(a) marginal variance. (b) distribution of S1 and S2. (c) variance of SVGD-VR.

Figure 1: (a) dimension-averaged marginal variance of converged particles under SVGD and MMD-
descent. Darker color represents larger number of particles. (b) 1D visualization of the
distribution of sample means of the two estimators S1 and S2 under 10-dimensional
Gaussian target. (c) marginal variance of particles obtained from SVGD using r-times
more samples to estimate S1 and thus reduce variance. We set n = 10 and vary d.

High variance of S1 entails that larger number of samples is required to accurately
estimate S1. Due to this discrepancy, we expect SVGD to better approximate the target if
more samples are used to estimate the driving force. Assume we keep rn (r > 1) particles,
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use all of them to estimate S1 and n particles for S2. The modified update is given as

∆SVGD-VR(x) =
1

rn

rn∑
i=1

S1(xi,x) +
1

n

n∑
i=1

S2(x′i,x).

Where {x′i}ni=1 are drawn randomly from {xi}rni=1. This is to say, at each step the transport
map is constructed via estimating the repulsive force with n particles and the driving force
with rn particles. As shown in Figure 1(b), even though the repulsive force S2 is calculated
with few samples, when r ∈ Ω(d) the algorithm accurately estimates the variance (indepen-
dent of d). We comment that although the modification corrects the variance collapse, it is
not practical since the required number of particles scales with the dimensionality.

Bias from Deterministic Update. The analysis above suggests that the pitfall of SVGD
relates to the high variance of the driving force S1, which is not present in MMD-descent.
However in scenarios like gradient estimation of variational inference, high variance usually
results in slower convergence, but not necessarily variance collapse. In SVGD, the particles
{xi}ni=1 used to compute the update are assumed as random samples from an underlying
continuous distribution. However, due to the deterministic update, the distribution q is
entirely represented by the same set of particles and drawing random samples is not possi-
ble. We now demonstrate that this deterministic bias, when combined with high variance
estimators, may cause the algorithm to converge to biased target or even diverge.

We start from an illustrative experiment of deterministic bias with MMD-descent. Given
target samples {yi}mi=1∼p(y), we have two forms of update that differs in the driving force.

∆MMD
1 (x)=

1

m

m∑
i=1

S1(yi,x)+
1

n

n∑
i=1

S2(xi,x); ∆MMD
2 (x)=− 1

m

m∑
i=1

S2(yi,x)+
1

n

n∑
i=1

S2(xi,x).

As argued above ∆MMD
1 tends to have higher variance due to S1. Note that the estimation

of Ep(y)[S2(y,x)] is unbiased when yi is resampled at each iteration, and empirically the
converged variance is unbiased indeed (log derivative (resampled) in Figure 2(a)).

To simulate the deterministic bias, we sample {yi}mi=1 ∼ p(y) and keep them fixed
throughout optimization. As shown in Figure 2(a), ∆MMD

2 can estimate the variance accu-
rately (kernel derivative (fixed)), but ∆MMD

1 diverges (log derivative (fixed)). As expected,
the deterministic bias of estimating S1 is more significant in ∆MMD

1 due to high variance.
This experiment shows that the deterministic bias in SVGD arises from the algorithm not

being able to resample from q. We now design an algorithm to achieve random ”resampling”.
Let q0 be the continuous distribution where initial samples are drawn from. Let the particles
at t-th iteration be q̂t. We randomly draw new samples q̂′0 from q0. At the i-th iteration, we
update q̂′i with ∆SVGD using the map defined by particles q̂i. Because both q̂T and q̂′T are
initially sampled from q0 and transported using the same map defined by {q̂i}T−1

i=0 , q̂T and
q̂′T has the same distribution. So q̂′T can be seen as ”resampled” from the same distribution
as q̂T , and we can use q̂′T for updating q̂T in SVGD without the deterministic bias. The
algorithm is reminiscent of flow-based variational inference (Rezende and Mohamed, 2015)
and transport-based particle gradient descent (Nitanda and Suzuki, 2017) algorithms.

As shown in Figure 2(b), SVGD with this resampling scheme accurately estimates the
target variance with a small number of particles being updated at each iteration (n = 10).
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(a) variations of MMD-descent. (b) SVGD-resampled. (c) SVGD.

Figure 2: (a) marginal variance of converged particles obtained via two forms of MMD-descent
updates. Darker color indicates a larger number of particles (from 50 to 3000). Observe
that resampling or ∆MMD

2 with fixed samples converges, whereas ∆MMD
1 with fixed samples

diverges. (b) SVGD with resampling scheme correctly estimates the variance. We set
n = 10. (c) marginal variance of particles converged under SVGD in learning unit
Gaussian distribution predicted by Proposition 2.

We expect similar outcomes in estimating higher order moments since the algorithm is com-
pletely unbiased. But the computational cost of such resampled updates scales quadratically
with the number of iterations, thus rendering the method impractical in real applications.

Analytically Deriving the Variance. We now quantitatively characterize the variance
collapse in SVGD by deriving the variance of the converged particles in learning a unit
Gaussian in high dimensions. Specifically, we consider the setup where n, d tend to infinity
at the same rate. Various works have shown that in this regime the kernel matrix can be
asymptotically decomposed into a weighted sum of the data covariance matrix and a scaled
identity (El Karoui et al., 2010; Cheng and Singer, 2013; Bordenave et al., 2013). We perform
a similar decomposition via Taylor expansion and obtain the following characterization:

Proposition 2 (Informal) For unit Gaussian target and Gaussian RBF kernel, assume
that particles at the fixed point of both algorithms correlate weakly and have concentrated
norm, then as d,n→∞ and limn→∞ n/d = γ∈ (0, 1), particles driven by SVGD (7) equili-
brates at the marginal variance vSVGD → 1

e−1γ, whereas MMD-descent (2) leads to vMMD → 1.

Empirical results in Figure 2(c) align with the prediction: when d > n, the equilibrium
variance of SVGD scales linearly with n but is also inverse to d. This indicates that as the
dimensionality increases, more particles is required to reliably estimate the true variance.
When γ > 1, the variance empirically approaches the target variance from below as γ
increases. On the other hand, in this regime MMD-descent does not underestimate the
variance for all γ.
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Appendix A. Additional Information

A.1. Background on SVGD and MMD-descent

Integral Probability Metric

To measuring how well a set of samples approximates a target distribution p, one may
consider the maximum discrepancy between the target p and sample distribution q over
some function class F :

DF (p, q) = sup
f∈F

Eq[f(x)]− Ep[f(y)],

which is known as the integral probability metric (IPM) (Müller, 1997). In particular, if
F is a unit ball in the reproducing kernel Hilbert space (RKHS) H, the resulting DF is
termed the maximum mean discrepancy (MMD) (Gretton et al., 2012), and its squared
value MMD2(p, q) is given as ‖µp − µq‖2H, which equals to:

Ex,x′ [k(x,x′)] + Ey,y′k(y,y′)− 2Ex,y[k(x,y)] (4)

where x,x′ ∼ p, y,y′ ∼ q, and k : Rd × Rd → R is the kernel corresponding to the RKHS
satisfying E[

√
k(x,x)] <∞. If k is a universal kernel (Sriperumbudur et al., 2011), which

includes the commonly-used Gaussian RBF kernel, then MMD defines a proper metric. In
this work we mainly focus on the Euclidean distance kernel defined as

Definition 3 (Euclidean Distance Kernel) A positive semi-definite kernel function is
called Euclidean Distance kernel if it can be represented as:

k(x,x′) = f

(
‖x− y‖22

σ2

)
,

In particular, the commonly-used Gaussian kernels and IMQ kernels are both Euclidean
Distance kernels. In practice, σ2 scales with d for normalization.

Stein’s Lemma. When integration under p is difficult, Stein’s method (Stein et al., 1972)
can be used to construct zero-mean test functions w.r.t p. Specifically, for differentiable
function f in the Stein Class of p, i.e.,∫

x
∇x(f(x)p(x))dx = 0 (5)

The following identity holds:

Ep[∇xlog p(x)f(x) +∇xf(x)] = Ep[Apf(x)] = 0,

where Ap is termed the Langevin Stein operator (Gorham and Mackey, 2015), as it arises
from applying the generator method (Barbour, 1988) to the overdamped Langevin diffusion.
This identity can be easily verified via integration by parts, given that (f · p) vanishes at
boundary. This modified IPM is called the Stein’s discrepancy :

D
Ap
F (p, q) = sup

f∈F

(
Eq[Apf(x)]−������Ep[Apf(x)]︸ ︷︷ ︸

=0

)
. (6)
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Note that the Stein’s discrepancy only involves the score of p and thus the normalization
constant is not required. When f is restricted in the product RKHS Hd with inner product
〈f, g〉Hd =

∑d
i=1〈fi, gi〉H, the maximum discrepancy, known as kernel Stein discrepancy

(KSD), can be estimated efficiently from samples (Liu et al., 2016)(Chwialkowski et al.,
2016)(Gorham et al., 2016).

Kernel Herding

We now consider the approximation of an intractable distribution p(x) with a set of particles
X = {xi}ni=1 representing a Dirac mixture. To generate these particles, kernel herding was
introduced by (Welling, 2009) for minimizing the MMD between the particles and the target
distribution. The herding algorithm proceeds in a greedy manner; Assume the algorithm
already selects {x1, · · · ,xn−1}, the next particle is chosen based on:

xn ← argmin
x

MMD2

(
p,

1

n

(
n−1∑
i=1

δxi + δx

))

= argmax
x

Ey∼p[k(x,y)]− 1

n

n−1∑
i=1

k(x,xi).

Intuitively, the first term encourages sampling in high density areas for the target distribu-
tion. The second term discourages sampling at points close to existing samples. It is shown
(Welling, 2009; Bach et al., 2012; Huszár and Duvenaud, 2012) that the kernel herding
algorithm reduces the MMD at a rate O( 1

N ), for finite-dimensional Hilbert spaces H.

Stein Variational Gradient Descent

The herding procedure selects particles greedily to minimize its objective MMD2, adding
particles one at a time. One can also jointly optimize all particles to decrease some notion
of distance. Let q[ε∆] be the distribution of particles after update ∆. SVGD constructs the
update direction that maximally decreases the KL divergence:

∆∗ = argmax
∆∈Hd

{
− d

dε
DKL(q[ε∆]||p)

∣∣
ε=0

}
= argmax

∆∈Hd

{
Eq[Ap∆(x)]

}
.

Constrain ∆ in terms of RKHS norm, the update for each particle x can be computed as:

∆SVGD(x) = Ex′∼q[∇x′ log p(x′)k(x′,x)︸ ︷︷ ︸
driving force

+∇x′k(x′,x)︸ ︷︷ ︸
repulsive force

]

=
1

n

n∑
i=1

[∇xi log p(xi)k(xi,x) +∇xik(xi,x)] :=
1

n

n∑
i=1

S1(xi,x) +
1

n

n∑
i=1

S2(xi,x). (7)

Note that this update rule can also be interpreted as a fixed-point iteration on Stein’s dis-

crepancy (6). The typically-used kernels include Gaussian kernel k(x,x′) = exp(−‖x−x
′‖22

2σ2 )
(Liu and Wang, 2016; Zhuo et al., 2017) where σ2 = O(d); Linear kernel k(x,x′) =
x>x′ + 1 (Liu and Wang, 2018); Inverse multi-quadratic (IMQ) kernel k(x,x′) = (1 +
‖x− x′‖22/(2σ2))−1/2 (Gorham and Mackey, 2017).

10



Characterizing Particle Inference Algorithms

A.2. Related Works

Stein’s Lemma. Stein’s lemma provides powerful tools in approximating probability dis-
tributions and specifying convergence rates (Erdogdu, 2016; Chen et al., 2018). In partic-
ular, via Stein’s lemma, SVGD (Liu and Wang, 2016) derives an explicit particle updating
formula by minimizing the KL divergence with unnormalized targets. With the research of
implicit variational inference (Huszár, 2017), Stein’s lemma also flourishes score estimation
methods (Li and Turner, 2017; Shi et al., 2018) using only random samples from an implicit
distribution. Interestingly, Erdogdu et al. (2016) observed that algorithms that are equiv-
alent in expectation via Stein’s lemma might have different convergence properties, which
aligns with our analysis in Section 3. The ”curse of dimensionality” of Stein’s lemma-based
kernel algorithm has also been studied in Oates et al. (2016).

Guarantees and applications of SVGD. (Liu and Wang, 2018; Lu et al., 2019) char-
acterizes SVGD in the mean-field limit and showed the weak convergence to the target dis-
tribution. However, the non-asymptotic convergence is poorly understood and Zhuo et al.
(2017); Wang et al. (2018) observed that particles of SVGD tend to underestimate variance
in high dimensions, but did not provide a fundamental characterization. Recently, Liu and
Wang (2018) shows SVGD using kernels with finite-dimensional feature maps, exactly es-
timates the expectations for some set of functions, casting SVGD as a moment matching
method. On the other hand SVGD has seen fruitful accomplishments across multiple ar-
eas. Haarnoja et al. (2017); Liu et al. (2017) adopt SVGD to learn a stochastic sampling
network for approximating the optimal policy in Q-learning (Sutton et al., 1998). VGD is
also used in meta-learning to quickly obtain parameter samples from training sets (Yoon
et al., 2018). Recently works also apply SVGD in terms of Batch Bayesian optimization
(Gong et al., 2019) as well as learning diversified mixture models (Wang and Liu, 2019).
Leveraging the Markov blanket, SVGD is also applied do inference in graphical models Zhuo
et al. (2017); Wang et al. (2018).

A.3. Detail of SVGD with resampling scheme:

At time T: sample {xTi }ni=0 ∼ q0(x).
for t=1,2,...,(T-1) do

xTi ← xTi + ε
n

∑n
j=1 S1(xtj ,x

T
i ) + S2(xtj ,x

T
i ).

end
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A.4. Additional Figures

(a) Variance of MMD-descent. (b) Variance of SVGD (N = nd).

Figure 3: dimension-averaged marginal variance of particles converged under (a) MMD-descent
with n particles, and (b) SVGD withN = nd particles. Note that the equilibrium variance
of MMD-descent with n particles follows similar trend as SVGD with nd particles.

(a) MSE in estimating S1 and S2 for IMQ
kernel.

(b) MMD with IMQ kernel.

Figure 4: (a) Integration by parts with the IMQ kernel also leads to a large discrepancy in vari-
ance. (b) MMD with IMQ kernel also leads to divergence under ∆MMD

1 with fixed target
samples, whereas ∆MMD

2 with fixed target samples correctly estimates the variance.

12
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A.5. Additional Propositions

Proposition 4 (Fixed-Sample MMD Convergence) Let Y = {yi}mi=1 be n indepen-
dent random samples from target distribution p. Assume the kernel is bounded by 0 ≤
k(z, z′) ≤ K. Let X? = {xi}ni=1 be the optimum performing MMD updates based on ∆MMD

2

using samples Y . We have

PrY [MMD(X?, p) ≥ ε] ≤ 6

ε

√
K

min(m,n)
. (8)

Proof:

EY [MMD(X?, p)] = EY [sup
f∈H

(
1

m

m∑
i=1

f(xi)− Epf(x))]

= EY [sup
f∈H

[(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi))− (Epf(x)− 1

n

n∑
i=1

f(yi))]]

≤ EY [sup
f∈H

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)) + sup
f∈H

(Epf(x)− 1

n

n∑
i=1

f(yi))]

A
≤ EY,Z∼p[sup

f∈H
(

1

m

m∑
i=1

f(zi)−
1

n

n∑
i=1

f(yi)) + sup
f∈H

(Epf(x)− 1

n

n∑
i=1

f(yi))]

= EY,Z∼p[MMD(Z, Y ) + MMD(Y, p)]

B
≤ 2[

√
K

m
+

√
K

n
] + 2

√
K

n

≤ 6

√
K

min(m,n)
. (9)

Where A is because that X? attains smallest MMD with Y for all m particles, thus its
MMD is no-smaller than m random samples Z from distribution p. B follows from Gretton
et al. (2012).

Now based on Markov’s Inequality, we have for any ε > 0,

PrY [MMD(X?, p) ≥ ε] ≤ EY [MMD(X?, p)]

ε
≤ 6

ε

√
K

min(m,n)
. (10)

13
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Appendix B. Proof of Technical Results

B.1. Proof of Proposition 1

Given a Gaussian target p(y) = N (0, Id) and Gaussian RBF kernel, the expected value µx

can be given in closed form as µx = − σd

(1+σ2)d/2+1 exp
(
− ‖x‖

2
2

2+2σ2

)
x. We compute the mean

squared error of the estimates as follow:

MSEp[S1(y,x)] =

∫
y
‖S1(y,x)− µx‖22 p(y)dy

=

∫
y
‖ − yk(x,y)− µx‖22 p(y)dy

=

∫
y
k2(x,y)yTy p(y)dy + 2µTx

∫
y
k(x,y)y p(y)dy + µTxµx

∫
y
p(y)dy

=
e
− ‖x‖

2
2

2+σ2 σd

(2 + σ2)d/2+1
(2‖x‖22 + dσ2)− 2e

− ‖x‖
2
2

1+σ2 σ2d

(1 + σ2)d+2
‖x‖22 +

e
− ‖x‖

2
2

1+σ2 σ2d

(1 + σ2)d+2
‖x‖22

=‖x‖22
[2e
− ‖x‖

2
2

2+σ2

σ2 + 2

( σ2

2 + σ2

)d/2 − e
− ‖x‖

2
2

1+σ2

(σ2 + 1)2

( σ2

1 + σ2

)d]
+ de

− ‖x‖
2
2

2+σ2
( σ2

2 + σ2

)d/2+1
.

Similarly for the kernel derivative S2 we have,

MSEp[S2(y,x)] =

∫
y
‖S2(y,x)− µx‖22 p(y)dy

=

∫
y
‖x− y

σ2
k(x,y)− µx‖22 p(y)dy

=
1

σ4

∫
y
k2(x,y)yTy p(y)dy − 2x

σ4

∫
y
k2(x,y)y p(y)dy +

2µx
σ2

∫
y
k(x,y)y p(y)dy

+
xTx

σ4

∫
y
k2(x,y) p(y)dy − 2xTµx

σ2

∫
y
k(x,y) p(y)dy + µTxµx

∫
y
p(y)dy

=
e
− ‖x‖

2
2

2+σ2 σd−4

(2 + σ2)d/2+1
(2‖x‖22 + dσ2)− 4e

− ‖x‖
2
2

2+σ2 σd−4

(2 + σ2)d/2+1
‖x‖22 −

2e
− ‖x‖

2
2

1+σ2 σ2d−2

(1 + σ2)d+2
‖x‖22

+
e
− ‖x‖

2
2

2+σ2 σd−4

(2 + σ2)d/2+1
(2 + σ2)‖x‖22 +

2e
− ‖x‖

2
2

1+σ2 σ2d−2

(1 + σ2)d+1
‖x‖22 +

e
− ‖x‖

2
2

1+σ2 σ2d

(1 + σ2)d+2
‖x‖22

=
e
− ‖x‖

2
2

2+2σ2

σ4

( σ2

2 + σ2

)d/2+1
(d+ ‖x‖22) +

3e
− ‖x‖

2
2

1+σ2

(1 + σ2)2

( σ2

1 + σ2

)d‖x‖22.
The simplification above largely follows from Ex∼N (µ,Σ)[‖x‖22] = µTµ+ Tr(Σ).

Given the bandwidth heuristic σ ∈ Θ(
√
d) and ‖x‖2 = d, one can easily obtain:

MSEp[S2(y,x)] ∈ Θ(d−1), MSEp[S1(y,x)] ∈ Θ(d).
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Appendix C. Proof of Proposition 4

In this section we aim to calculate the variance of SVGD and MMD-Descent in learning
unit Gaussian target under the scaling of n, d→∞ with limd,n→∞ n/d = γ ∈ (0,∞). Since
both SVGD and MMD-descent form an interacting particle system, one can no longer treat
the converged particles as i.i.d. samples from some distribution. We therefore assume the
following on the converged fixed point, which essentially entails that the particles spread
evenly in the space, have concentrated norm and only correlate weakly.

Assumption A1. Unit Gaussian Target Distribution: p(y) ∝ exp
(
−1

2y
>y
)
; Gaussian

RBF Kernel: k(x,y) = exp
(
−‖x−y‖

2
2

2σ2

)
.

Assumption A2. At the converged fixed point of SVGD or MMD-descent, there exists
ξ > 0 such that as d→∞, Pr[maxi |d−1‖xi‖22− v| < ε]→ 1 and Pr[maxi,j |d−1x>i xj + (n−
1)−1v| < ε]→ 1 holds for ε = O(d−1/2−ξ).

Under assumption A1 and A2, we are able to compute the asymptotic variance of both
SVGD and MMD-descent. We first calculate the SVGD variance with d, n→∞, n/d→ γ.

C.1. Computing the SVGD variance with d, n→∞

In this subsection we consider the asymptotical scaling of n, d where n, d→∞ and n/d→ γ.
We solve the stationary point of SVGD update Eq (7), where

∆(xk) =
1

n

n∑
i=1

[
− k(xi,xk)xi +

1

dv
k(xi,xk)(xk − xi)

]
= 0 (11)

for all k, i.e.

n∑
i=1

k(xi,xk)xi =
1

dv + 1

n∑
i=1

k(xi,xk) · xk. (12)

Therefore for Eq (12) we have for LHS

LHS =
n∑
i=1

k(xi,xk)xi = Xkk, (13)

where X = [x1, · · · ,xn] ∈ Rd×n, kk = [k(x1,xk), · · · , k(xn,xk)]
> ∈ Rn (i.e. the k-th

column of kernel K ∈ Rn×n). As for the RHS of Eq (12), note that assumption A2 ensures
the following Taylor expansion around its concentrated value for i 6= k

k(xi,xk) = exp

(
−
‖xi − xk‖22

2dv

)
= e−1 +O(ε), (14)

and for i = k we have k(xk,xk) = 1. This immediately gives

RHS =
1

dv + 1

n∑
i=1

k(xi,xk) · xk =

(
n+ e− 1

(dv + 1)e
+O(ε)

)
xk. (15)
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Equating the RHS and LHS of Eq (12) in matrix form (over all k) we have

X ·K =
n+ e− 1

(dv + 1)e
X +X · diag(ε) = mX +X · diag(ε), (16)

where m = (n+ e− 1)/(dv + 1)e and diag(ε) is a square matrix where the i-th diagonal is
εi with εi = O(ε). Therefore

X · (K −mIn − diag(ε)) = 0. (17)

Denote A = K − mIn − diag(ε), Note that the K is an Euclidean random kernel matrix

with Kij = k(xi,xk) = exp
(
−(2dv)−1 ‖xi − xk‖22

)
, from Theorem 4 in (Bordenave et al.,

2013) it follows that the empirical spectrum density of A converges weakly to

µ(A)→
(

1− 2

e
−m

)
+

1

e
µ

(
1

dv
X>X

)
+ µ(diag(ε)), (18)

where the empirical spectrum of a random matrixA ∈ Rn×n is defined as µ = n−1
∑n

i=1 δλi(A).

Moreover, denote S = n/(n−1)In−1/(n−1)1n1
>
n , then by the Hoffman-Wielandt inequality

one has

W2

(
µ

(
1

dv
X>X

)
, µ(S)

)
≤

√
1

n
tr

(
1

dv
X>X − S

)2

=
√
n−1 · nO(ε)2 = O(ε)→ 0, (19)

where W2(·, ·) is the 2-Wasserstein distance. Hence

µ(A)→
(

1− 2

e
−m

)
+

1

e
µ

(
1

dv
X>X

)
+ µ(diag(ε)) (20)

→
(

1− 2

e
−m

)
+

1

e
µ (S) + µ(diag(ε)) (21)

→ 1− 2

e
+

n

e(n− 1)
−m. (22)

When γ > 1 i.e. d > n, Equation (17) requires µ(A) → 0, and hence m → 1 − e−1 when
n→∞. This gives

vSV GD → n

d(e− 1)
=

1

e− 1
γ. (23)

C.2. Computing the MMD-Descent Variance with d, n→∞

The stationary point of MMD-descent satisfies for ∀k,

∆xk = − σd

(1 + σ2)d/2+1
e
−‖

xk‖22
2+2σ2 xk +

1

nσ2

∑
i 6=k

k(xk,xi)(xk − xi) = 0, (24)

i.e.

n∑
i=1

k(xk,xi)xk −
(

dv

1 + dv

)d/2+1

e−
‖xk‖22
2+2dv nxk =

n∑
i=1

k(xk,xi)xi.
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Under assumption A1, similar to the SVGD case, we have the matrix form of the equilibrium
particles [

1 + e−1(n− 1)−
(

dv

1 + dv

)d/2+1

e−
dv

2+2dvn

]
X +Xdiag(ε) = XK. (25)

with ε = o(1). As d, n→∞ with n/d = γ we have,

1 + e−1(n− 1)−
(

dv

1 + dv

)d/2+1

e−
dv

2+2dvn→ 1− 1

e
. (26)

Note that limd→∞ (dv/(1 + dv))d/2+1 = e−1/(2v). Thus we have

vMMD → 1. (27)

C.3. Missing Derivations

Equivalence of Driving Force in MMD-descent :

Ey∼p[∇xk(x,y)]

=−
∫
∇yk(x,y)p(y)dy

=−
��������
k(x,y)p(y)

∣∣+∞
−∞ +

∫
k(x,y)∇yp(y)dy

=

∫
k(x,y)p(y)∇y log p(y)dy

=Ey∼p[∇y log p(y)k(x,y)].

The integration by parts and cancellation of k(·,y)p(y)
∣∣+∞
−∞ is identical to the derivation of

Stein’s lemma, under the assumption that p(y)k(·) vanishes at the boundary.

Closed-form Driving Force for Gaussian Target :∫
y
p(y)k(x,y)∇y log p(y)dy

=

∫
y
e−
‖x−y‖22

2σ2 (−y)
1√

(2π)d
e−

y>y
2 dy

=− 1√
(2π)d

∫
y
ye−

( 1√
1+σ2

x−
√

1+σ2y)2

2σ2 e
− x>x

2+2σ2 dy

=− σd

(1 + σ2)d/2+1
e
− ‖x‖

2
2

2+2σ2 x.
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