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Abstract

Semidefinite programming (SDP) with equality
constraints arise in many optimization and ma-
chine learning problems, such as Max-Cut, com-
munity detection and robust PCA. Since generic
convex solvers do not scale well with the dimen-
sion of the problem, Burer and Monteiro (Bu-
rer & Monteiro, 2003) proposed to reduce the
dimension of the problem by appealing to a low-
rank factorization, and solve the subsequent non-
convex problem instead. It is well-understood
that the resulting non-convex problem acts as a
reliable surrogate to the original SDP, and can
be efficiently solved using the block-coordinate
maximization method. Despite its simplicity, re-
markable success, and wide use in practice, the
theoretical understanding of the convergence of
this method is limited. We prove that the block-
coordinate maximization algorithm applied to the
non-convex Burer-Monteiro approach enjoys a
global sublinear rate without any assumptions on
the problem, and a local linear convergence rate
despite no local maxima is locally strongly con-
cave.

1. Introduction
A variety of problems in statistical estimation and machine
learning require solving a combinatorial optimization prob-
lem, which are often intractable (Vandenberghe & Boyd,
1996). Semidefinite programs (SDP) are commonly used as
convex relaxations for these problems, providing efficient
algorithms with approximate optimality (Parrilo, 2003).
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A typically used SDP is

maximize 〈A,X〉 (CVX)
subject to Xii = 1, for i ∈ [n],

X � 0,

where A,X ∈ Rn×n and [n] = {1, 2, ..., n}. This problem
appears as a convex relaxation to the celebrated Max-Cut
problem (Goemans & Williamson, 1995), graphical model
inference (Erdogdu et al., 2017), community detection prob-
lems (Bandeira et al., 2016), and group synchronization
(Mei et al., 2017).

Although SDPs serve as reliable relaxations to many com-
binatorial problems, the resulting convex problem is still
computationally challenging. Interior point methods can
solve SDPs to arbitrary accuracy in polynomial-time, but
they do not scale well with the problem dimension n. A
popular approach to remedy these limitations is to introduce
a low-rank factorizationX = σσ>, where σ ∈ Rn×r with r
denoting the rank. This reformulation removes the positive
semidefinite cone constraint in (CVX) since X = σσ> is
guaranteed to be a positive semidefinite matrix, and choos-
ing r � n provides computational efficiency as well as
storage benefits. This method is often referred to as Burer-
Monteiro approach (Burer & Monteiro, 2003). Denoting
i-th row of σ by σi, i.e., σ = [σ1, σ2, ..., σn]>, the resulting
non-convex problem can be written as follows

maximize 〈A, σσ>〉 (Non-CVX)
subject to ‖σi‖ = 1, for i ∈ [n],

where the non-convexity comes from the separable subman-
ifold constraints ‖σi‖ = 1. In the original Burer-Monteiro
approach (Burer & Monteiro, 2003), the authors propose to
use an augmented Lagrangian method for a general form
SDP. However, it has been recently observed that feasible
methods (such as block-coordinate maximization (Javan-
mard et al., 2016; Wang et al., 2017), Riemannian gradient
(Javanmard et al., 2016; Mei et al., 2017) and Riemannian
trust-region methods (Absil et al., 2007a; Journee et al.,
2010; Boumal et al., 2016b)) provide empirically faster
rates since feasibility can be efficiently guaranteed via pro-
jection onto the Cartesian product of spheres. Despite many
empirical evidence (Javanmard et al., 2016; Mei et al., 2017;
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Wang et al., 2017), not much is known on the convergence of
these feasible methods (except the Riemannian trust-region
method, for which a sublinear convergence rate is shown in
(Boumal et al., 2016b) and a local superlinear convergence
is shown in (Absil et al., 2007a) with no rate estimate).
Among these methods, block-coordinate maximization and
projected Riemannian gradient ascent are simpler to im-
plement and have computational complexity of O(nr) and
O(n2r), respectively, whereas Riemannian trust-region re-
quires the eigendecomposition of the dual variable (which
is usually computed iteratively using the power method,
whose each iteration requires O(n2) arithmetic operations)
and the ascent step requires an additional O(n2r) complex-
ity. Furthermore, block-coordinate maximization does not
have any step size or tuning parameters, unlike projected
Riemannian gradient ascent and Riemannian trust-region
methods. Empirical studies further consolidate the use of
block-coordinate maximization by presenting excellent re-
sults on many problems with often linear convergence. In
this paper, we provide the first local and global conver-
gence rate guarantees for the block-coordinate maximiza-
tion method (applied to Burer-Monteiro approach) in the
literature, which are consistent with empirical performance
of the algorithm.

1.1. Related Work

There are numerous papers that analyze the landscape of
(Non-CVX). In particular, it is known that (CVX) ad-
mits a maxima of rank at most r ≤ n(n + 1)/2 (Barvi-
nok, 1995; Pataki, 1998). Using this observation, it has
been shown in (Burer & Monteiro, 2003; 2005; Journee
et al., 2010) that when r ≥

√
2n, if σ is a rank deficient

second-order stationary point, then σ is a global maxima
for (Non-CVX) and X = σσ> is a global maxima for
(CVX). The recent paper (Boumal et al., 2018) showed
that when r ≥

√
2n, for almost all A, every σ that is a

first-order stationary point is rank deficient . For arbitrary
rank r, (Montanari, 2016) showed that all local maxima are
within a n ‖A‖2 /

√
r gap from the (CVX) optimum, and

(Mei et al., 2017) showed that any ε-approximate concave
point is within a Rg(Non-CVX)/(r − 1) + nε/2 gap from
the (CVX) optimum, where Rg(Non-CVX) is the range of
the problem (Non-CVX).

(Javanmard et al., 2016) presented that when applied to
solve (Non-CVX), projected Riemannian gradient ascent
and block-coordinate maximization methods provide ex-
cellent numerical results, yet no convergence guarantee is
provided. Similar experimental results are also observed in
(Wang et al., 2017) for the block-coordinate maximization
algorithm and (Mei et al., 2017) for the projected Rieman-
nian gradient ascent algorithm. In (Boumal et al., 2016a),
the authors provided a global sublinear convergence rate for

the Riemannian trust-region method for general non-convex
problems and these results have been used in (Boumal et al.,
2016b; Mei et al., 2017) for the non-convex Burer-Monteiro
approach. Augmented Lagrangian methods have been pro-
posed to solve (Non-CVX) as well (Burer & Monteiro,
2003; 2005), however these methods do not benefit from sep-
arability of the manifold constraints, and hence are usually
slower (Boumal et al., 2018).

1.2. Notations and Preliminaries

Throughout the paper, all vectors are column vectors. The
superscripts are used to denote iteration counters, i.e., σk

denotes the value of σ at iteration k. For a vector g, ‖g‖ rep-
resents its Euclidean norm. For a matrix A, Aij represents
its entry at the i-th row and j-th column, ||A||F represents
its Frobenius norm, and ‖A‖1 = max1≤j≤n

∑n
i=1 |Aij |

represents its 1-norm. For a function h, ∇h and gradh rep-
resent its Euclidean and Riemannian gradient, respectively.
Similarly, ∇2h and Hessh represent its Euclidean and Rie-
mannian Hessian, respectively. We let Sm−1 denote the unit
sphere in Rm.

Without loss of generality, we assume that A is symmetric
and Aii = 0, for all i ∈ [n]. Indeed, if A is not a symmetric
matrix, then we can replace A by (A + A>)/2, which is
a symmetric matrix, and the objective value (Non-CVX)
remains the same for all σ ∈ Rn×r since σσ> is symmet-
ric. Similarly, replacing the diagonal entries of A by zeros
decreases the objective value by the constant Tr (A), for all
σ ∈ Rn×r since the diagonal entries of σσ> are equal to
‖σi‖2 = 1.

The rest of the paper is organized as follows. In Section 2,
we present the algorithm, discuss its complexity and com-
pare it to the other feasible methods. In Section 3, we prove
the global sublinear convergence of the algorithm and pro-
vide rate estimates. In Section 4, we show that the algorithm
enjoys a local linear convergence rate and provide rate esti-
mates.

2. Block-Coordinate Maximization (BCM)
Algorithm

In this section, we discuss the update rule and computational
complexity of the BCM algorithm. Given the current iterate
σk, the BCM algorithm chooses a block σik and maximizes
the objective

f(σk) =

n∑
i=1

〈σki , gki 〉, where gki :=
∑
j 6=i

Aij σ
k
j ,

over σik ∈ Sr−1. More formally, we can write the update
rule of the algorithm as follows
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σk+1
ik

= arg max
‖σ‖=1

f(σk1 , . . . , σ
k
ik−1, σ, σ

k
ik+1, . . . , σ

k
n)

= arg max
‖σ‖=1

〈σ, gkik〉+
∑
i 6=ik

∑
j 6=i

Aij〈σki , σkj 〉

= arg max
‖σ‖=1

2〈σ, gkik〉+
∑
i6=ik

∑
j 6=i,ik

Aij〈σki , σkj 〉

= arg max
‖σ‖=1

〈σ, gkik〉 =
gkik∥∥gkik∥∥ , (1)

with the convention that σk+1
ik

can be chosen arbitrarily
when

∥∥gkik∥∥ = 0, and where the third equality follows since
A is symmetric. Although ik can be chosen arbitrarily,
we focus on uniformly random selection in this paper, i.e.,
ik

i.i.d.∼ Unif[n], for all k ≥ 0.

Algorithm 1 Block-Coordinate Maximization (BCM)
Initialize σ0 ∈ Rn×r.
for k = 0, 1, 2, . . . do

Sample a block ik ∼ Unif[n].

σk+1
ik
←

gkik
‖gkik‖

.

end for

The BCM algorithm with uniform sampling can be imple-
mented in O(nr) time and space complexity since it only
needs to save σ (which is of size nr) and after ik is chosen
gkik can be computed in 2(n− 1)r floating point operations.
However, in many SDP applications (such as Max-Cut and
graphical model inference), A is induced by a graph. There-
fore, the computational cost of the BCM algorithm can be
reduced to O(dr), where d is the maximum degree of the
graph that induces A. In comparison, per iteration computa-
tional complexity of the projected Riemannian gradient as-
cent algorithm isO(n2r) for denseA andO(d2r) for sparse
A. The situation is even worse for Riemannian trust-region
algorithm since it requires to perform power method to solve
the trust-region subproblem to find an approximate update
direction. Hence, per iteration complexity of the BCM al-
gorithm is much smaller than the other feasible methods.
Furthermore, projected Riemannian gradient ascent and Rie-
mannian trust-region methods require parameter tuning to
guarantee an ascent at each step. On the other hand, the
BCM algorithm does not have any tuning parameters and is
guaranteed to make an ascent at each iteration as we show
in Lemma 3.1.

3. Global Sublinear Convergence Rate
In this section, we prove that the BCM algorithm at-
tains a global sublinear convergence and provide rate es-
timates. To this end, we first introduce the following ascent

lemma, which shows that the sequence of function values
{f(σk)}k≥0 is nondecreasing.
Lemma 3.1. Each iteration of the BCM algorithm yields
the following ascent on the function value:

f(σk+1)− f(σk) = 2
(∥∥gkik∥∥− 〈σkik , gkik〉) ≥ 0.

We emphasize that such an ascent lemma does not necessar-
ily hold for general non-convex functions and algorithms. In
particular, in order to guarantee ascent condition, it is often
required to use line-search techniques for choosing the step
size of first-order methods (e.g., the gradient ascent algo-
rithm) (Schneider & Uschmajew, 2015). On the other hand,
the BCM algorithm does not require any parameter tuning
and still enjoys the ascent guarantee in Lemma 3.1. This
lemma holds a basis for the following theorem, in which
we show that the expected functional ascent attained by the
BCM algorithm can be related to the expected norm of the
Riemannian gradient of the function evaluated at the current
iterate. Hence, it is guaranteed that the BCM algorithm re-
turns a solution with arbitrarily small Riemannian gradient
as we highlight in the following theorem.
Theorem 3.2. Let f∗ = max‖σi‖=1,∀i∈[n] f(σ). Then, in

at most K ≥
⌈(
‖A‖1,1 (f∗ − f(σ0))

)
/ε
⌉

iterations, BCM

is guaranteed to return a solution σk, for some k ∈ [K − 1],
satisfying E

∣∣∣∣gradf(σk)
∣∣∣∣2
F
≤ ε. Equivalently, for any

K ≥ 1, BCM yields the following guarantee

min
k∈[K−1]

E
∣∣∣∣gradf(σk)

∣∣∣∣2
F
≤
n ‖A‖1 (f∗ − f(σ0))

K
. (2)

4. Local Linear Convergence Rate
Although the BCM algorithm enjoys the sublinear conver-
gence rates presented in Section 3, it is numerically observed
that the rate of convergence is linear when σk is close to a
local maxima (Javanmard et al., 2016; Wang et al., 2017). A
similar conclusion can be made by Figure 1 as well, which
illustrates local linear convergence of BCM. In this section,
we investigate this behavior and prove that indeed BCM
attains a linear convergence rate around a local maxima.
In order to prove this result, we require certain tools from
manifold optimization (Absil et al., 2007b). We define the
following submanifold of Rn×r that corresponds to the Rie-
mannian geometry induced by the constraints of the problem
(Non-CVX) in the Euclidean space:

Mr :=
{
σ = (σ1, . . . , σn)> ∈ Rn×r : ‖σi‖ = 1,∀i ∈ [n]

}
.

This manifold represents the Cartesian product of n unit
spheres in Rr. For any given point σ ∈ Mr, its tangent
space can be found (by taking the differential of the equality
constraints) as follows

TσMr:=
{
u = (u1, . . . , un)>∈ Rn×r: 〈ui, σi〉 = 0,∀i∈[n]

}
.
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Figure 1: Convergence of the BCM algorithm, where the entries of A are drawn from a normal distribution and n = 500.

Using these definitions, the geodesics t 7→ σ(t) (i.e., curves
of shortest path with zero acceleration) can be expressed as
a function of σ = σ(0) ∈Mr and u ∈ TσMr as follows

σi(t) = σi cos(‖ui‖ t) +
ui
‖ui‖

sin(‖ui‖ t). (3)

We refer to Section 5.4 of (Absil et al., 2007b) for a more
detailed treatment of this topic. The above geodesic can
be thought as the set of points on the manifold that are
obtained by moving from σ ∈ Mr towards the direction
pointed by u ∈ TσMr. Before understanding the landscape
around a local maxima σ ∈Mr, we first make the following
observation. Let O(r) = {Q ∈ Rr×r : Q>Q = QQ> =
I} denote the orthogonal group in dimension r. We can
observe that f(σQ) = 〈A, σ QQ>σ>〉 = 〈A, σσ>〉 =
f(σ), for any Q ∈ O(r). Thus, every local maxima is
flat in certain directions in TσMr. In order to characterize
these directions, we define M̄r =Mr/O(r) as the quotient
of the manifoldM by the orthogonal group O(r), which
can be thought as the set of equivalence classes. We then
consider the tangent space TσMr and decompose it into
two orthogonal subspaces: the vertical space VσM̄r and the
horizontal space HσM̄r. The vertial space VσM̄r is the
tangent space to equivalence classes, i.e.,

VσM̄r = {σQ : Q ∈ Rr×r, Q> = −Q}.

This space contains the tangent vectors along which function
value does not change and hence there is no curvature. The
horizontal space HσM̄r is the orthogonal complement of
VσM̄ in TσMr, i.e.,

HσM̄r = {u ∈ TσMr : u>σ = σ>u}.

In other words,HσM̄r contains tangent vectors that do not
rotate σ at all, which are the directions along which there is
curvature. For a more detailed treatment of these definitions,

we refer to Chapter 4 of (Journee et al., 2010), where similar
equivalence class definitions are introduced to guarantee
rotational invariance to design an algorithm, whereas our
purpose here is to obtain convergence rate estimates. The
main assumption we will use in proving the local linear
convergence of the BCM algorithm is that along any direc-
tion inHσM̄r, f(σ(t)) has a negative curvature of at least
µ > 0. More formally, we make the following assumption.
Assumption 1. Let σ be a local maxima of the problem
(Non-CVX). Then, 〈u,Hessf(σ)[u]〉 ≤ −µ ||u||2F holds
for all u ∈ HσM̄r.

We emphasize that this assumption implies having isolated
maximizers on the search space M̄, which is the assumption
used in (Journee et al., 2010). In the following theorem, we
state the main linear convergence rate result for the BCM
algorithm. An informal version of this theorem can be stated
as follows. Suppose the BCM algorithm converges to a local
maxima, for which Assumption 1 holds with some constant
µ. Then, the algorithm attains a local linear convergence
rate of 1− µ/(n2 ‖A‖1) per iteration and 1− µ/(n ‖A‖1)
per cycle, approximately. In the formal statement of the
theorem, we consider the case the sequence {σk}k≥0 does
not converge but instead has distinct limit points, where we
emphasize that all limit points have the same function value
due to Lemma 3.1.
Theorem 4.1. Let f̄ = limk→∞ f(σk), suppose Assump-
tion 1 holds and assume that the limit points σ̄ of the BCM
algorithm are local maxima. Then, there exists an inte-
ger K > 0 such that the iterates generated by the BCM
algorithm enjoy the following linear convergence rate

f̄−f(σk+1) ≤
(

1− µ

n2 ‖A‖1
+ δK

)(
f̄ − f(σk)

)
, (4)

for any k ≥ K, where δK is a constant that goes to 0 as
K →∞.
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