
Examples of Interp. Rules
Trapezoidal Rule (an example of the first special case):

T (f) ≡
∫ b

a

P1(x)dx,

where x0 = a and x1 = b. We then have,

P1(x) = l0(x)f0 + l1(x)f1 =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1.

Therefore we have

T (f) =

∫ b

a

x− b

a− b
dxf(a) +

∫ b

a

x− a

b− a
dxf(b),

=

(
b− a

2

)
f(a) +

(
b− a

2

)
f(b) =

(
b− a

2

)
[f(a) + f(b)].
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Examples of Interp. Rules
We also have that Π1(x) = (x− a)(x− b) is negative for x ∈ [a, b] and∫ b

a
Π1(x)dx = − (b−a)3

6 . We therefore have satisfied the conditions of the
first special case and this implies,

T (f) = ( b−a
2 )[f(a) + f(b)], ET (f) = −f

′′

(η)
12 (b− a)3.

Simpsons Rule (an example of the second special case):

S(f) ≡
∫ b

a

P2(x)dx,

with x0 = a, x1 = a+b
2 , x2 = b.
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Simpsons Rule
Exercise: Using

P2(x) = l0(x)f(a) + l1(x)f

(
a+ b

2

)
+ l2(x)f(b),

where

l0(x) =
(x− a+b

2 )(x− b)

(a− a+b
2 )(a− b)

, l1(x) =
(x− a)(x− b)

(a+b
2 − a)(a+b

2 − b)
,

l2(x) =
(x− a)(x− a+b

2 )

(b− a)(b− a+b
2 )

.

Simplify and verify (after some tedious algebra) that,

S(f) = [

∫ b

a

l0(x)dx]f(a) + [

∫ b

a

l1(x)dx]f(
a+ b

2
) + [

∫ b

a

l2(x)dx]f(b),

...
...

=

(
b− a

6

)[
f(a) + 4f(

a+ b

2
) + f(b)

]
.

CSCD37H – Analysis of Numerical Algorithms – p.167/184



Simpsons Rule (cont)
Note that for x ∈ [a, b], Π2(x) is antisymetric about a+b

2 and this implies∫ b

a
Π2(x)dx = 0. Furthermore by choosing x3 = a+b

2 we have

Π3(x) = (x− a)(x− a+ b

2
)2(x− b),

is of one sign and this implies,

ES(f) = I(f)− S(f) =
1

4!
f4(η)

∫ b

a

Π3(x)dx.

But
∫ b

a
Π3(x)dx = − 4

15 (
b−a
2 )5 so we have,

S(f) = ( b−a
6 )[f(a) + 4f(a+b

2 ) + f(b)] ES(f) = −f4(η)
90 ( b−a

2 )5
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Gaussian Quadrature
Recall that the error for interp. rules satisfies,
E(f) =

∫ b

a
f [x0x1 · · ·xnx]Πn(x)dx, and if

∫ b

a
Πn(x)dx = 0 we have,

E(f) =

∫ b

a

f [x0x1 · · ·xn+1x]Πn+1(x)dx,

for any xn+1. Now if
∫ b

a
Πn+1(x) = 0 as well we can show similarly,

E(f) =

∫ b

a

f [x0, x1, · · ·xn+2, x]Πn+2(x)dx.

In general if we let q0(x) ≡ 1 and qi(x) ≡ (x− xn+1) · · · (x− xn+i) for

i = 1, 2, · · · (m− 1). We can then show that if
∫ b

a
Πn(x)qi(x)dx = 0, for

i = 0, 1, · · · (m− 1) then,

E(f) =

∫ b

a

f [x0x1 · · ·xn+mx]Πn+m(x)dx.
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Gaussian Quadrature (cont)
The key idea of GQ is to choose the interpolation points, (x0, x1, · · ·xn)
such that

∫ b

a
Πn(x)q(x)dx = 0 for all polynomials, q(x), of degree at most

n. In particular for the choice q(x) = qi(x) for i = 0, 1, · · ·n we have∫ b

a
Πn(x)qi(x)dx = 0 and,

E(f) =

∫ b

a

f [x0x1 · · ·x2n+1x]Π2n+1(x)dx.

To ensure that Π2n+1(x) is of one sign for x ∈ [a b] we can choose
xn+i+1 = xi for i = 0, 1, · · ·n and we then have Π2n+1(x) = Π2

n(x),

E(f) = f [x0x1 · · ·x2n+1ξ]

∫ b

a

Π2
n(x)dx =

1

(2n+ 2)!
f2n+2(η)

∫ b

a

Π2
n(x)dx.

Note that these rules will be exact for all polynomials of degree at most

2n+ 1 since f2n+2(η) ≡ 0.
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GQ – Orthoganal Polynomials
How do we choose the xi’s to ensure that

∫ b

a
Πn(x)q(x)dx = 0 for all

polynomials, q(x) of degree at most n ? This question leads to the study
of orthogonal polynomials.

Definition: The set of polynomials {r0(x), r1(x), · · · rk(x)} is orthogonal
on [−1, 1] iff the following two conditions are satisfied:

∫ 1

−1
ri(x)rj(x)dx = 0, for i 6= j,

The degree of ri(x) is i for i = 0, 1, · · · k.

CSCD37H – Analysis of Numerical Algorithms – p.171/184



Properties
Properties of orthogonal polynomials:

Any polynomial qs(x) of degree s ≤ k can be expressed as.

qs(x) =
s∑

j=0

cjrj(x).

rk(x) is orthogonal to all polynomials of degree less than k. That is,∫ 1

−1
rk(x)qs(x)dx = 0 for s < k. (This follows from the previous

property.)

rk(x) has k simple zeros all in the
interval [−1, 1].
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Proof (last property)
For rk(x), let {µ1, µ2, · · ·µm} be the set of points in [−1, 1] where rk(x)

changes sign. It is clear that each µj is a zero of rk(x) and all simple
zeros of rk(x) in [−1, 1] must be in this set. We then have m ≤ k as the
maximum number of zeros of a polynomial of degree k is k. Assume
m < k. We then have,

q̂m(x) ≡
m∏

i=1

(x− µi),

is a polynomial of degree m < k that changes sign at each µi and,
∫ 1

−1

q̂m(x)rk(x)dx = 0.

But q̂m(x) and rk(x) have the same sign for all x in [−1, 1] (they change

sign at the same locations). This implies a contradiction (the integrand is

of one sign but the integral is zero)– our assumption must be false. We

must therefore have m = k.
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3-Term Recurrence
The rk(x) also satisfy,

rs+1(x) = as(x− bs)rs(x)− csrs−1(x),

for s = 1, 2, · · · k, where the as are normalization constants, r−1(x) = 0,
and if ts =

∫ 1

−1
r2s(x)dx then,

bs =
1

ts

∫ 1

−1

xr2s(x)dx, cs =
asts

as−1ts−1
.

For example, we obtain the classical Legendre polynomials if we
normalise so rs(−1) = 1. This leads to,

as =
2s+ 1

s+ 1
, bs = 0, cs =

s

s+ 1
.

CSCD37H – Analysis of Numerical Algorithms – p.174/184



Orthogonal Polys on[a, b]
To transform orthogonal polynomials defined on [−1, 1] to [a, b]

consider the linear mapping from [−1, 1] → [a, b] defined by
x = b−a

2 y + a+b
2 . The inverse mapping is y = 1

b−a [2x− b− a] and from
calculus we know,

∫ b

a

g(x)dx = (
b− a

2
)

∫ 1

−1

g(
b− a

2
y +

a+ b

2
)dy.

This relationship, combined with the properties of Legendre
polynomials give a prescription for the choice of the xi’s for GQ:
For i = 0, 1, · · ·n, set yi to the ith zero of the Legendre Polynomial,
rn+1(y). With this choice we note that

∏n
j=0(y − yj) = K rn+1(y) for

some K 6= 0.
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Choice of thexi’s for GQ
Then with the choice xi =

b−a
2 yi +

b+a
2 we have,

Πn(x) = Πn(
b− a

2
y+

a+ b

2
) =

n∏

j=0

(
b− a

2
y +

a+ b

2
− xj)

=
n∏

j=0

(
b− a

2
y +

a+ b

2
− (

b− a

2
yj +

a+ b

2
))

=

n∏

j=0

[
b− a

2
(y − yj)

]
= (

b− a

2
)n+1

n∏

j=0

(y − yj)

= (
b− a

2
)n+1K rn+1(y).
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Choice of thexi’s (cont)
Therefore for any polynomial, q(x) of degree at most n,

∫ b

a

Πn(x)q(x)dx

= (
b−a

2
)

∫ 1

−1

Πn(x)q(
b− a

2
y +

b+ a

2
)dy,

= (
b− a

2
)

∫ 1

−1

Πn(x)q̂(y)dy,

= (
b− a

2
)n+2K

∫ 1

−1

rn+1(y)q̂(y)dy = 0.

since q̂(y) is a polynomial of degree at most n.

That is with the xi’s chosen as the ‘transformed zeros’ of the Legendre

polynomial, rn+1(y), we have the property we need.
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Composite Quadrature Rules
Approximating the integrand with a PP leads to the class of
Composite Rules. Let a = x0 < · · ·xM = b and S(x) be a PP

approximation to f(x) (defined on this mesh). We can then use
∫ b

a
S(x)dx

as the approximation to I(f) =
∫ b

a
f(x)dx. Recall that S(x) ≡ pi,n(x) for

x ∈ [xi−1, xi] i = 1, · · ·M . From calculus we have,

∫ b

a

S(x)dx =
M∑

i=1

∫ xi

xi−1

S(x)dx =
M∑

i=1

∫ xi

xi−1

pi,n(x)dx,

–A sum of basic interpolatory rules.

If we use equally spaced xi’s and low degree interpolation we obtain famil-

iar rules.
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Error Estimates for GQ
Let Gn(f) =

∑n
i=0 ωif(xi) denote the (n+ 1) – point Gaussian quadrature

rule.

We have shown,

I(f)−Gn(f) = O(b− a)2n+3, as (b− a) → 0.

The rules Gn+1, Gn+2, · · ·, are more accurate (as (b− a) → 0) so we
could use,

ÊSTGn
≡Gn+k(f)−Gn(f)=EGn

+O(b− a)2(n+k)+3.

The rules Gn+k and Gn have at most one common interpolation point
so the computation of this error estimate more than doubles the cost
(2n+ k + 2 integrand evaluations).
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Error Est for GQ (cont)
An alternative (to forming an error estimate based on Gn+k) is to use
the integrand evaluations already available (for the computation of
Gn(f)) and introduce only the minimum number of extra evaluations
required to obtain an effective error estimate.

This approach leads to a class of quadrature rules called Kronrod
quadrature rules, Kn+k(f). The error estimate for Gn(f), is then
Kn+k(f)−Gn(f), where Kn+k(f) is more accurate and less
expensive to compute than is Gn+k(f). Kronrod proposed a
particularly effective class of such rules where k = n+ 1,

K2n+1(f) ≡
n∑

i=0

aif(xi) +
n+1∑

j=0

bjf(yj),
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K2n+1(f) ≡
∑n

i=0 aif(xi) +
∑n+1

j=0 bjf(yj)

The x′
is are the interpolation points associated with Gn(f), and the

yi’s are the extra interpolation points necessary to define an accurate
approximation to I(f). Kronrod derived these weights (the ai’s and the
bi’s) and the extra interpolation points (y0, y1, · · · yn) so that the
resulting rule is order 3n+ 3.

The resulting error estimate is then,

ESTGn
≡ K2n+1(f)−Gn(f),

with an associated cost of 2n+ 3 integrand evaluations and an order
of accuracy of O((b− a)3n+4).

These Gauss-Kronrod pairs of rules can be the basis for composite
quadrature rules and adaptive methods. These methods are widely
used and implemented in numerical libraries.
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2D Quadrature
Consider the problem of approximating integrals in two dimensions,

I(f) =

∫ ∫

D

f(x, y)dxdy,

This problem is more complicated than the one dimensional case
since D can take many forms.

One can develop the analogs of Gaussian rules or interpolatory rules
but the weights and nodes will depend on the region D. Such rules
can be determined and tabulated for simple regions such as
rectangles, triangles and circles.

An arbitrary region must then be transformed onto one of these simple
regions before the rule can be used. Such a transformation will
generally be nonlinear and may introduce an approximation error as
well.
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2D Quadrature (cont)
An alternative approach is to apply a ‘product rule’, where one
reduces the 2D-integral to a sequence of two 1D-integrals:

∫ b

a

∫ β(y)

α(y)

f(x, y)dxdy =

∫ b

a

g(y)dy,

where

g(y) ≡
∫ β(y)

α(y)

f(x, y)dx.

Note that g(y) is a 1D-integral with upper and lower bounds depending
on y.

In this case g(y) is approximated, for a fixed value of y, by a standard

method (for example, ≈ ∑M
j=0 ωjf(xj , y), and

∫ b

a
g(y)dy is also

approximated by a standard method.
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2D Quadrature (cont)
That is,

∫ b

a

∫ β(y)

α(y)

f(x, y)dxdy =

∫ b

a

g(y)dy ≈
M ′∑

r=0

ω̂rg(yr),

≈
M ′∑

r=0

ω̂r




M∑

j=0

ωjf(xj , yr)


 ,

=
M ′∑

r=0

M∑

j=0

(ω̂rωj)f(xj , yr).

Note that error estimates for product rules are not easy to develop since

the function g(y) ≈ ∑M
j=0 ωjf(xj , y) will not be a ‘smooth’ function of y

unless M and the xj ’s are fixed (which is unlikely since α(y) and β(y) are

not fixed). In particular this ‘inner rule’ cannot be adaptive.

CSCD37H – Analysis of Numerical Algorithms – p.184/184


