Difficulties with fixed-h Euler

- The low order results in requiring a small stepsize, which leads to a large number of derivative evaluations and excessive amount of computer time.
- The use of a constant stepsize can be inappropriate if the solution behaves differently on parts of the interval of interest. For example in integrating satellite orbits 'close approaches' typically requires a smaller stepsize to ensure accuracy.

Runge-Kutta Methods

We will consider a general class of one-step formulas of the form:

$$
\begin{equation*}
y_{j}=y_{j-1}+h \Phi\left(x_{j-1}, y_{j-1}\right) \tag{1}
\end{equation*}
$$

where Φ satisfies a Lipschitz condition with respect to y. That is,

$$
|\Phi(x, u)-\Phi(x, v)| \leq \mathcal{L}|u-v|
$$

We will consider a variety of choices for Φ and will observe that, in each case considered, Φ will be Lipschitz if f is.
Two examples of such formulas are:
Euler: $\Phi \equiv f$.
Taylor Series: $\Phi \equiv T_{k}(x, y)$.

Some Notation/Definitions

Definition: A formula (1) is of order p if for all sufficiently differentiable functions $y(x)$ we have,

$$
\begin{equation*}
y\left(x_{j}\right)-y\left(x_{j-1}\right)-h \Phi\left(x_{j-1}, y\left(x_{j-1}\right)\right)=O\left(h^{p+1}\right) . \tag{2}
\end{equation*}
$$

Note that:

1. The LHS of (2) is defined to be the Local Truncatiom Error (LTE) of the formula.
2. Order p implies that both the LE and the LTE are $O\left(h^{p+1}\right)$. (This follows by substituting $z_{j}(x)$ for $y(x)$ in the definition.)

Main Result:

Theorem: A $p^{\text {th }}$ order formula applied to an IVP with constant stepsize h
satisfies,

$$
\left|y\left(x_{j}\right)-y_{j}\right| \leq\left|e_{0}\right| e^{\mathcal{L}(b-a)}+\frac{C h^{p}}{\mathcal{L}}\left(e^{\mathcal{L}(b-a)}-1\right)
$$

Runge-Kutta Methods (cont)

We wish to consider formulas Φ that are less 'expensive' than higher order Taylor Series and yet are higher order than Euler's formula. Consider a formula Φ based on $\underline{2}$ derivative evaluations. That is,

$$
\Phi\left(x_{j-1}, y_{j-1}\right)=\omega_{1} k_{1}+\omega_{2} k_{2}
$$

where,

$$
\begin{aligned}
k_{1} & =f\left(x_{j-1}, y_{j-1}\right) \\
k_{2} & =f\left(x_{j-1}+\alpha h, y_{j-1}+h \beta k_{1}\right)
\end{aligned}
$$

We determine the parameters $\omega_{1}, \omega_{2}, \alpha, \beta$ to obtain as high an order formula as possible.

RK Methods (cont)

From the definition of order we have order p if

$$
\begin{equation*}
y\left(x_{j}\right)=y\left(x_{j-1}\right)+h\left(\omega_{1} k_{1}+\omega_{2} k_{2}\right)+O\left(h^{p+1}\right) \tag{3}
\end{equation*}
$$

for all suff diff functions $y(x)$. To derive such a formula we expand $y\left(x_{j}\right), k_{1}, k_{2}$ in Taylor Series about the point $\left(x_{j-1}, y_{j-1}\right)$, equate like powers of h on both sides of (3), and set $\alpha, \beta, \omega_{1}, \omega_{2}$ accordingly. In what follows we omit arguments when they are evaluated at the point $\left(x_{j-1}, y_{j-1}\right)$. The TS expansion of the LHS of (3) is:

$$
\begin{aligned}
y\left(x_{j}\right)= & y\left(x_{j-1}\right)+h y^{\prime}\left(x_{j-1}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(x_{j-1}\right)+\frac{h^{3}}{6} y^{\prime \prime \prime}\left(x_{j-1}\right)+O\left(h^{4}\right), \\
= & y\left(x_{j-1}\right)+h f+\frac{h^{2}}{2}\left(f_{x}+f_{y} f\right) \\
& +\frac{h^{3}}{6}\left(f_{x x}+2 f_{x y} f+f_{y y} f^{2}+f_{y} f_{x}+f_{y}^{2} f\right)+O\left(h^{4}\right) .
\end{aligned}
$$

Expansion of the RHS

The TS expansion of the RHS of (3) is more complicated and first requires the expansions of k_{1} and k_{2},

$$
\begin{aligned}
k_{1}= & f \\
k_{2}= & f\left(x_{j-1}+\alpha h, y\left(x_{j-1}\right)+\beta h k_{1}\right) \\
= & f\left(x_{j-1}, y\left(x_{j-1}\right)+\beta h f\right)+(\alpha h) f_{x}\left(x_{j-1}, y\left(x_{j-1}\right)+\beta h f\right) \\
& +\frac{\alpha^{2} h^{2}}{2} f_{x x}\left(x_{j-1}, y\left(x_{j-1}\right)+\beta h f\right)+O\left(h^{3}\right), \\
= & {\left[f+\beta h f f_{y}+\frac{(\beta h f)^{2}}{2} f_{y y}+O\left(h^{3}\right)\right] } \\
& +\left[\alpha h f_{x}+\alpha \beta h^{2} f f_{x y}+O\left(h^{3}\right)\right]+\left[\frac{\alpha^{2} h^{2}}{2} f_{x x}+O\left(h^{3}\right)\right] \\
= & f+\left(\beta f f_{y}+\alpha f_{x}\right) h+\left(\frac{\beta^{2}}{2} f^{2} f_{y y}+\alpha \beta f f_{x y}+\frac{\alpha^{2}}{2} f_{x x}\right) h^{2}+O\left(h^{3}\right)
\end{aligned}
$$

TS Expansion of the RHS

The TS expansion of the RHS of (3) then is (with these substitutions for k_{1} and k_{2})

$$
\begin{aligned}
R H S= & y\left(x_{j-1}\right)+h\left(\omega_{1} k_{1}+\omega_{2} k_{2}\right) \\
= & y\left(x_{j-1}\right)+h \omega_{1} f+h \omega_{2}[\cdots]+O\left(h^{4}\right) \\
= & y\left(x_{j-1}\right)+\left[\left(\omega_{1}+\omega_{2}\right) f\right] h+\left[\omega_{2}\left(\beta f f_{y}+\alpha f_{x}\right)\right] h^{2} \\
& +\left[\omega_{2}\left(\frac{\beta^{2}}{2} f^{2} f_{y y}+\alpha \beta f f_{x y}+\frac{\alpha^{2}}{2} f_{x x}\right)\right] h^{3}+O\left(h^{4}\right)
\end{aligned}
$$

and recall

$$
\begin{aligned}
\text { LHS }= & y\left(x_{j-1}\right)+h f+\frac{h^{2}}{2}\left(f_{x}+f_{y} f\right) \\
& +\frac{h^{3}}{6}\left(f_{x x}+2 f_{x y} f+f_{y y} f^{2}+f_{y} f_{x}+f_{y}^{2} f\right)+O\left(h^{4}\right) .
\end{aligned}
$$

Equating like powers of h

Equating powers of h for LHS and RHS we observe:
For order 0 : The coefficients of h^{0} always agree and we have order at least zero for any choice of the parameters.

For order 1: If $\omega_{1}+\omega_{2}=1$ the coefficients of h^{1} agree and we have at least order 1.

For order 2: In addition to satisfying the order 1 constraints we must have the coefficient of h^{2} the same. That is $\alpha \omega_{2}=1 / 2$ and $\beta \omega_{2}=1 / 2$.

For order 3: In addition to satisfying the order 2 constraints we must have the coefficients of h^{3} the same. That is we must satisfy the equations, $\omega_{2} \alpha^{2}=\frac{1}{3}, \omega_{2} \alpha \beta=\frac{1}{3}, \omega_{2} \beta^{2}=\frac{1}{3}, \frac{1}{6} f_{x y}=?, \frac{1}{6} f_{y}^{2}=$?.

Family of $2^{\text {nd }}$-order RK Formula

Note that there are not enough terms in the coefficient of h^{3} in the expansion of the RHS to match the expansion of the LHS. We cannot therefore equate the coefficients of h^{3} and the maximum order we can obtain is order 2 . Our formula will be order 2 for any choice of $\omega_{2} \neq 0$, with $\omega_{1}=1-\omega_{2}$ and $\alpha=\beta=\frac{1}{2 \omega_{2}}$. This is a one-parameter family of $2^{\text {nd }}$-order Runge-Kutta formulas.
Three popular choices from this family are:
Modified Euler: $\omega_{2}=1 / 2$

$$
\begin{aligned}
k_{1} & =f\left(x_{j-1}, y_{j-1}\right) \\
k_{2} & =f\left(x_{j-1}+h, y_{j-1}+h k_{1}\right) \\
y_{j} & =y_{j-1}+\frac{h}{2}\left(k_{1}+k_{2}\right)
\end{aligned}
$$

Family of $2^{\text {nd }}$-order RK Formula

Midpoint: $\omega_{2}=1$

$$
\begin{aligned}
k_{1} & =f\left(x_{j-1}, y_{j-1}\right) \\
k_{2} & =f\left(x_{j-1}+\frac{h}{2}, y_{j-1}+\frac{h}{2} k_{1}\right), \\
y_{j} & =y_{j-1}+h k_{2}
\end{aligned}
$$

Heun's Formula: $\omega_{2}=3 / 4$

$$
\begin{aligned}
k_{1} & =f\left(x_{j-1}, y_{j-1}\right) \\
k_{2} & =f\left(x_{j-1}+\frac{2}{3} h, y_{j-1}+\frac{2}{3} h k_{1}\right), \\
y_{j} & =y_{j-1}+\frac{h}{4}\left(k_{1}+3 k_{2}\right) .
\end{aligned}
$$

Higher-Order RK Formulas

An s-stage explicit Runge-Kutta formula uses s derivative evaluations and has the form:

$$
y_{j}=y_{j-1}+h\left(\omega_{1} k_{1}+\omega_{2} k_{2} \cdots+\omega_{s} k_{s}\right),
$$

where

$$
\begin{aligned}
k_{1} & =f\left(x_{j-1}, y_{j-1}\right), \\
k_{2}= & f\left(x_{j-1}+\alpha_{2} h, y_{j-1}+h \beta_{21} k_{1}\right), \\
\vdots & \vdots \\
k_{s}= & f\left(x_{j-1}+\alpha_{s} h, y_{j-1}+h \sum_{r=1}^{s-1} \beta_{s r} k_{r}\right) .
\end{aligned}
$$

Higher-Order RK Formulas (cont)

This formula is represented by the tableau,

These $\frac{s(s-1)}{2}+(s-1)+s$ parameters are usually chosen to maximise the order of the formula.

Higher-Order RK Formulas (cont)

The maximum attainable order for an s-stage Runge-Kutta formula is given by the following table:

s	1	2	3	4	5	6
max order	1	2	3	4	4	5

Note that the derivations of these maximal order formulas can be very messy and tedious, but essentially they follow (as outlined above for the case $s=2$) by expanding each of the k_{r} in a Taylor series.
An Example - Runge's 4th order Formula(1895)

Error Estimates for RK Methods

- Ideally a method would estimate a bound on the global error and adjust the stepsize, h, to keep the magnitude of the global error less than a tolerance. Such computable bounds are possible but are usually pessimistic and inefficient to implement.
- On the other hand, local errors can be reliably controlled. Consider a method which keeps the magnitude of the local error less than $h T O L$ on each step.
That is, if $z_{j}(x)$ is the local solution on step j,

$$
z_{j}^{\prime}=f\left(x, z_{j}\right), z_{j}\left(x_{j-1}\right)=y_{j-1}
$$

then a method will adjust $h=x_{j}-x_{j-1}$ to ensure that
$\left|z_{j}\left(x_{j}\right)-y_{j}\right| \leq h T O L$, for $j=1,2 \cdots N_{T O L}$.

