TS Method - Summary

Let $T_{k}\left(x, y_{j-1}\right)$ denote the first $k+1$ terms of the Taylor series expanded about the discrete approximation, $\left(x_{j-1}, y_{j-1}\right)$, and $\hat{z}_{k, j}(x)$ be the polynomial approximation (to $y(x)$) associated with this truncated Taylor series,

$$
\begin{aligned}
& \qquad \hat{z}_{k, j}(x)=y_{j-1}+\Delta T_{k}\left(x, y_{j-1}\right), \\
& T_{k}\left(x, y_{j-1}\right) \\
& \text { where } \Delta=f\left(x_{j-1}, y_{j-1}\right)+\frac{\Delta}{2} f^{\prime}\left(x_{j-1}, y_{j-1}\right) \cdots+\frac{\Delta^{k-1}}{k!} f^{(k-1)}\left(x_{j-1}\right) .
\end{aligned}
$$

A simple, constant stepsize (fixed h) TS method is then given by:

$$
\begin{aligned}
& \text {-Set } h=(b-a) / N \\
& \text {-for } j=1,2, \cdots N \\
& \qquad \begin{array}{l}
x_{j}=x_{j-1}+h \\
y_{j}=y_{j-1}+h T_{k}\left(x_{j}, y_{j-1}\right)
\end{array} \\
& \text {-end }
\end{aligned}
$$

Local/Global Errors

Note that, strictly speaking, $z_{k, j}(x)$ is not a direct approximation to $y(x)$ but to the solution of the 'local' IVP:

$$
z_{j}^{\prime}=f\left(x, z_{j}\right), \quad z_{j}\left(x_{j-1}\right)=y_{j-1}
$$

Since y_{j-1} will not be equal to $y\left(x_{j-1}\right)$ in general, the solution to this local problem, $z_{j}(x)$, will not then be the same as $y(x)$.
To understand and appreciate the implications of this observation we distinguish between the 'local' and 'global' errors.
Definitions:

- The local error associated with step j is $z_{j}\left(x_{j}\right)-y_{j}$.
- The global error at x_{j} is $y\left(x_{j}\right)-y_{j}$.

A Classical Approach

A Classical (pre 1965) numerical method approximates $y(x)$ by dividing $[a, b]$ into equally spaced subintervals, $x_{j}=a+j h$ (where $\left.h=(b-a) / N\right)$ and, proceeding in a step-by-step fashion, generates y_{j} after $y_{1}, y_{2}, \cdots y_{j-1}$ have been determined.

- If the Taylor series method is used in this way, then the TS theorem with remainder shows that the local error on step j (for the TS method of order k) is:

$$
E_{j}=\frac{h^{k+1} f^{(k)}\left(\eta_{j}, z_{j}\left(\eta_{j}\right)\right)}{(k+1))!}=\frac{h^{k+1} z_{j}^{(k+1)}\left(\eta_{j}\right)}{(k+1)!}
$$

- If $k=1$ we have Eulers Method where $y_{j}=y_{j-1}+h f\left(x_{j-1}, y_{j-1}\right)$, and the associated local error satisfies,

$$
L E_{j}=\frac{h^{2}}{2} y^{\prime \prime}\left(\eta_{j}\right) .
$$

Error Bounds for IVP Methods

Definition: A method is said to converge iff,

$$
\lim _{h \rightarrow 0,(N \rightarrow \infty)}\left\{\max _{j=1,2, \cdots N}\left|y\left(x_{j}\right)-y_{j}\right|\right\} \rightarrow 0
$$

- Theorem: (typical of classical convergence results) Let $\left[x_{j}, y_{j}\right]_{j=0}^{N}$ be the approximate solution of the IVP, $y^{\prime}=f(x, y), y(a)=y_{0}$ over $[a, b]$ generated by Euler's method with constant stepsize $h=(b-a) / N$. If the exact solution, $y(x), \in C^{2}[a, b]$ and $\left|f_{y}\right|<L,\left|y^{\prime \prime}(x)\right|<Y$ then the associated GE, $e_{j}=y\left(x_{j}\right)-y_{j}$, $x_{j}=a+j h$ satisfies (for all $j>0$),

$$
\begin{aligned}
\left|e_{j}\right| & \leq \frac{h Y}{2 L}\left(e^{\left(x_{j}-x_{0}\right) L}-1\right)+e^{\left(x_{j}-x_{0}\right) L}\left|e_{0}\right|, \\
& \leq \frac{h Y}{2 L}\left(e^{(b-a) L}-1\right)+e^{(b-a) L}\left|e_{0}\right|
\end{aligned}
$$

Observations re Convergence

1. e_{0} will usually be equal to zero.
2. This bound is generally pessimistic as it is exponential in $(b-a)$ where linear error growth is often observed on practical or realistic problems.
3. In the general case one can show that when local error is $O\left(h^{p+1}\right)$ the global error is $O\left(h^{p}\right)$.

Proof of Conv Th (outline)

Eulers Method satisfies,

$$
y_{j}=y_{j-1}+h f\left(x_{j-1}, y_{j-1}\right) .
$$

A Taylor series expansion of $y(x)$ about $x=x_{j-1}$ implies

$$
y\left(x_{j}\right)=y\left(x_{j-1}\right)+h f\left(x_{j-1}, y\left(x_{j-1}\right)\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(\eta_{j}\right) .
$$

Subtracting the first equation from the second we obtain, $y\left(x_{j}\right)-y_{j}=y\left(x_{j-1}\right)-y_{j-1}+h\left[f\left(x_{j-1}, y\left(x_{j-1}\right)\right)-f\left(x_{j-1}, y_{j-1}\right)\right]+\frac{h^{2}}{2} y^{\prime \prime}\left(\eta_{j}\right)$. If $Y=\max _{x \in[a, b]}\left|y^{\prime \prime}(x)\right|$ and $\left|f_{y}\right| \leq L$, then, from the definition of e_{j} and the observation that $f(x, y)$ satisfies a Lipschitz condition with respect to y , we have ...

Proof (cont)

$$
\begin{aligned}
\left|e_{j}\right| & \leq\left|e_{j-1}\right|+h L\left|y\left(x_{j-1}\right)-y_{j-1}\right|+\left|\frac{h^{2}}{2} y^{\prime \prime}\left(\eta_{j}\right)\right| \\
& \leq\left|e_{j-1}\right|+h L\left|e_{j-1}\right|+\frac{h^{2}}{2} Y \\
& =\left|e_{j-1}\right|(1+h L)+\frac{h^{2}}{2} Y
\end{aligned}
$$

This is a linear recurrence relation (or inequality) which after some work (straightforward) can be shown to imply our desired result,

$$
\left|e_{j}\right| \leq \frac{h Y}{2 L}\left(e^{(b-a) L}-1\right)+e^{(b-a) L}\left|e_{0}\right|
$$

Note that this is only an upper bound on the global error and it may not be sharp.

An Example

Consider the following equation,

$$
y^{\prime}=y, \quad y(0)=1, \text { on }[0,1] .
$$

Now since $\frac{\partial f}{\partial y}=1, L=1$ and since $y(x)=e^{x}$, we have $Y=e$ and $e_{0}=0$. Applying our error bound with $h=1 / N$ and $y_{N} \approx y(1)=e$ we obtain,

$$
\left|G E_{N}\right|=\left|y_{N}-e\right| \leq \frac{h e}{2}(e-1)<2.4 h .
$$

But for $h=.1$ we observe that $y_{10}=2.5937$.. with an associated true error of $.1246 .$. ($\equiv e-y_{10}$). This error bound is .24 . This is an overestimate by a factor of 2.

Exercise: Compare the bound to the true error for $h=.01, h=.001$.

Limitations of Classical Approach

- Analysis is valid only in the limit as $h \rightarrow 0$.
- Bounds are usually very pessimistic (can overestimate the error by several orders of magnitude).
- Analysis does not consider the affect of f.p. arithmetic.

Affect of FP Arith

Assume $f l\left(f\left(x_{j-1}, y_{j-1}\right)\right)=f\left(x_{j-1}, y_{j-1}\right)+\epsilon_{j}$ and

$$
\begin{aligned}
y_{j} & =y_{j-1} \oplus h \otimes f l\left(f\left(x_{j-1}, y_{j-1}\right)\right), \\
& =y_{j-1}+h f\left(x_{j-1}, y_{j-1}\right)+h \epsilon_{j}+\rho_{j},
\end{aligned}
$$

where $\left|\epsilon_{j}\right|,\left|\rho_{j}\right|<\mu$.
Then, proceeding as before we obtain,

$$
\left|e_{j}\right|<\left|e_{j-1}\right|(1+h L)+\frac{h^{2}}{2} \bar{M},
$$

where $\bar{M}=Y+\mu / h+\mu /\left(h^{2}\right)$.

Affect of FP Arith (cont)

Therefore the revised error bound becomes:

$$
\begin{aligned}
\left|e_{j}\right| & \leq e^{(b-a) L}\left|e_{0}\right|+\frac{h \bar{M}}{2 L}\left(e^{(b-a) L}-1\right) \\
& =e^{(b-a) L}\left|e_{0}\right|+\left(e^{(b-a) L}-1\right)\left(\frac{h Y}{2 L}+\frac{\mu}{2 L}+\frac{\mu}{2 h L}\right)
\end{aligned}
$$

So, as $h \rightarrow 0$, the term $\frac{\mu}{2 h L}$ will become unbounded (unless the precision changes) and we will not observe convergence.

