
Convergence of 2-StageQR
This QR iteration will converge (with real shifts) to an ‘almost’ upper
triangular matrix, Û ,

Û =





























× × × × × · · · × × ×

× × × × × · · · × × ×

0 0 × × × · · · × × ×

0 0 × × × · · · × × ×

0 0 0 0 × · · · × × ×
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 × ×

0 0 0 0 0 · · · 0 × ×





























.

Note that Û is an upper Hessenberg matrix with every second element of

the subdiagonal zero. This implies (from linear algebra) that the eigenval-

ues of Û are the union of the eigenvalues of all the diagonal blocks (2 × 2

and 1× 1 blocks).

CSCD37H – Analysis of Numerical Algorithms – p.87/184



Nonlinear Systems and Optimization
Nonlinear Systems : – the scalar case
Given f(x), f : ℜ → ℜ, find a real root (or zero), α, such that f(α) = 0.
We have to be satisfied with an ᾱ in our FP system, such that |ᾱ− α| is
small.
We will consider, as an example the function f(x) = x3 − x− 1 which has
one root in the interval [0, 2].

Recall Newton’s Method for scalars : Given real numbers x0, a, b and
f(x) ∈ C1[a, b] with x0 ∈ [a, b],

-for r = 1, 2 · · · until satisfied do:
xr+1 = xr − f(xr)

f ′ (xr)

-end

After 4 iterations, with x0 = 1 we obtain

x4 = 1.32 · · ·, and |f(x4)| ≈ 10−6.

CSCD37H – Analysis of Numerical Algorithms – p.88/184



Analysis of Scalar Methods
Definition: A sequence xr converges to α iff |xr − α| → 0 as r → ∞.

The continuity of f(x) implies
xr → α ⇔ |xr − α| → 0 ⇒ |f(xr)− f(α)| = |f(xr)| → 0 as r → ∞.
We can monitor |f(xr)| on each iteration but how can we recognize
|f(xr)| → 0 and more importantly, how do we recognize that |xN − α|
is small?

Definition: If xr → α and ρ ≥ 1 is the largest real number such that,

lim
r→∞

|xr+1 − α|
|xr − α|ρ ≤ C 6= 0,

for some C > 0, then the convergence is order ρ.
(Note that in this case, if xr is accurate to k digits then xr+1 can be
expected to be accurate to ρ k digits.)

CSCD37H – Analysis of Numerical Algorithms – p.89/184



Newton’s Method for Scalars (cont)

Note:

Newton’s method may not converge (the x′rs may
→ ±∞).

The |f(xr)| may not decrease (as r increases).

If f(x) ∈ C1[a, b] and |x0 − α| is sufficiently small, then xr
will converge to α.

If Newtons method converges and f ′(α) 6= 0, then the
order of convergence is 2.

CSCD37H – Analysis of Numerical Algorithms – p.90/184



Systems of Nonlinear Equations
The Basic Problem: find x ∈ ℜn such that F (x) = 0
where,

0 =




0

0
...
0


 , F (x) =




f1(x)

f2(x)
...

fn(x)


 .

Note that, in this section, n is the dimension of x (the
number of unknowns) and r will be the iteration number.

CSCD37H – Analysis of Numerical Algorithms – p.91/184



From Scalars to Systems
Analogous with the scalar case, the vector sequence, x(0), x(1) · · ·x(r)

converges to α ∈ ℜn with order p if there exists c > 0 such that

lim
r→∞

‖x(r+1) − α‖
‖x(r) − α‖p = c.

The three most common values for p are p = 1 (linear convergence),
p = 2 (quadratic convergence) and p = 3 (cubic convergence).

Of the methods you have investigated for scalar problems (n = 1) only
Newtons method extends directly to higher dimensional problems
(n > 1).

CSCD37H – Analysis of Numerical Algorithms – p.92/184



NM for Systems
Given an initial guess, x(0) ∈ ℜn define x(r) for r = 0, 1 · · · by solving the
linear system,

∂F

∂x
|x=x(r)(x(r+1) − x(r)) = −F (x(r)),

or with ∆r = x(r+1) − x(r), (the Newton Correction),

Wr∆
r = −F (x(r)),

where Wr = ∂F
∂x |x=x(r) is the n× n matrix whose (i j)th element is ( ∂fi

∂xj
).

CSCD37H – Analysis of Numerical Algorithms – p.93/184



Observations for NM for Systems
One can re-write this equation as,

x(r+1) = x(r) −W−1
r F (x(r)).

(Analogous to the scalar case, xr+1 = xr − f(xr)/f ′(xr).)

The matrix Wr must be recomputed and a new LU or QR

decomposition computed on each iteration.

If ∂F
∂x |x=α is nonsingular, then if the iterates converge, the convergence

is order 2 or quadratic.

CSCD37H – Analysis of Numerical Algorithms – p.94/184



Reducing the Cost of NM
Approximate versions of Newtons Method have been developed for
systems of nonlinear equations that avoid the O(n3) flops per iteration or
that are more efficient to implement for other reasons.

If we hold an approximation to Wr constant for several iterations we
have a Modified Newton method. For example one can use Wr = W1

for all r or one can re-evaluate W once every k iterations. In either
case one looses quadratic convergence.

If ∂F
∂x is difficult to compute we can use divided differences to define a

Quasi Newton method,

∂fi
∂xj

≈ fi(x+ δej)− fi(x)

δ
,

where δ ≈ √
µ.

CSCD37H – Analysis of Numerical Algorithms – p.95/184



Approximate Newton (Systems)
We can approximate Wr by a ‘nearby’ matrix with special structure.
This is called pre-conditioning and can involve approximating Wr by a
diagonal, banded, or triangular matrix.

If the approximation Wr ≈ I is used the method is called
Functional iteration.

These approximate versions of Newtons method often work in special
cases and can be readily analysed and justified only for these cases. In
the ‘very’ special case that F (x) is linear, that is, F (x) = Ax− b, Newtons
method will converge in one iteration since,

∆r = (x(r+1) − x(r)) = −W−1
r F (x(r))

= −A−1(Ax(r) − b)

= A−1b− x(r)

= α− x(r)

CSCD37H – Analysis of Numerical Algorithms – p.96/184



Summary of NM for Systems
We have shown that the various versions of Newtons Method that are
used in practice can be viewed as,

-guess x(0) = (x
(0)
1 , x

(0)
2 · · ·x(0)

n )T

-for r = 0, 1 · · · until satisfied do:
-Solve Wr∆

r = −F (x(r))

x(r+1) = x(r) +∆r

-end

where Wr ≈
(
∂F
∂x

)
|x=x(r) .

For systems of equations, as for the scalar case, if we observe conver-

gence it is usually very rapid but we need an accurate initial guess to en-

sure convergence.

CSCD37H – Analysis of Numerical Algorithms – p.97/184



Optimization Problems
A special case of nonlinear systems are optimization problems which
arise in a wide variety of application areas. They are usually of the
form, Find x ∈ ℜn such that f(x) is a minimum (or max).

f : ℜn → ℜ.
From calculus we know that a vector x is a minimum (or max) when,

∇f(x) ≡




∂f
∂x1

∂f
∂x2

...
∂f
∂xn



= 0.

∇f(x) is called the gradient of f .

WARNING: In this section f(x) and g(x) have a different meaning than in

the previous section.

CSCD37H – Analysis of Numerical Algorithms – p.98/184


