
Example from Chemistry
The chemical reaction involving the combination of two chemicals C1 and
C2, to yield a product C3 is represented by,

K2

C1 + C2 ⇋ C3

K1 .

We can model this chemical reaction with the system of 3 ODEs, where
y1(x) = [C1] the concentration of C1 (at time x), y2(x) = [C2] and
y3(x) = [C3]. The resulting system of IVPs whose solution for x ∈ [a, b]

describes the change in concentrations over time as the reaction takes
place is,

y′1 = K1y3 −K2y1y2,

y′2 = K1y3 −K2y1y2,

y′3 = K2y1y2 −K1y3.

CSCD37H – Analysis of Numerical Algorithms – p.115/184

Second Order ODEs
Often physical or biological systems are best described by second or
higher-order ODEs. That is, second or higher order derivatives appear
in the mathematical model of the system.

For example, from physics we know that Newtons laws of motion
describe trajectory or gravitational problems in terms of relationships
between velocities, accelerations and positions. These can often be
described as IVPs, where the ODE has the form,

y′′(x) = f(x, y)

or

y′′(x) = f(x, y, y′).

CSCD37H – Analysis of Numerical Algorithms – p.116/184

Second Order ODEs (cont)
A Second-order scalar ODE can be reduced to an equivalent system of

first-order ODEs as follows: With y
′′

= f(x, y, y′) we let Z(x) be defined
by,

Z(x) = [z1(x), z2(x)]
T ,

where z1(x) ≡ y(x) and z2(x) ≡ y′(x). It is then clear that Z(x) is the
solution of the first order system of IVPs:

Z ′ =


 z′1(x)

z′2(x)


 =


 y′(x)

y′′(x)




=


 z2(x)

f(x, y, y′)


 =


 z2(x)

f(x, z1, z2)




≡ F (x, Z).

CSCD37H – Analysis of Numerical Algorithms – p.117/184

Observations re2nd-order ODEs
Note that in solving this ‘equivalent’ system for Z(x), we determine an
approximation to y′(x) as well as to y(x). This has implications for
numerical methods as, when working with this equivalent system, we
will also be trying to accurately approximate y′(x) and this may be
more difficult than just approximating y(x).

Note also that to determine a unique solution to our problem we must
prescribe initial conditions for Z(a), that is for both y(a) and y′(a).

Second order systems of ODEs can be reduced to first order systems
similarly (doubling the number of equations).

Higher order equations can be reduced to first order systems in a
similar way.

CSCD37H – Analysis of Numerical Algorithms – p.118/184

Numerical Methods for IVPs
Taylor Series Methods :

If f(x, y) is sufficiently differentiable wrt x and y then we can determine
the Taylor series expansion of the unique solution y(x) to

y′ = f(x, y), y(a) = y0,

by differentiating the ODE at the point x0 = a. That is, for x near x0 = a

we have,

y(x) = y(x0) + (x− x0)y
′(x0) +

(x− x0)
2

2
y′′(x0) + · · · ,

CSCD37H – Analysis of Numerical Algorithms – p.119/184

Taylor Series Methods (cont)
To generate the TS coefficients, y(n)(x0)/n!, we differentiate the ODE and
evaluate at x = x0 = a. The first few terms are computed from the
expressions,

y′(x) = f(x, y) = f,

y′′(x) =
d

dx
f(x, y) = fx + fyy

′ = fx + fyf,

y′′′(x) =
d

dx
[y′′(x)] = (fxx + fxyf) + (fyx + fyyf)f + fy(fx + fyf)

= fxx + 2fxyf + fyyf
2 + fyfx + f2

y f.

CSCD37H – Analysis of Numerical Algorithms – p.120/184

Key Observation for TS Methods
In general, if f(x, y) is sufficiently differentiable, we can use the first
(k + 1) terms of the Taylor series as an approximation to y(x) for
|(x− x0)| ‘small’. That is, we can approximate y(x) by ẑk,0(x),

ẑk,0(x) ≡ y0 + (x− x0)y
′
0 + · · ·+ (x− x0)

k

k!
yk0 .

Note that the derivatives of y become quite complicated so one usually
chooses a small value of k (k ≤ 6 or 7).

CSCD37H – Analysis of Numerical Algorithms – p.121/184

Key Observation for TS (cont)
One can use ẑk,0(x1) as an approximation, y1, to y(x1). We can then
evaluate the derivatives of y(x) at x = x1 to define a new polynomial
ẑk,1(x) as an approximation to y(x) for |(x− x1)| ‘small’ and repeat the
procedure.
Note:

The resulting ẑk,j(x) for j = 0, 1, · · · define a piecewise polynomial
approximation to y(x) that is continuous on [a, b].

How do we choose hj = (xj − xj−1) and k?

CSCD37H – Analysis of Numerical Algorithms – p.122/184

