
QTA = R
As with the LU factorization of A we have, after (n− 1) steps,

QTA = QTA0

= [Q1Q2 · · ·Qn−1]
TA0

= [Qn−1Qn−2 · · ·Q1]A0

= (Qn−1(· · · (Q2(Q1A0︸ ︷︷ ︸
A1

))) · · ·)

= An−1

≡ R

Since QTA = R and QT = Q−1 we have, after multiplying this expression
by Q,

QR = Q(QTA) = (QQT)A = A.

Exercise : Show that the operation count for this decomposition is twice

that for the LU decomposition.

CSCD37H – Analysis of Numerical Algorithms – p.55/183

SolvingAx = b whenA = QR

To solve the linear system Ax = b using QR we note that Q need not be
explicitly computed – it need only be represented by retaining the vectors
u1, u2 · · ·un−1 and the scalars ‖u1‖22, ‖u2‖22, · · · ‖un−1‖22. We observe that,

A = QR = Q1Q2 · · ·Qn−1R,

and this allows us to ‘solve’ Ax = b as

QRx = b, or Rx = Q−1b.

But

Q−1 = QT = Qn−1Qn−2 · · ·Q1

and we have that,

Rx = (Qn−1(Qn−2(· · · (Q1b︸︷︷︸
z1

) · · ·)).

CSCD37H – Analysis of Numerical Algorithms – p.56/183

Efficient Implementation of QR

This suggests the following efficient algorithm:
-set z = b ;
-for j = 1, 2 · · · (n− 1)

-set z = Qjz (‘solve’ Qjzj = zj−1)
-end
-solve the triangular system Rx = z

Exercise:

Given that the Qj are ‘represented’ by the vectors, uj and the scalars ‖uj‖22,

determine the operation count for the above algorithm and compare it with

the that for the standard LU algorithm. (Recall that computing Qj v for an

arbitrary vector v can be done using fact that Qjv = v + γuj , where γ =

−2
uT
j v

‖uj‖2
2
.)

CSCD37H – Analysis of Numerical Algorithms – p.57/183

Error Bounds for the QR Method
One can show (analogous to GE) that, if the above QR algorithm is
implemented in floating point arithmetic, then the computed solution, x̄,
will satisfy,

(A+ E)x̄ = b where E = (ei j),

and

|ei j | ≤ 1.02 max
r=0,1···n−1

[‖Ar‖2](2n2 + n)‖Q‖2µ.

But ‖Q‖2 = 1 and ‖Ar‖2 ≤ ‖Qr‖2‖Ar−1‖2 = ‖Ar−1‖2 for
r = 1, 2 · · · (n− 1), so

max
r=0,1···n−1

[‖Ar‖2] = ‖A0‖2 = ‖A‖2,

and

|ei j | ≤ 1.02‖A‖2(2n2 + 2)µ.

CSCD37H – Analysis of Numerical Algorithms – p.58/183

Linear Least Squares
In many applications the linear systems of equations that arise do not
have the same number of equations as unknowns. We can then can
‘solve’ the equations in a least squares sense.

The Basic Problem – Given m linear equations in n unknowns,

Ac ≈ b, A ∈ ℜm×n, c ∈ ℜn, b ∈ ℜm.

Determine the vector c that minimises,

‖Ac− b‖2.

Note that other norms (‖ · ‖∞, or ‖ · ‖1 for example) are not
differentiable and the corresponding minimisation problem is more
difficult to analyse and the algorithms more complicated.

CSCD37H – Analysis of Numerical Algorithms – p.59/183

An Example - Data Fitting
Let the ‘unkown’ vector be c ∈ ℜn, the coefficients defining a polynomial
pn(s),

pn(s) = c1 + c2s · · ·+ cns
n−1.

Assume we wish to approximate a function f(s) by pn(s) and we ‘know’
that f(si) ≡ fi for i = 1, 2 · · ·m. Let A ∈ ℜm×n be defined by

ai j = sj−1
i , i = 1, 2 · · ·m, j = 1, 2 · · ·n.

Then it is easy to see that if, s = (s1, s2 · · · sm)T , f = (f1, f2 · · · fm)T ,

Ac =

pn(s1)

pn(s2)
...

pn(sm)

,

and therefore our task is to determine c such that, ‖Ac− f‖2 is minimised.

This is a discrete least squares problem.

CSCD37H – Analysis of Numerical Algorithms – p.60/183

Data Fitting Ex. (cont.)
If the si are distinct then A has full rank.

A is a Vandermonde Matrix.

If m = n, A can be badly conditioned.

For the general LLSQ Problem we have 3 cases:

m = n: Standard case with a unique solution if A has full rank, n, (use
LU or QR).

m > n: Overdetermined case (more equations than unknowns). A can
have full rank (rank n), or it can be rank deficient (rank < n).

m < n: Underdetermined case (fewer equations than unknowns). A
can have full rank, m, or it can be rank deficient.

CSCD37H – Analysis of Numerical Algorithms – p.61/183

The General Overdetermined LLSQ
Let the unknown vector be x ∈ ℜn. We wish to solve Ax ≈ b, where
b ∈ ℜm,

Ax =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
...

...
...

...

am1 am2

... amn

x1

x2

...

xn

≈

b1

b2
...
...

bm

.

Let

Φ(x) = ‖Ax− b‖22
= (Ax− b)T (Ax− b) ≡ rT (x)r(x)

=

m∑

i=1

r2i (x).

CSCD37H – Analysis of Numerical Algorithms – p.62/183

Overdetermined Systems (cont.)
From standard results in calculus we know that Φ(x) is a minimum when,

∂Φ

∂xj
= 0 for j = 1, 2, · · ·n.

Since Φ(x) =
∑m

i=1 r
2
i (x) we have,

∂Φ

∂xj
=

∂

∂xj

[
m∑

i=1

r2i (x)

]

=
m∑

i=1

∂

∂xj
(r2i (x)),

= 2
m∑

i=1

ri(x)
∂ri(x)

∂xj
.

But ri(x) = −bi + ai 1x1 + ai 2x2 · · ·+ ai nxn

(= −bi+ inner product of ith row of A with x, which = −bi+inner product

of ith column of AT with x).

CSCD37H – Analysis of Numerical Algorithms – p.63/183

Overdetermined Systems (cont.)
Therefore we have,

∂ri(x)

∂xj
=

∂

∂xj
[Ax− b]i ,

= (ai j),

for i = 1, 2, · · ·m; j = 1, 2, · · ·n.
It then follows that

∂Φ

∂xj
= 2

m∑

i=1

ri(x)ai j = 2
(
AT r

)
j
.

Therefore to achieve ∂Φ
∂xj

= 0 for j = 1, 2, · · ·n we must have,
(
AT r

)
j
= 0, for j = 1, 2, · · ·n.

This is equivalent to asking that,

AT r = 0 or AT (Ax− b) = 0.

CSCD37H – Analysis of Numerical Algorithms – p.64/183

Normal Equations
Note that the matrix ATA is n× n and nonsingular (if rank(A)=n) and we
can solve our LLSQ problem with m > n by solving the linear system,

A
T
Ax = A

T
b

These are the Normal Equations. We have shown that any solution to the
LLSQ problem must be a solution to the Normal Equations. The converse
is also true (exercise).

The (i, j)th entry of ATA = aTi aj = aTj ai.

ATA is symmetric (since (ATA)T = AT (AT)T = ATA).

The cost to determine ATA is [n+ (n2 − n)/2]m = mn2+mn
2 flops.

It can be shown that, once ATA has been formed, solving ATAx = AT b

can be accomplished in n3

6 +O(n2) flops.

CSCD37H – Analysis of Numerical Algorithms – p.65/183

QR for Least Squares
We will introduce a QR based algorithm that doesn’t require the explicit
computation of ATA.
Consider forming the QR factorization (or Schur decomposition) of the
m× n matrix A,

A = QR = (Q1Q2 · · ·Qn)R,

where Q is an orthogonal matrix and R is an upper triangular matrix. That
is, we will determine Q as a product of n Householder reflections:

QA = R ⇔ QT
n (Q

T
n−1 · · ·QT

1 A)) · · ·) = R,

where each Qi = QT
i is an m×m Householder reflection and R is an m×n

(rectangular) upper triangular matrix,

CSCD37H – Analysis of Numerical Algorithms – p.66/183

QR for Least Squares (cont.)

R =

× × · · · ×
0 × · · · ×
0 0 · · · ×
...

...
... ×

0 0 · · · 0
...

...
...

...

0 0 · · · 0

≡

 R

0

 ,

and R is a square n× n upper triangular matrix.
With such a factorization of A we have,

ATA = (QR)TQR = RTQTQR = RTR,

CSCD37H – Analysis of Numerical Algorithms – p.67/183

QR for Least Squares (cont.)
where

RTR =

× 0 0 · · · 0

× × 0 · · · 0
...

...
... · · · 0

× × × · · · 0

× × · · · ×
0 × · · · ×
0 0 · · · ×
...

... · · · ×
...

...
...

...

0 0 · · · 0

=
[
RT 0

]

 R

0

 = RTR,

an n× n symmetric matrix.

CSCD37H – Analysis of Numerical Algorithms – p.68/183

QR for Least Squares (cont.)
Now solving the Normal Equations to determine x can be done by solving
the equivalent linear system,

RTRx = AT b.

This requires the computation of AT b (at a cost of nm flops) and two
triangular linear systems (at a cost of n2 flops). The cost of determining
the QR factorization of A is n2m+O(nm) and therefore the total cost of
this algorithm to determine x is n2m+O(nm) flops.

Note that in most applications m is much larger than n. With this approach

we have computed the LU (or Cholesky) decomposition of ATA (= RTR)

without forming ATA.

CSCD37H – Analysis of Numerical Algorithms – p.69/183

Rank Deficient Problems
Note that deficient rank implies that for overdetermined problems
rank(A) = rank(ATA) < n,
while for underdetermined problems
rank(A) = rank(AAT) < m.
In either case the R we obtain from the QR algorithm will have the same
deficient rank.

In exact arithmetic the rank of a triangular matrix is the number of
non-zeros on the diagonal. In floating point arithmetic we don’t expect to
see an exact zero but a reliable indication of rank deficiency is to observe
a large value for the ratio of the largest to smallest magnitudes of the
diagonal entries.

In problems where rank deficiency is detected (using this idea) the
algorithm can either exit with a warning or attempt to produce a solution to
a nearby exactly rank deficient problem.

CSCD37H – Analysis of Numerical Algorithms – p.70/183

