
Difficulties with fixed-h Euler

The low order results in requiring a small stepsize, which leads to a
large number of derivative evaluations and excessive amount of
computer time.

The use of a constant stepsize can be inappropriate if the solution
behaves differently on parts of the interval of interest. For example in
integrating satellite orbits ‘close approaches’ typically requires a
smaller stepsize to ensure accuracy.
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Runge-Kutta Methods
We will consider a general class of one-step formulas of the form:

yj = yj−1 + hΦ(xj−1, yj−1).(1)

where Φ satisfies a Lipschitz condition with respect to y. That is,

|Φ(x, u)− Φ(x, v)| ≤ L|u− v|.

We will consider a variety of choices for Φ and will observe that, in each
case considered, Φ will be Lipschitz if f is.
Two examples of such formulas are:

Euler: Φ ≡ f .

Taylor Series: Φ ≡ Tk(x, y).
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Some Notation/Definitions
Definition: A formula (1) is of order p if for all sufficiently differentiable
functions y(x) we have,

y(xj)− y(xj−1)− hΦ(xj−1, y(xj−1)) = O(hp+1).(2)

Note that:
1. The LHS of (2) is defined to be the Local Truncatiom Error (LTE) of the

formula.

2. Order p implies that both the LE and the LTE are O(hp+1). (This
follows by substituting zj(x) for y(x) in the definition.)

Main Result:
Theorem: A pth order formula applied to an IVP with constant stepsize h

satisfies,
|y(xj)− yj | ≤ |e0|eL(b−a) +

Chp

L (eL(b−a) − 1).
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Runge-Kutta Methods (cont)

We wish to consider formulas Φ that are less ‘expensive’ than higher order
Taylor Series and yet are higher order than Euler’s formula. Consider a
formula Φ based on 2 derivative evaluations. That is,

Φ(xj−1, yj−1) = ω1k1 + ω2k2,

where,

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + αh, yj−1 + hβk1).

We determine the parameters ω1, ω2, α, β to obtain as high an order formula

as possible.
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RK Methods (cont)
From the definition of order we have order p if

y(xj) = y(xj−1) + h(ω1k1 + ω2k2) + O(hp + 1)(3)

for all suff diff functions y(x). To derive such a formula we expand
y(xj), k1, k2 in Taylor Series about the point (xj−1, yj−1), equate like
powers of h on both sides of (3), and set α, β, ω1, ω2 accordingly.
In what follows we omit arguments when they are evaluated at the point
(xj−1, yj−1). The TS expansion of the LHS of (3) is:

y(xj) = y(xj−1)+hy
′

(xj−1) +
h2

2
y

′′

(xj−1) +
h3

6
y

′′′

(xj−1) +O(h4),

= y(xj−1)+hf +
h2

2
(fx + fyf)

+
h3

6
(fxx+2fxyf+fyyf

2+fyfx+f2
y f)+O(h4).
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Expansion of the RHS
The TS expansion of the RHS of (3) is more complicated and first requires
the expansions of k1 and k2,

k1 = f,

k2 = f(xj−1 + αh, y(xj−1) + βhk1),

= f(xj−1, y(xj−1)+βhf)+(αh)fx(xj−1, y(xj−1)+βhf)

+
α2h2

2
fxx(xj−1, y(xj−1)+βhf)+O(h3),

=

[
f + βhffy +

(βhf)2

2
fyy +O(h3)

]

+
[
αhfx+αβh2ffxy+O(h3)

]
+

[
α2h2

2
fxx+O(h3)

]
,

= f+(βffy+αfx)h+(
β2

2
f2fyy+αβffxy+

α2

2
fxx)h

2 +O(h3).
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TS Expansion of the RHS
The TS expansion of the RHS of (3) then is (with these substitutions for k1
and k2)

RHS = y(xj−1) + h(ω1k1 + ω2k2),

= y(xj−1) + hω1f + hω2 [· · ·] +O(h4),

= y(xj−1) + [(ω1 + ω2)f ]h+ [ω2(βffy + αfx)]h
2

+

[
ω2(

β2

2
f2fyy + αβffxy +

α2

2
fxx)

]
h3 +O(h4).

and recall

LHS = y(xj−1) + hf +
h2

2
(fx + fyf)

+
h3

6
(fxx + 2fxyf + fyyf

2 + fyfx + f2
y f) +O(h4).
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Equating like powers ofh
Equating powers of h for LHS and RHS we observe:

For order 0 : The coefficients of h0 always agree and we have order at
least zero for any choice of the parameters.

For order 1: If ω1 + ω2 = 1 the coefficients of h1 agree and we have at least
order 1.

For order 2: In addition to satisfying the order 1 constraints we must have
the coefficient of h2 the same. That is αω2 = 1/2 and βω2 = 1/2.

For order 3: In addition to satisfying the order 2 constraints we must have
the coefficients of h3 the same. That is we must satisfy the equations,
ω2α

2 = 1
3 , ω2αβ = 1

3 , ω2β
2 = 1

3 , 1
6fxy =?, 1

6f
2
y =?.
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Family of 2nd-order RK Formula
Note that there are not enough terms in the coefficient of h3 in the
expansion of the RHS to match the expansion of the LHS. We cannot
therefore equate the coefficients of h3 and the maximum order we can
obtain is order 2. Our formula will be order 2 for any choice of ω2 6= 0, with
ω1 = 1− ω2 and α = β = 1

2ω2
. This is a one-parameter family of 2nd-order

Runge-Kutta formulas.
Three popular choices from this family are:

Modified Euler: ω2 = 1/2

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + h, yj−1 + hk1),

yj = yj−1 +
h

2
(k1 + k2).
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Family of 2nd-order RK Formula

Midpoint: ω2 = 1

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
h

2
, yj−1 +

h

2
k1),

yj = yj−1 + hk2.

Heun’s Formula: ω2 = 3/4

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
2

3
h, yj−1 +

2

3
hk1),

yj = yj−1 +
h

4
(k1 + 3k2).
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Higher-Order RK Formulas

An s-stage explicit Runge-Kutta formula uses s derivative evaluations and
has the form:

yj = yj−1 + h(ω1k1 + ω2k2 · · ·+ ωsks),

where

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + α2h, yj−1 + hβ21k1),

...
...

ks = f(xj−1 + αsh, yj−1 + h
s−1∑

r=1

βsrkr).
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Higher-Order RK Formulas (cont)

This formula is represented by the tableau,

- -

α2 β21 -
...

...

αs βs1 βs2 . . . βs−1,s -

ω1 ω2 . . . ωs

These s(s−1)
2 + (s− 1) + s parameters are usually chosen to maximise the

order of the formula.
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Higher-Order RK Formulas (cont)
The maximum attainable order for an s-stage Runge-Kutta formula is
given by the following table:

s 1 2 3 4 5 6

max order 1 2 3 4 4 5

Note that the derivations of these maximal order formulas can be very
messy and tedious, but essentially they follow (as outlined above for the
case s = 2) by expanding each of the kr in a Taylor series.
An Example – Runge’s 4th order Formula(1895)

- -

1/2 1/2 -

1/2 0 1/2 -

1 0 0 1 -

1/6 1/3 1/3 1/6
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Error Estimates for RK Methods
Ideally a method would estimate a bound on the global error and
adjust the stepsize, h, to keep the magnitude of the global error less
than a tolerance. Such computable bounds are possible but are
usually pessimistic and inefficient to implement.

On the other hand, local errors can be reliably controlled. Consider a
method which keeps the magnitude of the local error less than h TOL

on each step.
That is, if zj(x) is the local solution on step j,

z
′

j = f(x, zj), zj(xj−1) = yj−1,

then a method will adjust h = xj − xj−1 to ensure that
|zj(xj)− yj | ≤ h TOL, for j = 1, 2 · · ·NTOL.
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