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Abstract. Volterra integro-differential equations with time-dependent delay arguments
(DVIDEs) can provide us with realistic models of many real-world phenomena. Delayed Lokta-
Volterra predator-prey systems arise in Ecology and are well-known examples of DVIDEs first intro-
duced by Volterra in 1928. We investigate the numerical solution of systems of DVIDEs using an
adaptive stepsize selection strategy. We will present a generic variable stepsize approach for solving
systems of neutral DVIDEs based on an explicit continuous Runge-Kutta method using defect error
control and study the convergence of the resulting numerical method for various kind of delay argu-
ments. We will show that the global error of the numerical solution can be effectively and reliably
controlled by monitoring the size of the defect of the approximate solution and adjusting the stepsize
on each step of the integration. Numerical results will be presented to demonstrate the effectiveness
of this approach.

Key words. Continuous Runge-Kutta Methods, Delay Volterra integro-differential equations,
Global Error, Defect Control, Adaptive Stepsize Selection

AMS subject classifications. 65R20 (65L06)

1. Introduction. Significant progress has been achieved in the qualitative un-
derstanding and the numerical solution of delay differential equations in recent years.
This has increased the use of this class of equations for simulations in various fields
such as Biology, Medicine, Chemistry, Financial Mathematics and Engineering.

Ordinary and partial differential equations are often derived as a first approxi-
mation to model a real-world situation, where the state of the system depends not
only on the present time, but also on the history of the system. In this situation
delay Volterra integro-differential equations (denoted DVIDEs) can provide a more
realistic model. In particular, they play an important role in mathematical modeling
of population dynamics phenomena. Delayed Lokta-Volterra predator-prey systems
are the basis of many models in population biology. The dynamic of two interacting
species was first modeled by Volterra [1] as,

N ′
1(t) = N1(t)

(

ε1 − γ1N2(t)−
∫ t

t−τ
F1(t− s)N2(s)ds

)

,

N ′
2(t) = N2(t)

(

−ε2 + γ2N1(t) +
∫ t

t−τ
F2(t− s)N1(s)ds

)

,(1)

where t ∈ I := [0, T ], εi > 0, γi ≥ 0, Fi(t) ≥ 0 is continuous, and N1(t) = φ1,
N2(t) = φ2 for t ≤ 0. N1(t) and N2(t) represent two populations (prey and predator)
at time t (see for example [2] for more details). For a comprehensive bibliography see
[3]. Also, De Gaetano and Arino [4] introduced a delay integro-differential equation
for use in the glucose-insulin regulatory system in relation to diabetes,

G′(t) = −b1G(t)− b4I(t)G(t) + b7,

I ′2(t) = −b2I(t) +
b6
b5

∫ t

t−b5

G(s)ds,
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where G(t) denotes blood glucose concentration at time t and I(t) is representing
insulin blood concentration. For more details see [5].

This paper is concerned with designing, analyzing and implementing an efficient
method to approximate the solution of a general system of neutral Volterra integro-
differential equations with time dependent delay arguments using a continuous Runge-
Kutta (CRK) method. CRK methods were introduced for initial value problems
(IVPs), and they determine an approximation to the solution of an IVP for any t in
the interval of interest. The accuracy of the continuous approximation is consistent
with the accuracy of the underlying discrete Runge-Kutta formula which generates
approximations only at the discrete mesh points. The numerical stability of CRK
methods for delay differential equations has been investigated in [6, 7].
We consider neutral VIDEs with a time dependent delay τ(t),

y′(t) = f(t, y(t)) +

∫ t

t−τ(t)

K(t, s, y(s), y′(s))ds,(2)

for t ∈ [t0, T ], f : R × Rm → Rm and K : R × R × Rm × Rm → Rm. To make
the problem well defined, a unique solution y(t) is usually identified by specifying an
initial function φ(t) for t ≤ t0, with φ(t) : R → Rm.

The approximate solution of DVIDEs has been studied by several authors. Linear
multistep methods for DVIDEs were studied in [8]. Collocation methods were inves-
tigated in [9, 10] for strictly increasing delay arguments and block-by-block methods
investigated in [11] for DVIDEs with smooth solutions using a fixed stepsize strategy.
Brunner investigated the numerical solution of nonlinear VIDEs with infinite delay
in [12] and neutral VIDEs with constant delay in [13] and showed that the order of
accuracy at the discrete mesh points can be 2m̄ when using a method based on collo-
cation at the m̄ Gauss (-Legendre) points. Numerical methods have been investigated
on the basis of both uniform and adaptive stepsize selection. In the adaptive stepsize
case the nature of the solution can have an important effect on the performance. Col-
location approximate solutions of nonlinear systems of VIDEs with delay arguments
of the general type,

N ′
1(t) = f1(N1(t), N2(t)) +

∫ t

t−τ

F1(t− s)G1(N1(t), N2(s))ds,

N ′
2(t) = f2(N1(t), N2(t)) +

∫ t

t−τ

F2(t− s)G2(N2(t), N1(s))ds,(3)

which includes system (1) as a special case were analyzed in [14] based on a constant
stepsize strategy. Discrete RK methods and their numerical stability for VIDEs with
constant delay have been investigated in [15, 16, 17] assuming a fixed stepsize strat-
egy. These methods are mainly extensions of the classical Pouzet and Beltyukov RK
methods where the discretization is a part of the method and no continuous approxi-
mation is produced.

In contrast to local error control strategy which attempts to estimate and bound
the local error on each step, defect control is defined for methods such as those based
on a CRK formula, and attempts to estimate and bound the magnitude of the defect
of the associated approximation (for all t) on each step of the integration. Regard-
less of the particular numerical method used for approximating the solution of (2),
the achieved accuracy of a reliable numerical method should depend primarily on the
prescribed user defined tolerance and the conditioning of the problem. Enright intro-
duced and analyzed the error and stepsize control for CRK methods applied to IVPs
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based on defect monitoring [18, 19]. With his colleagues he has recently identified a
new class of explicit CRK formulas in which the defect over a timestep has a consis-
tent shape which is problem independent and easy to estimate [20, 21].

In this investigation, we extend this approach to VIDEs with time dependent
delay arguments. It is well known that discontinuities may occur in various orders of
the derivative of the solution associated with delay problems (if the solution is Cp at
point ξ, then the discontinuity point ξ has order p). The sequence of discontinuity
points {ξµ : µ ≥ 0} can be characterized in general by a recursion,

ξµ+1 − τ(ξµ+1) = ξr for some 0 ≤ r ≤ µ, ξ0 = t0.(4)

It is worth mentioning that the delay argument is not necessarily increasing in
our investigation and can be of either vanishing or non-vanishing type. Brunner and
Zhang [22] have thoroughly investigated the regularity and smoothing properties of
scalar DVIDEs for integral and integro-differential equations with various kind of
delays. It is shown that, unlike the solutions of neutral delay differential equations,
smoothing indeed does happen for the solutions of neutral DVIDEs. This increase in
regularity results in avoiding the clustering of low order discontinuity points in case
of vanishing delays (see problem 2). In addition, Baker and Willé [23], investigated
the propagation of discontinuities in the solutions of scalar and systems of DVIDEs.
Guglielmi and Hairer have discussed how to accurately compute these breaking points
in [24]. The use of arbitrary meshes will in general result in a reduction in the order of
accuracy due to the presence of these discontinuities. Therefore, we attempt to detect
discontinuity points during the integration process and ensure these points are forced
to be mesh points so as not to contaminate the order of the underlying CRK formula.
As we do not restrict the delay argument to be increasing, we must keep track of all
discontinuities in the integration. One of the main results that we establish is that
the global error of the numerical solution can be effectively and reliably controlled
by directly monitoring the magnitude of the associated defect. Since the definite
integrals arising in the underlying equations defining our approximate solution can not
in general be calculated analytically, we will explore the convergence properties of an
approximate solution to (2) that uses a numerical quadrature scheme to approximate
these integrals.

In the next section we will present an overview of how a generic CRK method can
be applied to approximate the solution of (2) and describe different strategies that
can be used to control the size of the defect of the associated interpolants. In section
§3 we investigate the global convergence properties of this Runge-Kutta approach
when applied to (2). We show that the global error is proportional to the norm of
the defect. In the fourth section, numerical results for our implementations will be
presented which illustrate the effectiveness of the approach. In the final section we
discuss the significance and limitations of this approach.

2. Continuous Runge-Kutta Methods. Discrete numerical methods for
IVPs introduce a set of approximations {y0, y1, . . . , yN} corresponding to the mesh
points a = t0 < t1 < . . . < tN = b. Obtaining these approximations is done us-
ing an underlying discrete approximation formula. An s−stage, pth order, explicit
Runge-Kutta formula when applied to the standard IVP,

y′ = f(t, y), y(a) = y0, for t ∈ [a, b],(5)
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determines,

yn+1 = yn + hn

s
∑

i=1

wiki,(6)

where,

ki = f(tn + cihn, yn + hn

i−1
∑

j=1

ai,jkj), i = 1, . . . , s.(7)

We compute the approximation yn+1, if (tn, yn) is known, as an explicit com-
putation requiring only s evaluations of the differential equation. To derive an
optimal order CRK associated with the discrete formula (6) additional stages,
ks+1 = f(tn+1, yn+1) , ks+2, . . . , ks̄+1 are used to obtain an approximation for any
t ∈ (tn, tn+1) as,

un(t) = yn + hn

s̄+1
∑

j=1

bj(τ)kj ,(8)

where bj(τ) is a polynomial of degree at most p+1, τ = t−tn
hn

, bj(τ) =
p+1
∑

k=1

βj,kτ
k, and

un(t) agrees with yn(t) to O(hp+1
n ), where yn(t) is the solution of the local IVP,

y′n(t) = f(t, yn(t)), yn(tn) = un(tn).(9)

A Butcher Tableau (Table 2.1) can be used to represent the resulting CRK for-
mula. Different criteria have been introduced to define a suitable continuous extension,

Table 2.1

Butcher Tableau for a CRK formula

0 0
c2 a2,1 0
...
cs as,1 as,2 . . . as,s−1 0
1 w1 w2 . . . ws−1 ws 0
...

...
...

...
...

...
...

cs̄+1 as̄+1,1 as̄+1,2 . . . . . . . . . . . . as̄+1,s̄ 0
w1 w2 . . . ws−1 ws 0 . . . 0

b1(τ) b2(τ) . . . . . . . . . . . . bs̄(τ) bs̄+1(τ)

and the parameters defining such a CRK (represented in Table 2.1) are usually chosen
to ensure that the piecewise polynomial u(t), defined by the mesh t0 < t1 < . . . < tN
and the associated polynomials un(t) n = 0, 1, . . . , (N − 1), is in C1[a, b]. Enright
and Hu [25] introduced a compatible definition for each ki and used the associated
CRK to define an approximation formula that can be applied to (2) with constant
delay and smooth solutions. We will follow the same approach to define ki for (2)
with time-dependent delay arguments. To advance from tn to tn+1 after u(t) has been
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defined for t ≤ tn, un(t) is defined for t ∈ [tn, tn+1] by (8) where the ki’s are defined
not by (7), but by the following system of equations,

ki = f(tn + cihn, yn + hn

i−1
∑

j=1

ai,jkj) +

tn+cihn
∫

tn+cihn−τ(tn+cihn)

K(tn + cihn, s, u(s), u
′(s))ds,(10)

for i = 1, 2, . . . , s̄+ 1.
Note that regardless of the location of the lower bound in the integral in (10),

for any CRK, we have a system of (s̄ + 1)m coupled implicit equations (defining the
ki’s), since un(t) is defined in terms of all the ki’s introduced on this step. It is worth
mentioning that if the ki’s satisfy a CRK formula given by Table 2.1, ks+1 on step n
is the same as k1 on step n+ 1. This reduces the size of the implicit set of equations
to be solved on each step.

For t ∈ [tn, tn+1] the CRK interpolant un(t) (defined by (8) and (10)) has an
associated defect or residual,

δn(t) = u′
n(t)− f(t, un(t))−

∫ t

t−τ(t)

K(t, s, u(s), u′(s))ds.

To analyze the accuracy and convergence of this piecewise polynomial, u(t), it is
convenient to introduce the local error associated with each step. Consider zn(t) to
be the exact solution of the ’local’ IVP on step n,

z′n(t) = f(t, zn(t)) +

∫ t

t−τ(t)

K(t, s, u(s), u′(s))ds , zn(tn) = yn.(11)

where u(t) is the piecewise polynomial already computed for t ≤ tn and u(t) ≡ un(t)
(which is well-defined in terms of k1, k2, . . . , ks̄+1, but not necessarily computable) for
t ∈ [tn, tn+1]. If the standard ODE CRK formula (6),(7) and (8) is applied to this
local IVP problem, we will get the same piecewise polynomial u(t) (as its continuous
approximate solution); therefore, we can conclude from the theory of optimal order
CRK methods applied to IVPs and the global order of convergence of the approximate
solution that the associated defect satisfies [20],

δn(t) = G(τ)hp
n +O(hp+1

n ),

where

G(τ) = q1(τ)F1 + q2(t)F2 + . . .+ qK(τ)FK .(12)

The qi’s are known polynomials in τ that depend only on the CRK formula, and
the Fi’s are constants depending on both the CRK formula and the problem ( Each
of the Fi’s are expressions involving the derivatives of the problem evaluated at the
point tn and are referred to as elementary differentials . See [19] for more details).
Note that we assume that hn is small enough to ensure sufficient differentiability for
the right hand side of the local IVP (11). Methods for IVPs have been designed and
implemented which attempt to ensure that ‖δn(t)‖ ≤ TOL for tn ≤ t ≤ tn+1, for
some norm ‖.‖, on each step of the integration. It is seen from the above relation
that as hn → 0 the defect will behave like a linear combination of the qi’s over the
subinterval [tn, tn+1]. This property allows the defect to be monitored and controlled
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in an efficient and reliable manner.
Enright and Yan [21] introduced a new, more restrictive, class of CRK interpolants

for the standard IVP (5) for which (12) had the special form,

δn(t) = u′
n(t)− f(t, un(t)) = q1(τ)F1h

p
n +O(hp+1

n ) , t ∈ [tn, tn+1].

In this case, un(t) is generally a more accurate interpolant in approximating the
local solution yn(t) in (9). In addition, the shape of the defect (as hn → 0) will be
independent of both problem and the step, and the maximum defect should occur (as
hn → 0) at the location in [0, 1] of the local maximum of |q1(τ)| (known à priori).
They referred to the use of this class of new interpolants and the reliable estimate
of the maximum defect on a step as a strict defect control (SDC) strategy. They
also introduced a validity check that reflects the credibility of this estimate. The
resulting defect control strategy is an improvement of earlier defect control strategies
investigated in Enright and Hayes and referred to as relaxed defect control (RDC)
schemes. We will investigate and implement an SDC and an RDC CRK method for
(2). Since the shape and magnitude of the defect depends on the algorithm used
to compute the approximate solution un(t), the shape of the defect for DVIDEs is
generally different from that of the ODE cases. This is because of various additional
sources of error involved with the numerical solution of DVIDEs that will be discussed
in subsequent sections. One should note that the solution of the implicit system of
equations arising on each step of the integration, the detection and inclusion of the
propagated discontinuities as mesh points, and the approximation of the quadratures
that arise are important components of the method which affect the overall accuracy
and efficiency of the approach. We will discuss these components and how they
each contribute to the observed defect and global error in the following sections.
Although we have specifically investigated the generalization of a new class of explicit
CRK methods to DVIDEs, the same approach can be carried out for implicit CRK
methods as well. While implicit methods are generally thought to be inefficient for
non-stiff ODEs, in the case of VIDEs, we eventually end up with an implicit system of
equations on each step of the integration (even starting with an explicit CRK method
for ODEs). As a result, implicit methods may result in a suitable VIDE method. We
are planning to consider this idea in a future investigation.

3. Global Error Bound and Convergence Results. Suppose that the CRK
formulae (6), (8) and (10) define a continuous piecewise polynomial interpolant u(t) ∈
C1[a, b]. We are interested in the optimal order of accuracy associated with u(t),
assuming that the CRK is of order p when applied to standard IVPs. In fact, we are
looking for the largest value of q ≥ 1 for which the following error bound is satisfied,

sup
t∈[a,b]

‖y(t)− u(t)‖ = O(Hq),

where y(t) is the exact solution of (2) and H := maxn hn. In order to establish our
convergence results, we assume that y(t) exists and that f and K are sufficiently
smooth functions over their respective domains and satisfy the following Lipschitz
conditions,

‖f(t, y1)− f(t, y2)‖ ≤ Lf‖y1 − y2‖,

‖K(t, s, y1, z1)−K(t, s, y1, z2)‖ ≤ Ly‖y1 − y2‖+ Ly′‖z1 − z2‖.(13)

Note that our assumption of global Lipschitz condition (13) is very strong and will not
likely be satisfied by problems arising in practice. The assumptions can be replaced
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by locally Lipschitz assumptions (where it is assumed that each inequality of (13) is
satisfied for all y1(t) and y2(t) in a neighborhood of the solution y(t) and all z1(t) and
z2(t) in a neighborhood of y′(t)). This is analogous to the standard approach used
to analyze the convergence and accuracy of IV methods, where a rigorous analysis is
presented for problems satisfying a global Lipschitz condition with an understanding
that the results can be established for problems satisfying a local Lipschitz condition.
Enright and Hu [25] proved that the method converges assuming that the delay argu-
ment τ is constant, the exact solution is smooth throughout the integration interval,
the integrals are computed analytically, and τLy′ < 1. This latter requirement is
quite strong but is typical of a condition required to guarantee that (2) has a unique
solution (see, for example, [17, 26]). We will present a convergence theorem which
applies to the more general time-dependent class of problems (with arbitrary delay
arguments) and also accounts for discontinuity points and the quadrature errors asso-
ciated with the evaluation of (10) and δ(t). We will assume that the delay argument
is continuous over [a, b] and B̄Ly′ < 1, where B̄ := max

t∈[a,b]
|τ(t)|.

Theorem 3.1. Let f and K have sufficient continuous derivatives on their re-
spective domains and be such that for a given initial function φ(t), (2) has unique
solution y(t). Assume
(a) u(t) ∈ C1[a, b] denotes an optimal order CRK specified by Table 2.1 and defined
by (8) and (10),
(b) all discontinuity points of order ≤ 1 are included in the set of mesh points,
(c) B̄Ly′ < 1.
Then

sup
t∈[a,b]

‖y(l)(t)− u(l)(t)‖ = O(H), l = 0, 1.

Proof. This result follows directly from the theory of CRKs applied to IVPs and
the observation that u(t) satisfies the associated IVP (10), (11).

The assumption of this theorem, which is not likely to be satisfied when this
approach is implemented, is that the quadratures appearing in (10) can be evaluated
analytically. These definite integrals will have to be approximated numerically by a
suitable numerical quadrature rule when this approach is applied to DVIDEs. We
know that the CRK approach applied to the local IVP (11) defines the piecewise
interpolant u(t). If, in the definition of ki’s in (10), we replace the integral operator
∫

by a suitable numerical approximation, symbolically denoted by
∑

, we will obtain
a fully discretized CRK interpolant, denoted ũ(t), defined for t ∈ [tn, tn+1] by ũn(t).
By the triangular inequality we have,

‖y(t)− ũ(t)‖ ≤ ‖y(t)− u(t)‖+ ‖u(t)− ũ(t)‖

We already know from the theory of perturbed IVPs and Theorem 3.1 that ‖y(t) −
u(t)‖ = O(H). Therefore, all we need is to investigate the convergence and accuracy
of ‖u(t) − ũ(t)‖. We investigate the classical notion of convergence (as H → 0)
as well as the adaptive (variable step) interpretation (as TOL → 0). We begin with
establishing anH → 0 result by deriving a bound on the global error and showing that
this bound tends to zero as H → 0. This bound makes no assumption about the local
error and stepsize control and can be very pessimistic as a predictor of the achieved
global error. We will also establish an optimal order of convergence result (where we
show that the global error is O(Hp) as H → 0 under some mild assumptions). Our
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Fig. 3.1. Schematic representation of the partitioning associated with the quadrature

TOL → 0 convergence result assumes that the defect on each step is monitored, and
the method adjust the stepsize in an attempt to bound the magnitude of the defect
by TOL on each step.

Consider a mesh point tn and the parameter 0 ≤ ci ≤ 1 associated with the
definition of ki on the step from tn to tn+1. To simplify the notation for specifying
the upper and lower bounds of the integral term appearing in (10) we introduce (for
each i = 1, 2, . . . , s̄+ 1), t∗i = tn + cihn − τ(tn + cihn):

tri ≤ t∗i < tri+1.

That is, the delayed value associated with the definition of ki lies in the interval
between tri and tri+1. We assume that 0 ≤ ri ≤ n − 1 (special cases where t∗i ≤ 0
or t∗i falls within the current interval can be easily handled). The variable t∗i can be
written as tri + c̄ihri for some value of 0 ≤ c̄i ≤ 1. The following definitions will
help us simplify the statement of the convergence results. Let N be the number of
subintervals partitioning the interval [a, b], tn,i := tn + cihn for 0 ≤ n ≤ N − 1. For a
function g(t) ∈ C1[a, b] we define (see figure 3.1),

Q∗
ng(tn,i) :=

∫ 1

c̄i

K(tn,i, tri + θhri , g(tri + θhri), g
′(tri + θhri)) dθ,

Qng(tn,i) :=

∫ ci

0

K(tn,i, tn + θhn, g(tn + θhn), g
′(tn + θhn)) dθ,

Q(l)
n g(tn,i) :=

∫ 1

0

K(tn,i, tl + θhl, g(tl + θhl), g
′(tl + θhl)) dθ,

( ri + 1 ≤ l ≤ n− 1).(14)

We define the discretized form of the integrals in (14) using suitable quadrature

formulae denoted by Q̃∗
ng(tn,i), Q̃ng(tn,i) and Q̃

(l)
n g(tn,i) respectively.

We next introduce a lemma from the theory of difference inequalities which is
based on a Gronwall inequality and often used in convergence analysis of DDEs (see
for example [27, 28]).

Lemma 3.2. If the sequence {en} satisfies the difference inequality,

en ≤ (1 + Lhn)en−1 + dnhn , n ≥ 0,

where {en} , {dn}, and {hn} are nonnegative sequences, and L is a nonnegative
constant, then

en ≤

(

e−1 +
n
∑

i=0

dihi

)

exp

(

n
∑

j=0

hjL

)

.
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Theorem 3.3. Let f and K have sufficient continuous derivatives over their
respective domains and be such that for a given initial function φ(t), (2) has a unique
solution y(t). Assume
(a) u(t) ∈ C1[a, b] denotes the CRK interpolant defined by (6), (8) and (10),
(b) ũ(t) ∈ C1[a, b] denotes the fully discretized CRK interpolant where quadrature

formulae Q̃∗
ng(tn,i) and Q̃

(l)
n g(tn,i) are accurate to at least O(H) in their approximation

of the integrals in (14) for c1 = 0,
(c) all discontinuity points of order ≤ 1 are included in the set of mesh points,
(d) B̄Ly′ < 1.
Then the interpolant ũ(t) satisfies

sup
t∈[a,b]

‖y(l)(t)− ũ(l)(t)‖ = O(H), l = 0, 1.

Proof. It suffices to show that ‖u(l)(t)− ũ(l)(t)‖ is O(H). Based on the analytical
calculation of the integral terms, the CRK interpolant u(t) can be characterized as
follows,

un(tn + θhn) = yn + hn

s̄+1
∑

i=1

bi(θ)kn,i,

kn,i = f(tn,i, yn + hn

i−1
∑

j=1

ai,jkn,j) +
tn,i
∫

tn,i−τ(tn,i)

K(tn,i, θ, u(θ), u
′(θ))dθ.

(15)

Also, using the symbolic operator
∑

, the fully discretized CRK interpolant ũ(t)
can be represented as,

ũn(tn + θhn) = ỹn + hn

s̄+1
∑

i=1

bi(θ)k̃n,i,

k̃n,i = f(tn,i, ỹn + hn

i−1
∑

j=1

ai,j k̃n,j) +
tn,i
∑

tn,i−τ(tn,i)

K(tn,i, θ, ũ(θ), ũ
′(θ))dθ.

(16)

We can define, en := max
t0≤t≤tn+1

‖u(t)− ũ(t)‖ and e′n := max
t0≤t≤tn+1

‖u′(t)− ũ′(t)‖. Using

a Taylor series expansion of un(t) and ũn(t) about t = tn we have,

un(tn+θhn) = un(tn)+θhn

[

f(tn, un(tn)) +
tn
∫

tn−τ(tn)

K(tn, s, u(s), u
′(s))ds

]

+O(h2
n),

(17)

ũn(tn + θhn) = ũn(tn) + θhn

[

f(tn, ũn(tn)) + hr1(Q̃
∗
nũr1(tn,1))

+
∑n−1

l=r1+1 hl(Q̃
(l)
n ũl(tn,1))

]

+O(h2
n).

(18)

Regarding the assumption (b) in the theorem the following relations hold for the
quadrature formulae,

Q̃∗
nũr1(tn) = Q∗

nũr1(tn)− ξ∗n(tn),

Q̃
(l)
n ũl(tn) = Q

(l)
n ũl(tn)− ξ

(l)
n (tn)

(19)
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where all error terms are at worst O(H). Substituting these relations into (18) leads
to,

ũn(tn + θhn) = ũn(tn) + θhn

[

f(tn, ũn(tn)) +
tn
∫

tn−τ(tn)

K(tn, s, ũ(s), ũ
′(s))ds

−hr1ξ
∗
n(tn)−

∑n−1
l=r1+1 hlξ

(l)
n (tn)

]

+O(h2
n).

(20)

Subtracting (20) from (17), using the assumed Lipschitz conditions and choosing
appropriate bounds we obtain,

‖un(tn + θhn)− ũn(tn + θhn)‖ ≤ (1 + hnLf + hnB̄Ly)en−1 + hnB̄Ly′e′n−1

+ C1hnH + C2h
2
n.(21)

Now, if max
t0≤t≤tn+1

‖u(t) − ũ(t)‖ occurs at some t∗, t∗ ≤ tn, then trivially en = en−1.

Otherwise, t∗ = tn + θ∗hn and en = ‖un(tn + θ∗hn)− ũn(tn + θ∗hn)‖. In either case
we see from (21) that,

en ≤ (1 + hnLf + hnB̄Ly)en−1 + hnB̄Ly′e′n−1 + C1hnH + C2h
2
n.(22)

Using a similar approach, for u′
n(t) and ũ′(t) we have,

e′n ≤ (Lf + B̄Ly)en−1 + B̄Ly′e′n + C3H + C4H.

Since 0 ≤ B̄Ly′ < 1 we have,

e′n ≤
(Lf + B̄Ly

1− B̄Ly′

)

en +
( C3 + C4

1− B̄Ly′

)

H.(23)

Substituting (23) in (22) leads to,

en ≤
(

1 + hnLf + hnB̄Ly + hnB̄Ly′

(Lf + B̄Ly

1− B̄Ly′

))

en−1 +
( hnB̄Ly′

1− B̄Ly′

)

(C3 + C4)H

+ C1hnH + C2h
2
n.(24)

Now, applying Lemma (3.2) with en defined as above, e−1 = 0,

L := Lf + B̄Ly + B̄Ly′

(Lf + B̄Ly

1− B̄Ly′

)

, and

dn := (C1 + C2 +
( B̄Ly′

1− B̄Ly′

)

(C3 + C4))H,

we observe that

n
∑

i=0

dihi ≤ H(b − a)
(

C1 + C2 +
( B̄Ly′

1− B̄Ly′

)

(C3 + C4)
)

,

and we obtain the bound,

en ≤ H(b− a)
(

C1 + C2 +
( B̄Ly′

1− B̄Ly′

)

(C3 + C4)
)

exp(L(b− a)).
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Also, from (23) we readily see that e′n = O(H).
Although we have proved that max

t0≤t≤tN
‖y(t) − ũ(t)‖ ≤ CH , our bound for C is

not sharp and will in general be pessimistic. In order to establish the optimal order of
convergence (for arbitrary delay arguments), we have to put more restrictions on the
conditions (b) and (d) in Theorem 3.3. These complications are due to the presence
of y′ in the kernel of neutral DVIDE (2).

Theorem 3.4. Let f and K have sufficient continuous derivatives over their
respective domains and be such that for a given initial function φ(t), the delay system
(2) has unique solution y(t). Assume
(a) u(t) ∈ C1[a, b] denotes the CRK interpolant defined by (6), (8) and (10).
(b) ũ(t) ∈ C1[a, b] denotes the fully discretized CRK interpolant where quadrature

formulae Q̃∗
ng(tn,i), Q̃ng(tn,i) and Q̃

(l)
n g(tn,i) have degree of precision at least p − 1

where p is the order of the underlying Runge-Kutta method.
(c) all discontinuity points of order ≤ p are included in the set of mesh points.

(d) B̄Ly′ <
1−h̄Lfα

β′
where α := max

i=1,2,...,s̄+1

∑

j |aij |, β
′ := max0≤θ≤1

∑s̄+1
j=1 |b

′
j(θ)| and

H < h̄ < 1
αLf

.

Then for sufficiently small H, the interpolant ũ(t) satisfies

sup
t∈[a,b]

‖y(l)(t)− ũ(l)(t)‖ = O(Hp), l = 0, 1.

Proof. Over each subinterval [tn, tn+1], the approximation we compute is equiva-
lent to applying the CRK method to the following standard (local) ODE:

w′
n(t) = f(t, wn(t)) +

t
∑

t−τ(t)

K(t, s, ũ(s), ũ′(s))ds,

wn(tn) = ỹn = ũ(tn), tn ≤ t ≤ tn+1.(25)

whose associated interpolant is ũn(t). Since ũ(t) is only C1 continuous (for our CRK
method), we do not have enough regularity for wn(t) over [tn, tn+1]. To address
this difficulty (and for our analysis only) we introduce the following artificial ODE
problem (similar artificial problems have been used in the convergence analysis of
DDEs in [28]):

y′n(t) = f(t, yn(t)) +

∫ t

t−τ(t)

K(t, s, y(s), y′(s))ds,

yn(tn) = y(tn), tn ≤ t ≤ tn+1.(26)

Including all discontinuity points of order ≤ p as mesh points we have,

‖yn(t)− ρn(t)‖ ≤ O(hp+1
n ), ‖zn+1 − y(tn+1)‖ ≤ O(hp+1

n ),

where ρn(t) and zn+1 are the continuous and discrete approximations resulting from
applying the CRK method to (26). Note that, because of uniqueness of the solution
of (26), we observe that yn(t) will be equal to y(t) for all n. We have:

‖yn+1 − y(tn+1)‖ ≤ ‖yn+1 − zn+1‖+ ‖zn+1 − y(tn+1)‖

≤ ‖yn+1 − zn+1‖+O(hp+1
n ),(27)
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and

‖y(t)− un(t)‖ ≤ ‖y(t)− ρn(t)‖+ ‖ρn(t)− un(t)‖

≤ ‖ρn(t)− un(t)‖+O(hp+1
n ).(28)

For ρn(t) and ũn(t) we have:

ρn(tn + θhn) = y(tn) + hn

s̄+1
∑

j=1

bj(θ)kn,j ,

ũn(tn + θhn) = ỹn + hn

s̄+1
∑

j=1

bj(θ)k̃n,j .

Therefore,

‖ρn(tn + θhn)− ũn(tn + θhn)‖ ≤ ‖y(tn)− ỹn‖+ hnβ max
j=1,2,...,s̄+1

‖kn,j − k̃n,j‖,(29)

and

‖yn+1 − zn+1‖ ≤ ‖y(tn)− ỹn‖+ hnβ̄ max
j=1,2,...,s

‖kn,j − k̃n,j‖,(30)

where β = max0≤θ≤1

∑s̄+1
j=1 |bj(θ)| and β̄ =

∑s
j=1 |bj |. Now, we establish an upper

bound for maxj ‖kn,j − k̃n,j‖. From definition (10) we have:

kn,j = f(tn + cjhn, y(tn) + hn

j−1
∑

i=1

aj,ikn,i) +

∫ tn+cjhn

tn+cjhn−τ(tn+cjhn)

K(tn + cjhn, s, y(s), y
′(s))ds,

and

k̃n,j = f(tn + cjhn, ỹn + hn

j−1
∑

i=1

aj,ik̃n,i) +

tn+cjhn
∑

tn+cjhn−τ(tn+cjhn)

K(tn + cjhn, s, ũ(s), ũ
′(s)),

= f(tn + cjhn, ỹn + hn

j−1
∑

i=1

aj,ik̃n,i) +

∫ tn+cjhn

tn+cjhn−τ(tn+cjhn)

K(tn + cjhn, s, ũ(s), ũ
′(s))ds

+ εn(tn,i)

where (see (14))

εn(tn,i) := hriξ
∗
n(tn,i) +

n−1
∑

l=ri+1

hlξ
(l)
n (tn+1) + hnξn(tn,i),

Q̃∗
nũri(tn,i) = Q∗

nũri(tn,i) + ξ∗n(tn,i),

Q̃nũn(tn,i) = Qnũn(tn,i) + ξn(tn,i),

Q̃(l)
n ũl(tn,i) = Q(l)

n ũl(tn,i) + ξ(l)n (tn,i).

According to the assumption of the theorem and the Peano Theorem [29] we know
that ‖εn(tn,i)‖ = O(Hp). Therefore, using the above relations we get:

‖kn,j − k̃n,j‖ ≤ Lf‖y(tn)− ỹn‖+ hnLfα max
j=1,2,...,s̄+1

‖kn,j − k̃n,j‖+ B̄Ly max
t≤tn+1

‖ũ(t)− y(t)‖

+ B̄Ly′ max
t≤tn+1

‖ũ′(t)− y′(t)‖+O(Hp)
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So, for hn sufficiently small (say hn < h̄ < 1
Lfα

) we arrive at the following bound:

max
j=1,2,...,s̄+1

‖kn,j − k̃n,j‖ ≤
Lf

1− hnLfα
‖y(tn)− ỹn‖+

B̄Ly

1− hnLfα
max

t≤tn+1

‖ũ(t)− y(t)‖

+
B̄Ly′

1− hnLfα
max

t≤tn+1

‖ũ′(t)− y′(t)‖+O(Hp)

Substituting the above relation, (29) and (30) in (27) and (28) and after some ma-
nipulation we obtain respectively,

‖y(tn+1)− yn+1‖ ≤ (1 + hnconst)‖y(tn)− ỹn‖+ hnconst max
t≤tn+1

‖ũ(t)− y(t)‖

+ hn max
t≤tn+1

‖ũ′(t)− y′(t)‖ + hn

(

constHp +O(Hp+1)
)

,(31)

and

‖y(t)− ũn(t)‖ ≤ (1 + hnconst)‖y(tn)− ỹn‖+ hnconst max
t≤tn+1

‖ũ(t)− y(t)‖

+ hn max
t≤tn+1

‖ũ′(t)− y′(t)‖ + hn

(

constHp +O(Hp+1)
)

,(32)

where ”const” stands for different constant values. Also, since

ρ′n(tn + θhn) =

s̄+1
∑

j=1

b′j(θ)kn,j ,

ũ′
n(tn + θhn) =

s̄+1
∑

j=1

b′j(θ)k̃n,j .

a similar inequality to (32) exists for the derivatives,

‖y′(t)− ũ′
n(t)‖ ≤

β′Lf

1− hnLfα
‖y(tn)− ỹn‖+

β′B̄Ly

1− hnLfα
max
t≤tn+1

‖ũ(t)− y(t)‖

+
β′B̄Ly′

1− hnLfα
max
t≤tn+1

‖ũ′(t)− y′(t)‖ +O(Hp).(33)

Introducing

en+1 := max
i≤n+1

‖y(ti)− ỹi‖, En+1 := max
t≤tn+1

‖y(t)− ũ(t)‖, E′
n+1 := max

t≤tn+1

‖y′(t)− ũ′(t)‖,

from (33) we obtain ( notice that E′
n+1 might not necessarily happen in the interval

[tn, tn+1]. So, we replace hn by h̄.):

E′
n+1 ≤

β′Lf

1− h̄Lfα
en +

β′B̄Ly

1− h̄Lfα
En+1 +

β′B̄Ly′

1− h̄Lfα
E′

n+1 +O(Hp).

So, for 1−
β′B̄Ly′

1−h̄Lfα
> 0 (condition (d) in the theorem) we have:

E′
n+1 ≤ consten + constEn+1 +O(Hp).(34)
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It is worth mentioning that β′ ≥ 1 in our numerical method. Therefore,
1−h̄Lfα

β′
≤ 1

in the condition (d) of the theorem (compare with the condition (d) in the Theorem
3.3). Substituting (34) in (32) results in,

En+1 ≤ consten +O(Hp)(35)

and then (34) yields:

E′
n+1 ≤ consten +O(Hp)(36)

From (31) we get,

en+1 ≤ (1 + hnconst)en + hnconstEn+1 + hnconstE
′
n+1

+ hn

(

constHp +O(Hp+1)
)(37)

Substituting (35) and (36) in (37) we obtain,

en+1 ≤ (1 + hnconst)en + hn

(

constHp +O(Hp+1)
)

which is the Gronwall inequality that allows us (from Lemma 3.2) to conclude that
en = O(Hp). Then, from (35) and (36) we obtain En = O(Hp) and E′

n = O(Hp).

As mentioned earlier, the defect δ(t) is the amount by which the CRK interpolant u(t)
fails to satisfy the VIDEs (2). The method we have implemented attempts to ensure
that some measure of the size of this defect is bounded by the user-defined TOL. We
now show that the global error associated with our numerical solution ũ(t) is bounded
on the whole interval by a multiple of the tolerance if the magnitude of this defect is
bounded by TOL. The following Lemma [30] helps us establish a relationship between
the maximum magnitude of the defect and a global error bound for delay VIDEs.

Lemma 3.5. Let K1 and K2 be nonnegative constants and ρ(t) be a continuous
nonnegative function on an interval a ≤ t ≤ b satisfying the inequality ρ(t) ≤ K1 +

K2

t
∫

a

ρ(s)ds for a ≤ t ≤ b. Then ρ(t) ≤ K1 exp[K2(t− a)] for a ≤ t ≤ b.

Theorem 3.6. Let ũ(t) be the CRK interpolant resulting from the fully discretized
(16). In addition, assume that the integral term

∫

is approximated by the quadrature
∑

with the error QE(t) (see 43). If
(a) the norm of the defect, ‖δ̃(t)‖, is bounded by TOL on each step of the integration
in [a, b],
(b) the functions f and K satisfy the Lipschitz conditions (13),
(c) B̄Ly′ < 1,
(d) |QE(t)| ≤ TOL.
Then

‖y(t)− ũ(t)‖ ≤ C · TOL on [a, b],

where C is a nonnegative constant depending only on the problem.

Proof. The exact solution of (2) satisfies,

y′(t) = f(t, y(t)) +

∫ t

t−τ(t)

K(t, s, y(s), y′(s))ds,(38)
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and the associated continuous interpolant u(t) satisfies the perturbed Volterra differ-
ential equation,

u′(t) = f(t, u(t)) +

∫ t

t−τ(t)

K(t, s, u(s), u′(s))ds+ δ(t),(39)

on [a, b]. Equation (39) reveals that the defect δ(t) is also defined in terms of a
definite integral operator

∫

which has to be computed numerically whenever the

fully discretized defect, δ̃(t), is to be evaluated. Having computed the continuous
interpolant ũ(t) from the fully discretized CRK method on each step, we have to
calculate the associated fully discretized defect δ̃(t). The continuous interpolant,
ũ(t), associated with the fully discretized method satisfies,

ũ′(t) = f(t, ũ(t)) +

t
∑

t−τ(t)

K(t, s, ũ(s), ũ′(s))ds+ δ̃(t),(40)

where the symbol
∑

represents a suitable quadrature rule. Subtracting (38) from
(40) and integrating yields,

ũ(t)− y(t) =
t
∫

a

[f(x, ũ(x)) − f(x, y(x))]dx +
t
∫

a

x
∑

x−τ(x)

K(x, s, ũ(s), ũ′(s))dsdx

−
t
∫

a

∫ x

x−τ(x)K(x, s, y(s), y′(s))dsdx +
∫ t

a
δ̃(x)dx.

(41)

We now manipulate the right side of the above equation by adding and subtracting

the integral term
t
∫

a

x
∫

x−τ(x)

K(x, s, ũ(s), ũ′(s))dsdx and then take a norm of both sides

to obtain,

‖ũ(t)− y(t)‖ ≤ (Lf + B̄Ly)
t
∫

a

β̃(x)dx + Ly′B̄
t
∫

a

γ̃(x)dx +
t
∫

a

QE(x)dx +
t
∫

a

‖δ̃(x)‖dx,

(42)
where we denote the quadrature error QE(x) by,

QE(x) := ‖

x
∑

x−τ(x)

K(x, s, ũ(s), ũ′(s))−

∫ x

x−τ(x)

K(x, s, ũ(s), ũ′(s))ds‖,(43)

and

β̃(t) := max
a≤s≤t

‖ũ(s)− y(s)‖ , γ̃(t) := max
a≤s≤t

‖ũ′(s)− y′(s)‖.

We first have to establish an upper bound for the term γ̃(x) in (42). Subtracting (38)
from (40), in addition to adding and subtracting an integral term will result in,

ũ′(x)− y′(x) = f(x, ũ(x)) − f(x, y(x)) +

x
∑

x−τ(x)

K(x, s, ũ(s), ũ′(s))

−

∫ x

x−τ(x)

K(x, s, ũ(s), ũ′(s))ds+

∫ x

x−τ(x)

K(x, s, ũ(s), ũ′(s))ds

−

∫ x

x−τ(x)

K(x, s, y(s), y′(s))ds + δ̃(x).
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Taking a norm of both sides of the above equation and using our Lipschitz assumptions
with B̄Ly′ < 1 we obtain,

γ̃(x) ≤
(Lf + LyB̄)

(1− Ly′B̄)
β̃(x) +

‖δ̃(x)‖ +QE(x)

(1 − Ly′B̄)
.(44)

Substituting this inequality into (42) and using ‖δ̃(t)‖ ≤ TOL leads to,

β̃(t) ≤ (Lf + B̄Ly + B̄Ly′

(Lf + LyB̄)

(1− Ly′B̄)
)

t
∫

a

β̃(x)dx + TOL(b− a)(1 +
B̄Ly′

1− Ly′B̄
)

+ (1 +
B̄Ly′

1− Ly′B̄
)

t
∫

a

QE(x)dx.

It is readily seen from the above inequality that if the error in the quadrature approx-
imation QE(t) is bounded by TOL, then from Lemma (3.5) with K1 := 2 TOL(b−

a)(1 +
B̄Ly′

1−Ly′ B̄
), K2 := (Lf + B̄Ly + B̄Ly′

(Lf+LyB̄)

(1−Ly′ B̄)
) and ρ(s) = β̃(s) we will achieve

the bound,

‖ũ(t)− y(t)‖ ≤ C · TOL,

where C :=
(

2(b− a)(1 +
B̄Ly′

1−Ly′ B̄
)
)

·exp
(

(b− a)(Lf + B̄Ly + B̄Ly′

(Lf+LyB̄)

(1−Ly′ B̄)
)
)

.

4. Implementation and Numerical Results. In this section, we illustrate
the performance and reliability of a fully discretized CRK method on a selection of
problems and justify the strategies and heuristics we have adopted in our implemen-
tation. At a very general level, an attempted step from tn to tn+1 can be viewed as
consisting of the following five stages:

1. Determine a trial stepsize hn .
2. Check whether there exists a discontinuity point within (tn, tn+hn). If there

exist any, change the attempted step to (tn, tn + h∗) where tn + h∗ is the
leftmost discontinuity point detected.

3. Form the interpolant un(t) .
4. Evaluate some measure, 4, of the size of the defect, δ̃n(t).
5. Accept the step if 4 ≤ TOL.

The experimental code we have developed calls a version of a 6th order CRK identi-
fied and investigated in [21]. It is based on an underlying discrete 6th order, 7− stage
explicit RK formula developed by Verner [31] for IVPs. It should be noted that other
formulas and orders can be used as well. Three additional stages are computed to
form an RDC CRK of O(h7) accuracy, and a total of 15 stages are used overall to
define the associated SDC CRK. A validity check is also used to ensure a more reliable
defect estimate. This strategy is called SDCV. Point 4 deserves further comment. As
mentioned earlier, the assumption that the solution is sufficiently smooth results in a
credible estimate of the size of the maximum defect in the case of ODEs, i.e., all we
need is to evaluate the defect at a predetermined single point. In addition, it is shown
in [21] that there is a direct asymptotic relationship between the local error of the un-
derlying discrete RK formula and the continuous defect of any associated SDC CRK.
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Shampine extends the concept of the local error to the span of the step and obtains
an asymptotically correct estimate of the maximum local error by a single evaluation
of the residual [32]. But, this may not be the case when we deal with delay equations
since the asymptotic results are not necessarily directly applicable. So, to estimate the
maximum defect when it is not sufficiently smooth or the stepsize is fairly large, one
could sample it at more than one point. Our objective is to show that the maximum
defect will be proportional to the maximum global error. If the maximum defect on a
step is dominated by the contribution from the truncation error associated with the
CRK formula, sampling the defect at a single point will deliver reliable results. We
have implemented this estimate, and our numerical results (described below) verify
that this is generally the case. Nevertheless, there are problems where iteration errors
or quadrature errors can significantly contribute to the observed maximum defect and
developing more reliable estimates when this is the case is a topic we are currently
investigating.

As mentioned earlier, an implicit system of equations has to be solved on each
step of the integration to determine k̃2, k̃3, . . . , k̃s̄+1. In order to take advantage of
the underlying explicit RK formula, a convergent Gauss-Seidel type iterative proce-
dure (similar to that used in a Picard iteration or in waveform relaxation) is used to
approximate the solution of the implicit system of equations as follows:

k̃
[m]
i = f(tn + cihn, ỹn + hn

i−1
∑

j=1

ai,j k̃
[m]
j )

+

tn
∑

min{tn,tn+cihn−τ(tn+cihn)}

K(tn + cihn, s, ũ(s), ũ
′(s))ds

+

tn+cihn
∑

max{tn,tn+cihn−τ(tn+cihn)}

K(tn + cihn, s, ũ[m−1](s), ũ
′
[m−1](s))ds,(45)

where

ũ[m](tn + θhn) = ỹn + hn

s̄+1
∑

i=1

bi(θ)k̃
[m]
i , ũ′

[m](tn + θhn) =

s̄+1
∑

i=1

b′i(θ)k̃
[m]
i .

In our experimental implementation, we allow a maximum number of iterations, Imax,
on each step, and we define Iav to be the average (over all accepted steps) of the num-
ber of iterations required before an acceptable approximation ũ[m](t) is determined.
For each step we force at least Imin iterations before accepting the step, and we ac-
cept the first iterate, ũ[m](t), such that m ≥ Imin and the estimate of the maximum
defect for ũ[m](t) is less that TOL. In the reported numerical experiments we use
Imax = 4 and Imin = 1, but in order to minimize the effect of iteration errors (on
the accepted steps) on the results, we have run examples with Imin = Imax = 8 (see
Table 5.1). Note that we also monitor the convergence of the iteration. We reject the
step whenever divergence is detected and adjust the next trial stepsize accordingly.
The larger the value of Imax, the more likely it will be that a larger step, hn, will be
accepted, and the number of steps will therefore be smaller. However, the number of
kernel evaluations might be significantly larger (depending on the problem). In order
to start the iteration (45) we need an initial guess ũ[0](t). We determine ũ[0](t) by a
natural extension of the approximate solution ũn−1(t) on the last step. For the first
interval, the initial function is evaluated for t ≥ t0 (whenever possible) to provide this
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initial guess.
The CRK approach we have developed ensures a C1[a, b] interpolant provided the

iteration (45) converges to k̃i which satisfies (16), in which case k̃n,s+1 = k̃n+1,1 =

f(tn+1, ỹn+1) +
∫ tn+1

tn+1−τ(tn+1)
K(tn+1, s, ũ(s), ũ

′(s))ds. However, the iteration (45) is

halted before (16) is exactly satisfied. As a consequence, the derivative at tn+1 on

step n (which is the (s + 1)th stage value k̃
[m]
n,s+1 defined in terms of the interpolant

ũ[m−1](t)) is not necessarily equal to the derivative at tn+1 on the next attempted
step (n+1) (which is the first stage value defined in terms of the updated interpolant
ũ[m](t)). Therefore, the interpolant ũ(t) may no longer be C1 continuous. Although
there are a number of ways to overcome this difficulty, we found it the most helpful to
update the stage value k̃s+1 on step n one more time having updated all stages con-
tributing to the definition of the interpolant associated with step n. In other words,

we have set k̃
[m+1]
n,s+1 on step n to be the same as k̃n+1,1 on step (n+1). The difference

between the two most recently updated stage values k̃
[m]
n,s+1 and k̃

[m+1]
n,s+1 can be viewed

as an indication of the size of the derivative discontinuity in the approximate solution
at tn+1 arising from the iteration error.

We demonstrate the performance of the fully discretized CRK methods developed
in this paper on several examples. The statistics we report are:

• GEMAX : maximum absolute error over the integration interval (determined
by evaluating the reference solution at 10000 equally-spaced points in the
integration interval).

• GE : maximum absolute error over the mesh points.
• NSTP : total number of successful steps, N , required to solve the problem.
• NFCN : total number of function evaluations, f(t, y(t)), required to solve
the problem.

• NKER : total number of kernel evaluations, K(t, s, y(s), y′(s)), required to
solve the problem.

• DMAX : ratio of the maximum observed defect over all steps to the tolerance.
• Frac-D : fraction of steps where the maximum defect exceeds the tolerance.
• R-Max : maximum ratio over all steps of the true maximum defect (over
the entire step) to its estimate.

• Frac-G : fraction of steps where the ratio of the true maximum defect to its
estimate was bounded by 1.1. That is, the estimate was within 10% of the
true maximum.

GEMAX and GE are two measures of the accuracy of the numerical solution.
NSTP, NFCN and NKER are three measures of the cost. DMAX and Frac-

D are two measures of the reliability of the method demonstrating how well the
method controls the maximum magnitude of the defect. R-Max and Frac-G are
two measures of the reliability of the estimate helping us assess how well the estimate
of the maximum defect reflects its true value. One can estimate Iav, the average num-
ber of iterations used on each attempted step (assuming a small fraction of rejected

steps), for the following problems by NFCN
(s̄+1)(NSTP)

(where s̄+ 1 equals 11 for RDC,

15 for SDC and 17 for SDCV). Calculating a similar quantity in terms of the number
of kernel evaluations is not straightforward because the delay is time-dependent and
also our stepsize selection strategy is adaptive. However, we can calculate a rough
bound for NKER by considering the following two typical cases assuming that the
percentage of rejected steps is small:

Large delays (on step n, the associated delay τ(t) ' t− t0) :
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Table 4.1

Results for the first example for three defect control strategies

TOL/CRK GEMAX GE NSTP NFCN NKER DMAX Frac-D R-Max Frac-G

10−4

RDC 2.52× 10−5 2.52× 10−5 75 3169 55692 3.27 0.67 8.47 0.0
SDC 1.66× 10−5 1.61× 10−5 36 2641 27674 3.36 0.25 4.98 0.02
SDCV 1.18× 10−5 1.12× 10−5 34 3473 43104 1.36 0.06 1.59 0.15

10−6

RDC 3.61× 10−7 2.26× 10−7 57 3205 46164 3.40 0.46 8.78 0.0
SDC 1.88× 10−7 1.88× 10−7 49 3425 41082 2.03 0.22 5.37 0.02
SDCV 9.96× 10−8 9.95× 10−8 47 4085 57132 1.45 0.13 3.67 0.13

10−8

RDC 4.82× 10−9 4.29× 10−9 72 3325 59279 6.67 0.64 18.18 0.0
SDC 3.06× 10−9 3.06× 10−9 49 3665 43951 1.28 0.15 10.33 0.04
SDCV 1.77× 10−9 1.77× 10−9 52 4247 67117 1.30 0.19 5.13 0.08

10−10

RDC 3.26× 10−11 9.04× 10−12 62 3493 53091 10.14 0.37 67.45 0.0
SDC 2.52× 10−11 2.52× 10−11 53 3393 49925 4.59 0.17 6.37 0.12
SDCV 2.51× 10−11 2.50× 10−11 43 3881 64515 1.48 0.05 4.09 0.19

NKER ' M · Iav ·NSTP · (s̄+ 1) +M ·NSTP2 · (s̄+ 1).
Small delays (on step n, the associated delay τ(t) ' t− tn) :

NKER ' M · Iav ·NSTP · (s̄+ 1).
M stands for the number of abscissas at which the integrands associated with the
integral terms are evaluated (which is 4 in our experiments). Note that, for the case
of large delays, the above observations indicate that the number of kernel evaluations
can be quite large. As seen in the reported results for problem 3, the number of kernel
evaluations exceeds even the above bounds, because the delay argument is decreasing
and maps the interval [0, 2] to the interval [−1,−5.38]. We are investigating alterna-
tive quadrature strategies to address this issue.

Problem 1: A DVIDE with vanishing delay argument,

y′(t) = − sin(t) + t2(cos(t)− cos(t− cos(t)− 1)) +

t
∫

t−cos(t)−1

t2 sin(s)
(

y′(s)2 + y(s)2
)

ds,

0 ≤ t ≤ 4, y(t) =

{

1, t ≤ 0 ,
cos(t), t ≥ 0.

In this example we only have C1 continuity at the starting point. The recursion (4)
generates a cluster of discontinuity points in the left neighborhood of the vanishing
point π. However, due to smoothing, we only need to keep track of the discontinuities
of order ≤ p = 6.

Problem 2 : A mathematical model of the human immune response with delays
[33],

X ′
U (t) = sU − α1XU (t)B(t)− µXU

XU (t),

X ′
I(t) = α1XU (t)B(t)− α2XI(t)AR(t)−XI(t),

B′(t) = α20B(t)(1 −
B(t)

σ
)− α3B(t)IR(t)− α4B(t)AR(t),
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Table 4.2

Results for the second example for three defect control strategies

TOL/CRK GEMAX GE NSTP NFCN NKER DMAX Frac-D R-Max Frac-G

10−2

RDC 0.85× 10−2 0.74× 10−2 69 1549 51784 2.50 0.33 38.40 0.35
SDC 1.00× 10−2 0.97× 10−2 77 2449 82816 0.99 0.0 2.67 0.97
SDCV 1.00× 10−2 0.97× 10−2 77 2759 97436 0.99 0.0 1.89 0.97

10−4

RDC 8.37× 10−5 8.06× 10−5 129 2077 137600 2.58 0.35 72.53 0.39
SDC 1.62× 10−4 1.13× 10−4 142 2913 220528 0.98 0.0 1.51 0.99
SDCV 1.16× 10−4 1.13× 10−4 142 3279 251640 0.98 0.0 1.51 0.99

10−6

RDC 1.11× 10−6 1.01× 10−6 265 3661 515912 4.14 0.37 89.33 0.42
SDC 1.79× 10−6 1.76× 10−6 291 5233 852572 0.92 0.0 6.70 0.99
SDCV 1.79× 10−6 1.76× 10−6 291 5889 966186 0.92 0.0 6.70 0.99

10−8

RDC 1.14× 10−8 1.12× 10−8 553 7117 2116464 8.47 0.38 67.93 0.42
SDC 1.62× 10−8 1.62× 10−8 610 10353 3585012 1.27 0.00 10.00 0.98
SDCV 1.56× 10−8 1.54× 10−8 610 11667 4052092 1.55 0.0 10.40 0.99

I ′R(t) = sIR +

∫ t

t−τ1

ω1(θ − t)B(θ)dθ − µIRIR(t),

A′
R(t) = sAR

+

∫ t

t−τ2

ω2(θ − t)B(θ)dθ − µAR
AR(t), 0 ≤ t ≤ 50,

which consists of five components: uninfected target cells (XU ), infected cells (XI),
bacteria (B), and phenomenological variables capturing innate (IR) and adaptive
(AR) immunity. ω1(θ) and ω2(θ) are both chosen to be A exp(Kθ) for A = K = ln 2

6 .
Also, we set τ1 = τ2 = 6. For a detailed description of the model, the selection
of parameter values as well as initial conditions see [33]. For this example, we use
TOL = 10−10 and a very fine mesh to generate a reference solution.

Problem 3: A DVIDE with decreasing delay argument,

y′(t) = tet − e−t +

t
∫

t−et

te2sy(s)y′(s)ds, 0 ≤ t ≤ 2, y(t) = e−t.

It is worth pointing that there is no propagated discontinuity for this example. In
addition, the delay argument is decreasing over the integration interval which leads
to a very large number of kernel evaluations relative to the number of steps.

Problem 4: Predator-Prey system (1) with the following set of parameters [14],

ε1 = 0.02 , ε2 = 1, γ1 = 1 , γ2 = 1, τ = 0.2 , T = 2.

The initial functions are φ1(t) = φ2(t) = 3, t ∈ [−τ, 0]. Also, we have set F1(t) =
F2(t) =

1
2! t

3e−3t. Predator-Prey systems are simple cases of the general system (3).
Table 4.4 reports the results of our method on this problem. This problem does not
have a known closed form solution. We computed a reference exact solution using an
adaptive mesh with 410 subintervals. Many DVIDEs arising as mathematical models
in population dynamics, rheology, etc. have the non-standard form (3) which is a
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Table 4.3

Results for the third example for three defect control strategies

TOL/CRK GEMAX GE NSTP NFCN NKER DMAX Frac-D R-Max Frac-G

10−4

RDC 9.18× 10−4 9.18× 10−4 17 1105 79755 2.20 0.56 9.15 0.0
SDC 1.98× 10−3 1.98× 10−3 11 865 55467 3.47 0.20 8.32 0.10
SDCV 5.34× 10−4 5.34× 10−4 12 999 88777 0.81 0.0 3.07 0.18

10−6

RDC 2.91× 10−5 2.91× 10−5 19 1213 85961 6.49 0.72 98.22 0.0
SDC 5.4× 10−6 5.4× 10−6 17 1585 108251 1.18 0.062 3.82 0.062
SDCV 1.16× 10−5 1.16× 10−5 17 1979 174229 1.19 0.062 1.82 0.12

10−8

RDC 6.46× 10−8 6.46× 10−8 25 1501 113291 2.26 0.66 6.30 0.0
SDC 3.43× 10−7 3.43× 10−7 18 1585 108273 1.84 0.11 13.8 0.058
SDCV 8.81× 10−8 8.81× 10−8 18 2059 186779 1.50 0.058 1.82 0.058

10−10

RDC 7.74× 10−10 7.74× 10−10 26 1489 119191 4.82 0.60 345.44 0.0
SDC 1.40× 10−9 1.40× 10−9 20 1585 114423 1.98 0.10 13.82 0.26
SDCV 5.07× 10−11 5.07× 10−11 20 2135 201027 0.91 0.0 3.53 0.26

particular case of the more general DVIDE

y′(t) = f(t, y(t)) +

∫ t

t−τ(t)

K(t, s, y(t), y(s), y′(s))ds,(46)

Our variable stepsize approach and the analytical framework we have established can
be extended in a straightforward way to this class of DVIDEs. It would require a
slight modification to the definition of ki in (10) (and to the corresponding iteration
scheme),

ki = f(tn + cihn, Yi) +

tn+cihn
∫

tn+cihn−τ(tn+cihn)

K(tn + cihn, s, Yi, u(s), u
′(s))ds,

Yi := yn + hn

i−1
∑

j=1

ai,jkj

for i = 1, 2, . . . , s̄+ 1. A more general equation might also include a state dependent
delay argument as t − τ(t, y(t)). The same standard discretization approach can be
used here to define a CRK method. However, a reliable iterative approach has to be
used to obtain approximate solutions within the required accuracy. We are currently
investigating how this is best done.

From the reported results in the tables it is clear that the achieved accuracy is
consistent with the user-defined tolerance at all tolerances, and the accuracy at mesh
points is consistent with the accuracy of off-mesh points. In addition, the maximum
defect across the entire timestep can be reliably controlled using the new SDC or
SDCV strategies. SDC with validity check is often the most reliable strategy at all
tolerances. It is also clear that the RDC delivers acceptable reliability.

5. Observations and Conclusion. There are four potential sources of error
associated with our numerical method:
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Table 4.4

Results for the fourth example for three defect control strategies

TOL/CRK GEMAX GE NSTP NFCN NKER DMAX Frac-D R-Max Frac-G

10−4

RDC 5.33× 10−6 3.99× 10−6 15 217 4420 0.72 0.0 1.81 0.78
SDC 4.35× 10−6 3.93× 10−6 15 353 6388 0.62 0.0 1.02 1.0
SDCV 4.35× 10−6 3.93× 10−6 15 397 7308 0.62 0.0 1.02 1.0

10−6

RDC 9.40× 10−8 8.72× 10−8 25 577 16052 1.28 0.04 16.04 0.83
SDC 7.37× 10−8 6.93× 10−8 24 689 15372 0.71 0.0 1.37 0.91
SDCV 7.37× 10−8 6.93× 10−8 24 777 18516 0.71 0.0 1.37 0.91

10−8

RDC 9.89× 10−10 9.28× 10−10 49 1201 41680 0.95 0.0 160.27 0.79
SDC 7.73× 10−10 7.47× 10−10 48 1585 50624 0.91 0.0 15.41 0.89
SDCV 7.70× 10−10 7.45× 10−10 48 1793 61260 0.93 0.0 10.03 0.89

10−10

RDC 8.96× 10−12 1.14× 10−11 95 1717 92800 2.58 0.02 40.67 0.78
SDC 9.94× 10−12 9.72× 10−12 91 2161 112948 0.97 0.0 21.35 0.94
SDCV 9.94× 10−12 9.72× 10−12 91 2453 132976 0.97 0.0 9.41 0.94

• Truncation error : that arises when approximating the true solution of the
DVIDEs.

• Quadrature error : arising both in defining the fully discretized ũ(t) and
in computing δ̃(t). This error can be reduced by employing quadratures with
a higher degree of precision which increases the number of kernel evaluations.

• Iteration error : which is associated with the nonlinear systems of equations
arising on each step of the integration. The larger the number of iterations
associated with the accepted steps, the smaller this component of the error is
likely to be. However, increasing this number may result in a significant in-
crease in the number of function and kernel evaluations although the number
of steps will only be slightly reduced.

• Round-off error

We have implicitly assumed (in our analysis and implementation) that truncation
error dominates the other sources of error. The effect of other errors when this as-
sumption is not valid, such as situations where the accuracy requests are stringent and
round-off effects are significant or the formula requires many floating-point operations
per step (due to a large delay or a high accurate quadrature), is of future interest.
The reliability of both the methods we have implemented and the associated defect
estimate can be significantly improved if we reduce the effects of other sources of error
(at an increase in cost). Table 5.1 shows the effects of increasing the degree of pre-
cision of the quadrature formula to 13 as well as increasing the number of iterations
to be fixed and equal to 8 on the accepted steps in integrating the third problem for
SDC and SDCV strategies. These changes reduce the effects of the quadrature errors
and the iteration errors. One can see the significant improvement in the reliability
measures Frac-D and Frac-G compared to those reported in Table 4.3. It is also
noticeable that there is a decrease in the number of steps which naturally results
in a fewer number of function and kernel evaluations. However, this is not always
the case. We ran similar experiments using the human immune system example as
well and found that the number of steps remains almost the same while there is a
significant increase in the cost measures NFCN and NKER as expected. For both
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Table 5.1

Results for the third problem, with Imin = Imax = 8 and a quadrature of degree 13

TOL/CRK GEMAX GE NSTP NFCN NKER DMAX Frac-D R-Max Frac-G

10−4

SDC 2.14× 10−6 2.14× 10−6 5 625 26943 0.04 0.0 3.75 0.50
SDCV 2.14× 10−6 2.14× 10−6 5 721 47821 0.04 0.0 1.30 0.75

10−6

SDC 2.17× 10−6 2.17× 10−6 7 897 40817 0.23 0.0 2.0 0.50
SDCV 2.17× 10−6 2.17× 10−6 7 1089 71269 0.23 0.0 1.62 0.50

10−8

SDC 8.98× 10−8 8.93× 10−8 10 1345 69301 0.35 0.0 2.63 0.55
SDCV 8.82× 10−8 8.82× 10−8 10 1627 120319 0.35 0.0 2.19 0.55

10−10

SDC 1.43× 10−9 1.43× 10−9 13 1665 84673 0.44 0.0 13.82 0.75
SDCV 1.40× 10−9 1.40× 10−9 13 2005 155891 0.44 0.0 3.53 0.75

problems the reliability measures improve significantly. We are currently investigating
the use of asymptotically correct estimates of the iteration and quadrature errors so
that the number of iterations (on each step) and the quadrature formulas used can
be adaptively chosen without a significant increase in the cost.

These sources of error affect the asymptotic behavior of the defect function cor-
responding to the approximate solution as well. In case of ODEs, for a given problem
and any numerical method, as H → 0, the (scaled) plots of δn(τ) vs. τ approach
a unique polynomial. This allows us to estimate the maximum defect by a single
evaluation of the defect at run-time at a predetermined point. However, it is difficult
to choose a fixed sample point for DVIDEs, since the shape of the defect might be
different for different problems partly due to the extra sources of error arising in ap-
proximating the solution. The plot of |δ(τ)| vs. τ for all steps required by our CRK
method to solve a typical problem (Tol = 10−6, H → 0 and with the normal error
control) is presented in figure (5.1). The figure reveals that the limiting polynomial
is asymptotically approached (as H → 0) at least for the steps where the maximum
defect is close to the requested tolerance. Furthermore, τ∗ = 0.92 seems to be a good
choice at which we can evaluate a reliable estimate of the maximum defect. The
figure also contains the plot of δ(τ)/δ(τ∗) for the majority of steps where round-off
error is not significant. We are currently investigating the characteristics of the defect
functions corresponding to the DVIDEs.

In the present work, we have investigated CRK methods applied to a general
class of VIDEs with arbitrary time-dependent delay arguments. We analyzed the con-
vergence properties of the fully discretized CRK methods (using a variable stepsize
approach) and considered the effects of the numerical quadratures when approximat-
ing the solutions of the DVIDEs. We demonstrated that the global error associated
with the introduced continuous approximation will be bounded by a multiple of the
prescribed tolerance if the magnitude of the defect is bounded by the tolerance. We
also included the propagated discontinuities in the set of the mesh points using an
automatic discontinuity detection strategy. We have implemented our approach as an
experimental Fortran code and carried out numerical experiments over various kinds
of DVIDEs and reported the statistics. Various kind of delays including non-vanishing,
vanishing, proportional and etc. are handled by the solver.
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Fig. 5.1. Plots of |δ(τ)| vs. τ (left) and δ(τ)/δ(τ∗) vs. τ (right).
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