
Error Control
With this type of error control one can show that, for the resulting
approximate solution

(xj , yj)
NTOL

j=0

there exists a piecewise polynomial, Z(x) ∈ C1[a, b] such that Z(xj) = yj

for j = 0, 1, · · ·NTOL and for x ∈ [a, b],

|Z ′

(x)− f(x, Z)| ≤ TOL.

This inequality can be shown to imply,

|y(xj)− yj | ≤
TOL

L
(eL(xj−a) − 1).

CSCD37H – Analysis of Numerical Algorithms – p.148/184

Local Error Estimates
Consider the Modified Euler Formula:

- -

1 1 -

1/2 1/2

We have shown

zj(xj) = yj−1 +
h

2
(k1 + k2)

+

[
1

4
f2fyy+

1

2
ffxy+

1

4
fxx−y

′′′

(xj)

]
h3+O(h4),

= yj+

[
1

12
fyyf

2+
1

6
ffxy+

1

12
fxx−

1

6
fxy−

1

6
f2
y f

]
h3+O(h4),

≡ yj + c(f)h3 +O(h4).

CSCD37H – Analysis of Numerical Algorithms – p.149/184

Local Error Estimates (cont)

It then follows that the local error, LE, satisfies

LE = c(f)h3 + O(h4),

where c(f) is a complicated function of f . There are two
general strategies for estimating this LE, – the use of "step
halving" and the use of a 3rd order "companion formula".

CSCD37H – Analysis of Numerical Algorithms – p.150/184

Step Halving
Let ŷj be the approximation to zj(xj) computed with two steps of size h/2.
If c(f) is almost constant the we can show

zj(xj) = ŷj + 2c(f)(
h

2
)3 +O(h4)

and from above
zj(xj) = yj + c(f)h3 +O(h4).

Therefore the local error associated with ŷj , L̂E, is

L̂E = 2c(f)(
h

2
)3 +O(h4) =

−1

3
(yj − ŷj) +O(h4).

The method could then compute ŷj , yj and accept ŷj only if
1
3 |yj − ŷj | < h TOL.

Note that this strategy requires five derivative evaluations on each step and

assumes that each of the components of c(f) is slowly varying.

CSCD37H – Analysis of Numerical Algorithms – p.151/184

3rd-Order Companion Formula
To estimate the local error associated with the Modified Euler formula
consider the use of a 3-stage, 3rd order Runge-Kutta formula,

ŷj = yj−1 + h(ω̂1k̂1 + ω̂2k̂2 + ω̂3k̂3) = zj(xj) +O(h4),

We also have

yj = yj−1 +
h

2
(k1 + k2) = zj(xj)− c(f)h3 +O(h4).

Subtracting these two equations we have the local error estimate,

estj ≡ (ŷj − yj) = c(f)h3 +O(h4).

CSCD37H – Analysis of Numerical Algorithms – p.152/184

3rd-Order Companion Formula
Note that, for any 3rd order formula, k1 = k̂1 and if α̂2 = α2 = 1 and
β̂21 = β21 = 1, we have k̂2 = k2 and the cost is only three derivative
evaluations per step to compute both yj and estj . Can one derive such a
3-stage 3rd order Runge-Kutta formula ? The following tableau with α̂3 6= 1

defines a one-parameter family of such "companion formulas" for Modified
Euler:

- -

1 1 -

α̂3 β̂31 β̂32 -

ω̂1 ω̂2 ω̂3

with

β̂31 = α̂2
3, β̂32 = α̂3−α̂2

3, ω̂2 =
(3α̂3 − 2)

6(α̂3 − 1)
, ω̂3 =

−1

6α̂3(α̂3 − 1)
, ω̂1 =

13α̂3 − 1

6α̂3
.

CSCD37H – Analysis of Numerical Algorithms – p.153/184

Higher-Order Companion Formulas
This idea of using a "companion formula" of order p+ 1 to estimate the
local error of a pth order formula leads to the derivation of s-stage, order
(p, p+ 1) formula pairs with the fewest number of stages. Such formula
pairs can be characterized by the tableau:

- -

α2 β21 -
...

...

αs βs1 . . . βs,s−1 -

ω1 ω2 . . . ωs

ω̂1 ω̂2 . . . ω̂s

CSCD37H – Analysis of Numerical Algorithms – p.154/184

Higher-Order Companion Formulas
Where

yj = yj−1 + h

s∑

r=1

ωrkr = zj(xj)− c(f)hp+1 +O(hp+2),

ŷj = yj−1 + h
s∑

r=1

ω̂rkr = zj(xj) +O(hp+2),

estj = (ŷj − yj) = c(f)hp+1 +O(hp+2).

This error estimate is a reliable estimate of the local error associated with
the lower order (order p) formula. The following table gives the fewest
number of stages required to generate formula pairs of a given order.

order pair (2,3) (3,4) (4,5) (5,6) (6,7)

fewest stages 3 4 6 8 10

CSCD37H – Analysis of Numerical Algorithms – p.155/184

Choice of Stepsize,h
Step is accepted only if |estj | < hTOL.

If h is too large, the step will be rejected.

If h is too small, there will be too many steps.

The usual strategy for choosing the attempted stepsize, h, for the next
step is based on ‘aiming’ at the largest h which will result in an accepted
step on the current step. If we assume that c(f) is slowly varying then,

|estj | = |c(f)|hp+1
j +O(hp+2),

and on the next step attempted step, hj+1 = γhj , we want

|estj+1| ≈ TOL hj+1.

CSCD37H – Analysis of Numerical Algorithms – p.156/184

Choice ofh (cont)
But

|estj+1| ≈ |c(f)|(γhj)
p+1 = γp+1|estj |.

We can then expect

|estj+1| ≈ TOL hj+1,

if

γp+1|estj | ≈ TOL (γhj),

which is equivalent to

γp|estj | ≈ TOL hj .

CSCD37H – Analysis of Numerical Algorithms – p.157/184

Choice ofh (cont)
The choice of γ to satisfy this heuristic is then,

γ =

(
TOL hj

|estj |

)1/p

.

A typical step-choosing heuristic is then,

hj+1 = .9

(
TOL hj

|estj |

)1/p

hj ,

where .9 is a ‘safety factor’. The formula works for use after a rejected step

as well but must be modified slightly when round-off errors are significant

(as might be the case for example when TOL < 100µ).

CSCD37H – Analysis of Numerical Algorithms – p.158/184

Num. Integration - Quadrature

Basic Problem – Approximation of integrals
We will investigate methods for computing an approximation to the definite
integral:

I(f) ≡
∫ b

a

f(x)dx.

The obvious generic approach is to approximate the integrand f(x) on the
interval [a, b] by a function that can be integrated exactly (such as a
polynomial) and then take the integral of the approximating function to be
an approximation to I(f).

CSCD37H – Analysis of Numerical Algorithms – p.159/184

Interpolatory Rules
When an interpolating polynomial, Pn(x),is used the corresponding
approximation I(Pn(x)) is called an interpolatory rule, Consider writing
Pn(x) in Lagrange form,

Pn(x) =
n∑

i=0

f(xi)li(x),

where li(x) is defined by

li(x) =
n∏

j=0,j 6=i

(
x− xj

xi − xj

)
.

We then have
∫ b

a

Pn(x)dx =

∫ b

a

n∑

i=0

f(xi)li(x)dx

=

n∑

i=0

f(xi)

∫ b

a

li(x)dx ≡
n∑

i=0

ωif(xi).

CSCD37H – Analysis of Numerical Algorithms – p.160/184

Observations

The ‘weights’ (the ωi’s) depend only on the interval (the value of a and
b) and on the xi’s. In particular these weights are independent of the
integrand.

The interpolatory rules then approximate I(f) by a linear combination
of sampled integrand evaluations.

If a = x0 < x1 < · · ·xn = b are equally spaced the corresponding
interpolatory rule is called a Newton-Coates quadrature rule.

CSCD37H – Analysis of Numerical Algorithms – p.161/184

Errors in Interpolatory Rules
The error associated with an interpolatory rule is E(f) = I(f)− I(Pn) and
satisfies,

E(f) =

∫ b

a

f(x)dx−
∫ b

a

Pn(x)dx=

∫ b

a

[f(x)−Pn(x)]dx,

=

∫ b

a

En(x)dx,

where En(x) is the error in polynomial interpolation and satisfies,

En(x) = (x− x0)(x− x1) · · · (x− xn)f [x0x1 · · ·xnx],

= Πn(x)f [x0x1 · · ·xnx].

In some special cases we can simplify this expression to obtain estimates

and/or more insight into the behaviour of the error.

CSCD37H – Analysis of Numerical Algorithms – p.162/184

Error Analysis - Special Cases
First special case – If Πn(x) is of one sign (on [a, b]) then the Mean
Value Theorem for Integrals implies,

E(f) =

∫ b

a

f [x0x1 · · ·xnx]Πn(x)dx,

= f [x0x1 · · ·xnξ]

∫ b

a

Πn(x)dx,

for some ξ ∈ [a, b]. Also since f [x0x1 · · ·xnξ] =
fn+1(η)
(n+1)! for some

η ∈ (a, b), we have shown that if Πn(x) is of one sign then,

E(f) = 1
(n+1)!f

n+1(η)
∫ b

a
Πn(x)dx

CSCD37H – Analysis of Numerical Algorithms – p.163/184

Error Analysis - Special Cases
Second special case – If

∫ b

a
Πn(x)dx = 0 we have, for arbitrary xn+1,

f [x0x1 · · ·xnx] = f [x0x1 · · ·xnxn+1] + f [x0x1 · · ·xn+1x](x− xn+1),

and therefore,

E(F) =

∫ b

a

f [x0x1 · · ·xnx]Πn(x)dx,

=

∫ b

a

f [x0x1 · · ·xn+1]Πn(x)dx+

∫ b

a

f [x0x1 · · ·xn+1x]Πn+1(x)dx,

=

∫ b

a

f [x0x1 · · ·xn+1x]Πn+1(x)dx.

As a result, if
∫ b

a
Πn(x)dx = 0 and we can choose xn+1 so that Πn+1(x) is

of one sign, then using a similar argument as for the first special case, it
follows that, if

∫ b

a
Πn(x)dx = 0 and Πn+1(x) is of one sign,

E(f) = 1
(n+2)!f

n+2(η)
∫ b

a
Πn+1(x)dx

CSCD37H – Analysis of Numerical Algorithms – p.164/184

