
Q R decomposition and Applications
Recall:The linear system of equations,

Ax = b, where A is n × n and b ∈ Rn,

can be solved using Gaussian elimination with partial pivoting. We have

seen that this is equivalent to determining the permutation matrix P and

lower and upper triangular matrices, L and U so that P A = L U . One

then solves the system, A x = b, by solving the equivalent system

PAx = LUx = Pb. That is, we solve LUx = Pb, using standard for-

ward substitution and back substitution (by first solving Lz = Pb and then

solving Ux = z.
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Error Analysis of GE
In exact arithmetic we have no truncation error in implementing GE and
we would have LU = PA, Lz = Pb and Ux = z.
When implemented in FP arithmetic we compute L, U , and x, z.

It can be shown that if GE is implemented in a FP system with
nµ < .01, then the computed x of Ux = z is the exact solution of,

(A + E)x = b,

with E = (ei j) satisfying

|ei j | < 1.02(2n2 + n)ρ|A| max
i,j

|Li j |µ,

where |A| = maxi,j |ai j | and ρ, (the ‘growth factor’) is defined by

ρ =
1

|A| max
i,j,r

|a(r)
i j |.
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Error Analysis of GE (Cont)
If ‘partial pivoting’ is used when implementing the L U decomposition,
then one can show maxi,j |Li j | = 1 and ρ < 2n−1.

For a detailed, long but elementary proof of this result see Forsythe
and Moler, Computer Solution of Linear Equations, Prentice Hall, pp.
87-108.

The bound ρ < 2n−1 is pessimistic for most problems.

With this strategy the corresponding error bound reduces to,

|ei j | ≤ 1.02ρ|A|(2n2 + n)µ,

where ρ|A| can be monitored during the computation.

The computed x will “almost” satisfy the equation Ax = b, but what
about |x − x| ?
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A Simple Example
In a 4-digit, base 10, FP system consider,

.780x1 + .563x2 = .217

.913x1 + .659x2 = .254

The true solution is x = (1,−1)T . Consider two approximate solutions
obtained in FP arithmetic: x = (.999,−1.001)T and x̂ = (.341,−.087)T .
First determine the corresponding residuals,

r ≡ Ax − b = (−.00136, −.00157)T ,

and
r̂ ≡ Ax̂ − b = (−.000001, .000000)T .

That is, x̂ is the exact solution of Ax = b + r̂, where ‖r̂‖ < 10−5. This
shows that a small residual does not imply a small error!
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Condition Number of A
To investigate ‖x − x̄‖ we introduce matrix norms:

For x ∈ <n consider two common vector norms,

‖x‖∞ ≡ n
max
i=1

|xi| and ‖x‖2 ≡ (xT x)1/2.

For A ∈ <n×n, A = (ai j), we define the induced or subordinate matrix
norm (corresponding to any vector norm) to be,

‖A‖ ≡ max
‖v‖=1

‖Av‖.

For the above two examples:

‖A‖∞ =
n

max
i=1

[
n∑

j=1

|ai j |],

‖A‖2
2 = max

‖x‖2=1
(Ax)T (Ax)

= max
‖x‖2=1

[xT (AT A)x].
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Condition Number of A (Cont)

Properties of matrix norms:

‖AB‖ ≤ ‖A‖‖B‖ .

If y = Ax we have ‖y‖ ≤ ‖A‖‖x‖.
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Recall – Property of GE
The computed x̄ determined by GE with partial pivoting has residual,
r̄ ≡ Ax̄ − b and satisfies, and

(A + E)x̄ = b ⇒ r̄ = Ax̄ − b = −Ex̄.

From the properties of matrix norms, ‖r̄‖∞ ≤ ‖E‖∞‖x̄‖∞.
But E = (ei j) satisfies,

|ei j | < 1.02ρ(2n2 + n)|A|µ,

and
‖r̄‖∞ ≤ ‖E‖∞‖x̄‖∞ ≤ 1.02ρ(2n3 + n2)|A|‖x̄‖∞µ.

Therefore, GE with partial pivoting for any system Ax = b will generate

an approximate solution, x̄ with a guaranteed small residual. In fact since

|A|, ‖x̄‖∞, and ρ are all known we have a precise bound on the size of the

residual.
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What about (x̄ − x)?
The true solution x need not be close to x̄ since,

(x̄ − x) = x̄ − A−1b = A−1(Ax̄ − b) = A−1r̄,

and this implies

‖(x̄ − x)‖∞ ≤ ‖A−1‖∞‖r̄‖∞
≤ ‖A−1‖∞‖A‖∞1.02ρ(2n3 + n2)µ‖x̄‖∞.

Note:

In general we do not know how large ‖A−1‖∞ might be.

If A is singular then A−1 is not defined so it is clear that if A is ‘nearly
singular’ then ‖A−1‖∞ must be very large.
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Condition Number
We define the Condition Number of A, wrt linear equations, to be.

cond(A) ≡ ‖A‖∞‖A−1‖∞.

Clearly cond(A) is an indication of how far away the computed x̄ might be
from the true x.

When cond(A) is large the problem is said to be Ill-Conditioned since a
small change in the RHS vector, b, can cause a large change in the
solution vector, x. Consider the previous Example where we have,

A =


 .780 .563

.913 .659


 , A−1 = 106 ×


 .659 −.563

−.913 .780


 .

In this case we have cond(A) = ‖A‖∞‖A−1‖∞ = 2.6 × 106 which indicates
an ill-conditioned problem.
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A Measure of Sensitivity
We have introduced the condition number to investigate the errors arising
in GE with partial pivoting. It is actually a more general concept and can
be defined for any matrix norm. In particular it describes the inherent
sensitivity of the exact solution to small changes in the data defining the
problem. To see this consider x to be the exact solution of Ax = b and x′

the exact solution of Ax′ = b + ε. We then have,

x′ = A−1(b + ε) = x + A−1ε = x + δ,

where ‖δ‖∞ = ‖A−1 ε‖∞. It is possible to choose the perturbation, ε so
that the resulting δ satisfies

‖δ‖∞ = ‖A−1‖∞‖ε‖∞,

and we see how a small perturbation in b can result in a large change in

the corresponding exact solution.
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QR Decomposition of A

An alternative to an LU decomposition.
A Householder Reflection is an elementary matrix of the form,

Q = I − 2wwT ,

where w ∈ <n satisfies ‖w‖2 = 1. (Recall that ‖w‖2 = 1 ⇔ wT w = 1.) We
will now investigate the use of HRs for solution of Linear Equations.
Properties of Householder reflections:

QT = Q (symmetric) since

[I − 2wwT ]T = [IT − 2(wwT )T ]

= [I − 2(wT )T wT ]

= [I − 2wwT ]

= Q
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Properties of HRs (cont.)
QT Q = Q2 = I since ,

[I−2wwT ][I−2wwT ] = I−4wwT +4wwT wwT

= I−4wwT +4w(wT w)wT

= I−4wwT +4wwT

= I.

Therefore we have Q−1 = Q = QT .

‖Q‖2 = 1, since for a general matrix A we have,

‖A‖2
2 = max

‖x‖2=1
{xT (AT A)x},

and therefore, for a Householder reflection,

‖Q‖2
2 = max

‖x‖2=1
{xT (QT Q)x} = max

‖x‖2=1
{xT x} = 1.
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Properies of HRs (cont.)
if y = Qx then ‖y‖2 = ‖x‖2 since,

‖y‖2
2 =yT y=(Qx)T Qx=xT (QT Q)x=xTx=‖x‖2

2.

We usually define Q in terms of an arbitrary vector u ∈ <n

by,

Q = [I − 2
uuT

‖u‖2
2

],

Note that this corresponds to w = u/‖u‖2 but it avoids com-
puting a square root and the normalization of u.
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The Choice of u to define Q

Consider the affect of a Householder reflection applied to a
vector x, y = Qx,

y = [I − 2
uuT

‖u‖2
2

]x = x − 2
uT x

‖u‖2
2

u = x + γu.

That is, u = (y − x)/γ or u is a multiple of (y − x). This
implies that for any y such that ‖y‖2 = ‖x‖2 we can map x
onto y using

Q = [I − 2
(y − x)(y − x)T

‖y − x‖2
2

].
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An Example of a HR
Determine the value(s) of t ∈ < such that there exists a Householder
reflection, Q that maps x = (7, 0, 1)T onto y = (0, 5, t)T and find the
corresponding transformation(s). To do this we first observe that since the
2-norm must be preserved, we must have 72 + 12 = 52 + t2 or t = ±5.
Consider the solution corresponding to t = −5,

u = y − x =




0

5

−5


 −




7

0

1


 =




−7

5

−6


 .

We then have ‖u‖2
2 = 110 and −2/‖u‖2

2 = (−1/55).
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An Example of a HR (cont.)

The corresponding Q = I − 2 uuT

‖u‖2
2
, is then,

Q = I − 1

55




49 −35 42

−35 25 −30

42 −30 36




=




6/55 35/55 −42/55

35/55 30/55 30/55

−42/55 30/55 19/55


 .

Exercise. Determine the corresponding Q for t = 5.
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Factoring A using HRs
A Householder reflection can be used to transform a given vector
x = [x1, x2 · · ·xr · · ·xn]T onto [x1, x2 · · ·xr−1, s, 0, 0 · · · 0]T = yT where,

s2 = x2
r + x2

r+1 · · ·x2
n.

The corresponding u satisfies,

u = y − x =




0
...
0

−xr ± s

−xr+1
...

−xn




,

where the sign of s is usually chosen to agree with the sign of −xr (no loss

of significance).
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Efficient Computation of Qv

With this choice of u,

Qv = [I − 2
uuT

‖u‖2
2

]v = v −
(

2uT v

‖u‖2
2

)
u.

That is, we form the scalar uT v and then add a multiple of u

to v. This transformation will leave the first (r−1) entries of v

unchanged. It also has no affect on v if uT v = 0 (in particular,
if vr+1 = vr+2 = · · · = vn = 0).
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Factoring A = QR

Now consider factoring A = QR (rather than A = LU ), where R is upper
triangular and Q = Q1Q2 · · ·Qn−1, a product of Householder reflections.
Note that,

Q−1 =QT =QT
n−1Q

T
n−2 · · ·QT

1 =Qn−1Qn−2 · · ·Q1 6= Q.

This factoring (or decomposition of A) is accomplished (analogous to LU )
by first setting A0 = A and choosing Q1 to introduce zeros below the
diagonal of the first column of A1 = Q1A0,

A1 =




s1

0

0 (Q1a
(0)
2 ) · · · (Q1a

(0)
n )

...

0




.
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First Step of QR Decomp of A

From above we see that this can be done with Q1 defined by u1,

u1 =




−a
(0)
1 1 ± s1

−a
(0)
2 1
...

−a
(0)
n 1




,

where s2
1 = (a

(0)
1 1)

2 + (a
(0)
2 1)

2 · · · (a(0)
n 1)

2. In general at the rth stage,

Ar−1 =

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

a
(r−1)
1 1 a

(r−1)
1 2 · · · a

(r−1)
1 r

· · · a
(r−1)
1 n

0 a
(r−1)
2 2 · · · a

(r−1)
2 r

· · · a
(r−1)
2 n

0 0 · · · a
(r−1)
3 r

· · · a
(r−1)
3 n

...
...

...
...

...
...

0 0 · · · a
(r−1)
r r · · · a

(r−1)
r n

0 0 · · · a
(r−1)
r+1 r

· · · a
(r−1)
r+1 n

...
...

...
...

...
...

0 0 · · · a
(r−1)
n r · · · a

(r−1)
n n

�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

.
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rth Step of QR Decomp of A
We choose Qr to map

a(r−1)
r → (a

(r−1)
1 r , a

(r−1)
2 r · · · a(r−1)

r−1 r, sr, 0 · · · 0)T ,

s2
r = (a(r−1)

r r )2 + (a
(r−1)
r+1 r)

2 · · · + (a(r−1)
n r )2.

That is,

ur =




0
...

0

−a
(r−1)
r r ± sr

−a
(r−1)
r+1 r

...

−a
(r−1)
n r




.
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QTA = R
As with the LU factorization of A we have, after (n − 1) steps,

QT A = QT A0

= [Q1Q2 · · ·Qn−1]
T A0

= [Qn−1Qn−2 · · ·Q1]A0

= (Qn−1(· · · (Q2(Q1A0︸ ︷︷ ︸
A1

))) · · ·)

= An−1

≡ R

Since QT A = R and QT = Q−1 we have, after multiplying this expression
by Q,

QR = Q(QT A) = (QQT )A = A.

Exercise: Show that the operation count for this decomposition is twice

that for the LU decomposition.
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