
Optimization ≡ Nonlinear System
An optimization problem can be considered equivalent to solving F (x) = 0

with F (x) = ∇f(x). Such an F (x) has special structure which we can
exploit. For a given f(x), x(r) ∈ ℜn and an arbitrary constant vector
u ∈ ℜn define g(t), g : ℜ → ℜ by,

g(t) ≡ f(x(r) + tu).

It then follows that after differentiating wrt t,

dg

dt
≡ g′(t) = (

∂f

∂x1
u1 +

∂f

∂x2
u2 · · ·+

∂f

∂xn
un) = (∇f)Tu.

This expression describes how f changes in the ‘direction’ u. In particular,

if ∇f(x)Tu < 0 then f decreases in that direction and u is called a ‘descent

direction’. This leads to the method of steepest descent: where we choose

u = −∇f (to obtain g′(t) = ∇fTu = −‖∇f‖22), and determine t̄ ∈ ℜ to

minimise g(t) = f(x(r) − t∇f) .

CSCD37H – Analysis of Numerical Algorithms – p.99/184

Steepest Descent
-guess x(0) = (x

(0)
1 , x

(0)
2 · · ·x(0)

n)T

-for r = 0, 1 · · · until satisfied do:
ur = ∇f(x(r)) (≡ F (x(r)))

-if ur ≈ 0 then signal convergence
-else

-find t̄ such that g(t)
≡ f(x(r) − tur) is minimum

-x(r+1) = x(r) − t̄ur

-end
end

Care must be taken to ensure the stopping criteria of the inner iteration is

consistent with that of the outer iteration.

CSCD37H – Analysis of Numerical Algorithms – p.100/184

Observations
With this approach there is only a 1D line search on each iteration and
any scalar nonlinear equation solver can be used (eg., Bisection,
Newton or Secant). We will always observe a decrease
f(x(r+1)) < f(x(r)) · · · < f(x(0)). One can prove that the sequence will
always converge but convergence may be slow.

Optimization methods can also be used to solve Nonlinear systems.
That is, we can interpret a system of nonlinear equations as a special
case of an optimization problem. To see this, consider the nonlinear
system F (x) = 0 and define h : ℜn → ℜ by,

h(x) ≡ ‖F (x)‖22 =
n∑

i=1

f2
i (x).

Clearly,
F (α) = 0 ⇔ h(α) is minimum.

CSCD37H – Analysis of Numerical Algorithms – p.101/184

Optimization to SolveF (x) = 0

With F ≡ (f1, f2 · · · fn)T ,

∇h(x) = (
∂h

∂x1
,
∂h

∂x2
· · · ∂h

∂xn
)T .

where
∂h

∂xj
=

∂

∂xj

n∑

i=1

f2
i (x) = 2

n∑

i=1

∂fi
∂xj

fi = 2
(
W TF

)
j
,

where W is the Jacobian matrix defined by,

W ≡ ∂F

∂x
whose (i j)thentry is

∂fi
∂xj

.

Therefore we have that ∇h(x) = 2W TF and this is the zero vector only

when F = 0 (unless W is singular).

CSCD37H – Analysis of Numerical Algorithms – p.102/184

An Example Problem
You are given the following two equations in two unknowns:

3x2
1 − x2

2 = 0, 3x1x
2
2 − x3

1 − 1 = 0.

Consider applying Newtons method for systems to this problem with
initial guess, (x1

1, x
1
2) = (1.0, 1.0). What is the linear equation that

defines the value of the first iterate, (x2
1, x

2
2)?

Solve this linear system and determine (x2
1, x

2
2).

A better initial iterate can be determined based on the ‘steepest
descent’ direction from the same initial guess. That is, by letting
h(x1, x2) = f2

1 + f2
2 (where f1 and f2 correspond to the above two

equations), determine the steepest descent direction for h(x1, x2) at
the initial guess and describe how you could compute an alternate first
iterate using this information.

CSCD37H – Analysis of Numerical Algorithms – p.103/184

Numerical ODEs
Definition: A first-order ordinary differential equation is specified by:

y′ = f(x, y), over a finite interval x ∈ [a, b].

Note that a solution of this ODE, y(x), is a function of one variable.
When the solution depends on more than one variable (ie a
multivariate function) it is called a partial differential equation – PDE.
The term first-order refers to the highest derivative that appears in the
equation.

For ODEs the variable x is called the independent variable while y

(which depends on x) is called the dependent variable. ‘Solving’ the
ODE is interpreted as determining a technique for expressing y as a
function of x in some explicit way.

CSCD37H – Analysis of Numerical Algorithms – p.104/184

ODEs-Mathematical Preliminaries
A function Φ(x) is a solution of this ODE if Φ(x) ∈ C1[a, b] and
∀x ∈ [a, b] we have Φ

′

(x) = f(x,Φ(x)). (Note that this condition is
often easy to check or verify).

For example the ODE,

y′ = λy,

has solutions Φ(x) = c eλx for any constant c since,

[c eλx]
′

= λceλx = λΦ(x).

In particular this ODE does not have a unique solution but rather a
whole family of solutions (characterized by the parameter c).

CSCD37H – Analysis of Numerical Algorithms – p.105/184

ODEs-Mathematical Preliminaries
To determine a unique mathematical solution we must add an
additional constraint. The most common way to do this is to prescribe
the value of the solution at the initial point of the interval. That is we
specify,

y(a) = y0.

–Definition: An ODE together with the initial conditions specifies an
initial value problem for an ordinary differential equation (IVP for an
ODE).

Before we can attempt to approximate a solution to an IVP we must
consider some essential mathematical questions:

Does a solution exist?

If a solution exists, is it unique?

Can the problem be solved analytically (ie. in closed form)?

CSCD37H – Analysis of Numerical Algorithms – p.106/184

IVPs - Existence/Uniqueness

Definition: The function f(x, y) satisfies a Lipschitz condition in y (ie,
wrt its second argument) if ∃L > 0 such that ∀x ∈ [a, b] and ∀ u, v we
have

|f(x, u)− f(x, v)| ≤ L|u− v|.

In particular, if f(x, y) has a continuous partial derivative with respect
to y and this derivative is bounded for all y, then f satisfies a Lipschitz
condition in y since,

|f(x, u)− f(x, v)| = |∂f
∂y

(x, η)| |u− v|,

for some η between u and v.

CSCD37H – Analysis of Numerical Algorithms – p.107/184

IVPs - Existence/Uniqueness

A typical Theorem:
Let f(x, y) be continuous for x ∈ [a, b] and ∀y and satisfy
a Lipschitz condition in y, then for any initial condition y0
the IVP,

y′ = f(x, y), y(a) = y0, over [a, b],

has a unique solution, y(x) defined for all x ∈ [a, b].

CSCD37H – Analysis of Numerical Algorithms – p.108/184

Systems of ODEs
Often one must deal with a system of n ‘unknown’ dependent
variables of the form:

y′1 = f1(x, y1, y2, · · · yn),
y′2 = f2(x, y1, y2, · · · yn),

...
...

...

y′n = fn(x, y1, y2, · · · yn),

with initial conditions all specified at the same point,

y1(a) = c1,

y2(a) = c2,

...
...

...

yn(a) = cn,

CSCD37H – Analysis of Numerical Algorithms – p.109/184

Systems of ODEs (cont)
In vector notation, this system of IVPs can be written

Y ′ = F (x, Y), Y (a) = Y0,

where Y (x) = [y1(x), y2(x), · · · yn(x)]T , Y0 = [c1, c2, · · · cn]T and F (x, Y) is
a vector-valued function,

F (x, Y) =

f1(x, Y)

f2(x, Y)
...

fn(x, Y)

.

The theory and the investigation of numerical methods that we present will

be the same for systems as for scalar IVPs. In particular, the Theorem

quoted above holds for systems.

CSCD37H – Analysis of Numerical Algorithms – p.110/184

Some Examples
From Biology:
A predator-prey relationship can be modeled by the IVP:

y
′

1 = y1 − 0.1y1y2 + 0.02x

y
′

2 = −y2 + 0.02y1y2 + 0.008x

with
y1(0) = 30, y2(0) = 20.

Here y1(x) represents the ‘prey’ population at time x and y2(x)

represents the ‘predator’ population at time x. The solution can then
be visualized as a standard x/y solution plot or by a ‘phase plane’ plot.
Figure 1 illustrates the solution to this system. We know that for
different initial conditions solutions to this problem exhibit oscillatory
behaviour as x increases.

CSCD37H – Analysis of Numerical Algorithms – p.111/184

Solution to PP problem

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

Figure 1. Solution plot for the Predator-Prey Problem.

CSCD37H – Analysis of Numerical Algorithms – p.112/184

Solution to PP problem

10 20 30 40 50 60 70 80 90 100 110
2

4

6

8

10

12

14

16

18

20

22

Figure 2. Phase Plane Plot for Predator-Prey Problem.

CSCD37H – Analysis of Numerical Algorithms – p.113/184

Application of IVPs
A biologist may be interested in whether the solutions to this equation are
‘almost periodic’ (in the sense that the difference between successive
maximum is constant) and whether the local maxima approach a steady
state exponentially.

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Fig. 3. Typical behaviour of prey population and decay to steady state.

CSCD37H – Analysis of Numerical Algorithms – p.114/184

