Error Control

fWith this type of error control one can show that, for the resulting T
approximate solution
(5,55) ;2"
there exists a piecewise polynomial, Z(x) € C'[a,b] such that Z(z;) = y,
forj =0,1,--- Nror and for x € |a, b],
Z' (z) — f(z,2)| < TOL.

This inequality can be shown to imply,

TOL
L

y(z;) — y;] < (elmima) — 1),

|
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Local Error Estimates

fConsider the Modified Euler Formula: T

1] 1 -
1/2  1/2

We have shown
h
zi(zj) = yj—1+ §(k1 + k2)

+l}ﬂﬂw+%fﬁw+iﬁm—y”@gﬂh?+ou#%

1 1 1.,
Efxx_éfxy_éfyf] h3—|—0(h4),

1 1
yj"_ [Efyyf2+6ffmy+

y; +c(f)h® + O(hY).

|
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Local Error Estimates (cont)

- N

It then follows that the local error, LE, satisfies
LE = c(f)h? + O(h%),

where ¢(f) is a complicated function of f. There are two
general strategies for estimating this LE, — the use of "step
halving" and the use of a 3" order "companion formula".

|
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Step Halving

Let ¢, be the approximation to z;(z;) computed with two steps of size h/2.
If ¢(f) is almost constant the we can show

25(25) = B + 2e(F)(5)* + O*)

and from above
2j () = yj + c(f)h* + O(h?).
Therefore the local error associated with g;, LE, Is
h —1

LE = 2(f)(5)*+O(h") = —(y; — ;) + O(h*).

The method could then compute §;, y; and accept ¢, only if

%|yj —y;i| <hTOL.

Note that this strategy requires five derivative evaluations on each step and
assumes that each of the components of ¢(f) is slowly varying.

. |
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3"-Order Companion Formula

To estimate the local error associated with the Modified Euler formula
consider the use of a 3-stage, 3"? order Runge-Kutta formula,

Ji = yj_1+ h(@rky + Goky + Qsks) = z;(z;) + O(hY),
We also have

Ui = vt okt k) = 5(e5) — ()R + O,
Subtracting these two equations we have the local error estimate,

est; = (3 — yj) = c(f)h® + O(h").

|
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3"-Order Companion Formula

fNote that, for any 37¢ order formula, k; = ki and if 6o = oy = 1 and T
By1 = Bo1 = 1, we have ky = ko and the cost is only three derivative

evaluations per step to compute both y; and est;.

Can one derive such a

3-stage 3" order Runge-Kutta formula ? The following tableau with é&s ## 1
defines a one-parameter family of such "companion formulas" for Modified

Euler:
1 1 -
G3 | P31 PBs2 -
w1 (:)2 @3
with
N .o oA 9 . (3(343—2) R —1 R _13(343—1
B31 = g, B2 = Gi3— 043, W2 = 6((343 — 1), 3 6043(643 — 1) W1 = 6613 .

i
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Higher-Order Companion Formulas

fThis idea of using a "companion formula" of order p + 1 to estimate the T
local error of a p* order formula leads to the derivation of s-stage, order
(p,p + 1) formula pairs with the fewest number of stages. Such formula
pairs can be characterized by the tableau:

az | B21 -

Qs /881 SR /88,8—1 B
W1 W2 Ws
w1 W Ws

|
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Higher-Order Companion Formulas
fWhere ) T

yi = Yj-1+ thrk = 2j(z;) — (/)R + O(RPT*),
0 = Y1 +thr zj(x;) + O(hPT2),
est; = (95 —y;) =c(HRFT+ORT?).

This error estimate is a reliable estimate of the local error associated with
the lower order (order p) formula. The following table gives the fewest
number of stages required to generate formula pairs of a given order.

order pair (2,3) | (3,4) | (4,5 | (5,6) | (6,7)
fewest stages 3 4 6 8 10

|
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Choice of Stepsizeh

f’ Step is accepted only if |est;| < hTOL. T
® If histoo large, the step will be rejected.

® If histoo small, there will be too many steps.

The usual strategy for choosing the attempted stepsize, h, for the next
step is based on ‘aiming’ at the largest A which will result in an accepted
step on the current step. If we assume that ¢( f) is slowly varying then,

est;| = |e(/)IRFT + O(hP*2),
and on the next step attempted step, i1 = vh;, we want

lestit1| =~ TOL hjy;.

- |
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Choice ofh (cont)
fBut T
lestiri] & [e(f)I(vh)PTH =P esty].

We can then expect
\esthrl\ ~ TOL hj_|_1,

VW estj| = TOL (vhy),

which is equivalent to
YPlest;| = TOL h;.

|

CSCD37H — Analysis of Numerical Algorithms — p.157/184




Choice ofh (cont)

The choice of ~ to satisfy this heuristic is then,
TOL h;\ '/
Y= :
lest |

A typical step-choosing heuristic is then,

TOL hj>1/ph
7

lest|

hj_|_1 — 9 (

where .9 is a ‘safety factor’. The formula works for use after a rejected step
as well but must be modified slightly when round-off errors are significant
(as might be the case for example when TOL < 100u).

. |
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Num. Integration - Quadrature

Basic Problem — Approximation of integrals
We will investigate methods for computing an approximation to the definite
integral:

1(f) = / ' fla)da.

The obvious generic approach is to approximate the integrand f(z) on the
interval [a, b] by a function that can be integrated exactly (such as a

polynomial) and then take the integral of the approximating function to be
an approximation to I(f).

. |
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Interpolatory Rules

fWhen an interpolating polynomial, P, (x),is used the corresponding T
approximation I(P,(x)) is called an interpolatory rule, Consider writing
P, (x) in Lagrange form,

= Zf(ﬂ%)lz(l")

where [;(x) is defined by

We then have

/ Pua)z = / bifm)zi(x)dx
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Observations

- N

® The ‘weights’ (the w;’s) depend only on the interval (the value of ¢ and
b) and on the z;’s. In particular these weights are independent of the
Integrand.

® The interpolatory rules then approximate I(f) by a linear combination
of sampled integrand evaluations.

® lfa=x2y<z1 <---x, =0b are equally spaced the corresponding
Interpolatory rule is called a Newton-Coates quadrature rule.

|
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Errors In Interpolatory Rules

|7The error associated with an interpolatory rule is E(f) = I(f) — I(P,) andj
satisfies,

E(f)

/ab f(:l?)dx—/ab Pr,,(a:)dac:/a}b[f(ac)—P,n(;,;)]dgg7
b
E

= [ EBu@as,

where E,, (x) is the error in polynomial interpolation and satisfies,

E.(x) = (r—x0)(x—x1) - (x —xp) flrox: - Tprxl,
= II,(z)flroxy - zpx].

In some special cases we can simplify this expression to obtain estimates
and/or more insight into the behaviour of the error.

- |
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Error Analysis - Special Cases

First special case — If I, (x) is of one sign ( on [a, b]) then the Mean T
Value Theorem for Integrals implies,

b
E(f) = / flxoxy - - - xpx|ll, (x)dx,

b

= flrow1 - xpg] / IL,(x)dz,

for some £ € [a,b]. Also since flzgzy - - z,£] = ]17;111(;7') for some

n € (a,b), we have shown that if IL,, (x) is of one sign then,

E(f) = G/ () [, Mo () da

|
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Error Analysis - Special Cases

fSecond special case — If f I1,,(x)dz = 0 we have, for arbitrary z,,1, T

flroxy - zpx] = flrox - -SIZnSIZn_|_1] + flzoxy - zpi1z](x — Tpa1),

and therefore,

b
E(F) = / flroxy - - - xpz|ll, (x)dr,
b b
= / flroxy - xpa |1, (x)dr + / flroxy - xpai1z]ll, 1 (z)dx,

b
= /f[il?oﬂﬁ-~-96n+137]Hn+1(93)d95-

As a result, if ff IL,(x)dz = 0 and we can choose z,, 11 so that T, (x) is
of one sign, then using a similar argument as for the first special case, it
follows that, if f I1,,(z)dx = 0 and II,, . 1 (x) is of one sign,

E(f) = Gy /"2 () J, Mg () da

. |
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