Error Control

With this type of error control one can show that, for the resulting approximate solution

 $(x_j, y_j)_{j=0}^{N_{TOL}}$

there exists a piecewise polynomial, $Z(x) \in C^1[a, b]$ such that $Z(x_j) = y_j$ for $j = 0, 1, \dots N_{TOL}$ and for $x \in [a, b]$,

$$Z'(x) - f(x, Z)| \le TOL.$$

This inequality can be shown to imply,

$$|y(x_j) - y_j| \le \frac{TOL}{L} (e^{L(x_j - a)} - 1).$$

Local Error Estimates

Consider the Modified Euler Formula:

We have shown

$$z_{j}(x_{j}) = y_{j-1} + \frac{h}{2}(k_{1} + k_{2}) \\ + \left[\frac{1}{4}f^{2}f_{yy} + \frac{1}{2}ff_{xy} + \frac{1}{4}f_{xx} - y^{\prime\prime\prime}(x_{j})\right]h^{3} + O(h^{4}), \\ = y_{j} + \left[\frac{1}{12}f_{yy}f^{2} + \frac{1}{6}ff_{xy} + \frac{1}{12}f_{xx} - \frac{1}{6}f_{xy} - \frac{1}{6}f_{y}^{2}f\right]h^{3} + O(h^{4}), \\ \equiv y_{j} + c(f)h^{3} + O(h^{4}).$$

Local Error Estimates (cont)

It then follows that the local error, LE, satisfies

$$LE = c(f)h^3 + O(h^4),$$

where c(f) is a complicated function of f. There are two general strategies for estimating this LE, – the use of "step halving" and the use of a 3^{rd} order "companion formula".

Step Halving

Let \hat{y}_j be the approximation to $z_j(x_j)$ computed with two steps of size h/2. If c(f) is almost constant the we can show

$$z_j(x_j) = \hat{y}_j + 2c(f)(\frac{h}{2})^3 + O(h^4)$$

and from above

$$z_j(x_j) = y_j + c(f)h^3 + O(h^4).$$

Therefore the local error associated with \hat{y}_j , $\widehat{L}\widehat{E}$, is

$$\widehat{LE} = 2c(f)(\frac{h}{2})^3 + O(h^4) = \frac{-1}{3}(y_j - \hat{y}_j) + O(h^4).$$

The method could then compute \hat{y}_j, y_j and accept \hat{y}_j only if $\frac{1}{3}|y_j - \hat{y}_j| < h \ TOL$.

Note that this strategy requires five derivative evaluations on each step and assumes that each of the components of c(f) is slowly varying.

3rd-Order Companion Formula

To estimate the local error associated with the Modified Euler formula consider the use of a 3-stage, 3^{rd} order Runge-Kutta formula,

$$\hat{y}_j = y_{j-1} + h(\hat{\omega}_1 \hat{k}_1 + \hat{\omega}_2 \hat{k}_2 + \hat{\omega}_3 \hat{k}_3) = z_j(x_j) + O(h^4),$$

We also have

$$y_j = y_{j-1} + \frac{h}{2}(k_1 + k_2) = z_j(x_j) - c(f)h^3 + O(h^4).$$

Subtracting these two equations we have the local error estimate,

$$est_j \equiv (\hat{y}_j - y_j) = c(f)h^3 + O(h^4).$$

3rd-Order Companion Formula

Note that, for any 3^{rd} order formula, $k_1 = \hat{k}_1$ and if $\hat{\alpha}_2 = \alpha_2 = 1$ and $\hat{\beta}_{21} = \beta_{21} = 1$, we have $\hat{k}_2 = k_2$ and the cost is only three derivative evaluations per step to compute both y_j and est_j . Can one derive such a 3-stage 3^{rd} order Runge-Kutta formula ? The following tableau with $\hat{\alpha}_3 \neq 1$ defines a one-parameter family of such "companion formulas" for Modified Euler:

with

$$\hat{\beta}_{31} = \hat{\alpha}_3^2, \ \hat{\beta}_{32} = \hat{\alpha}_3 - \hat{\alpha}_3^2, \ \hat{\omega}_2 = \frac{(3\hat{\alpha}_3 - 2)}{6(\hat{\alpha}_3 - 1)}, \ \hat{\omega}_3 = \frac{-1}{6\hat{\alpha}_3(\hat{\alpha}_3 - 1)}, \ \hat{\omega}_1 = \frac{13\hat{\alpha}_3 - 1}{6\hat{\alpha}_3}.$$

Higher-Order Companion Formulas

This idea of using a "companion formula" of order p + 1 to estimate the local error of a p^{th} order formula leads to the derivation of s-stage, order (p, p + 1) formula pairs with the fewest number of stages. Such formula pairs can be characterized by the tableau:

Higher-Order Companion Formulas

Where

$$y_{j} = y_{j-1} + h \sum_{r=1}^{s} \omega_{r} k_{r} = z_{j}(x_{j}) - c(f)h^{p+1} + O(h^{p+2}),$$

$$\hat{y}_{j} = y_{j-1} + h \sum_{r=1}^{s} \hat{\omega}_{r} k_{r} = z_{j}(x_{j}) + O(h^{p+2}),$$

$$est_{j} = (\hat{y}_{j} - y_{j}) = c(f)h^{p+1} + O(h^{p+2}).$$

This error estimate is a reliable estimate of the local error associated with the lower order (order p) formula. The following table gives the fewest number of stages required to generate formula pairs of a given order.

order pair	(2,3)	(3,4)	(4,5)	(5,6)	(6,7)
fewest stages	3	4	6	8	10

$\label{eq:choice} \textbf{Choice of Stepsize,} \ h$

- Step is accepted only if $|est_j| < hTOL$.
- If h is too large, the step will be rejected.
- \blacksquare If h is too small, there will be too many steps.

The usual strategy for choosing the attempted stepsize, h, for the next step is based on 'aiming' at the largest h which will result in an accepted step on the current step. If we assume that c(f) is slowly varying then,

$$|est_j| = |c(f)|h_j^{p+1} + O(h^{p+2}),$$

and on the next step attempted step, $h_{j+1} = \gamma h_j$, we want

 $|est_{j+1}| \approx TOL \ h_{j+1}.$

Choice of *h* (cont)

But

$$|est_{j+1}| \approx |c(f)|(\gamma h_j)^{p+1} = \gamma^{p+1}|est_j|.$$

We can then expect

 $|est_{j+1}| \approx TOL \ h_{j+1},$

if

$$\gamma^{p+1}|est_j| \approx TOL \ (\gamma h_j),$$

which is equivalent to

 $\gamma^p |est_j| \approx TOL h_j.$

Choice of *h* (cont)

The choice of γ to satisfy this heuristic is then,

$$\gamma = \left(\frac{TOL \ h_j}{|est_j|}\right)^{1/p}$$

A typical step-choosing heuristic is then,

$$h_{j+1} = .9 \left(\frac{TOL \ h_j}{|est_j|}\right)^{1/p} h_j,$$

where .9 is a 'safety factor'. The formula works for use after a rejected step as well but must be modified slightly when round-off errors are significant (as might be the case for example when $TOL < 100\mu$).

Num. Integration - Quadrature

Basic Problem – Approximation of integrals

We will investigate methods for computing an approximation to the definite integral:

$$I(f) \equiv \int_{a}^{b} f(x) dx.$$

The obvious generic approach is to approximate the integrand f(x) on the interval [a, b] by a function that can be integrated exactly (such as a polynomial) and then take the integral of the approximating function to be an approximation to I(f).

Interpolatory Rules

When an interpolating polynomial, $P_n(x)$, is used the corresponding approximation $I(P_n(x))$ is called an interpolatory rule, Consider writing $P_n(x)$ in Lagrange form,

$$P_n(x) = \sum_{i=0}^n f(x_i)l_i(x),$$

where $l_i(x)$ is defined by

$$l_i(x) = \prod_{j=0, j\neq i}^n \left(\frac{x-x_j}{x_i-x_j}\right).$$

We then have

$$\int_{a}^{b} P_{n}(x)dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i})l_{i}(x)dx$$
$$= \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} l_{i}(x)dx \equiv \sum_{i=0}^{n} \omega_{i}f(x_{i}).$$

Observations

- The 'weights' (the ω_i's) depend only on the interval (the value of a and b) and on the x_i's. In particular these weights are independent of the integrand.
- The interpolatory rules then approximate I(f) by a linear combination of sampled integrand evaluations.
- If $a = x_0 < x_1 < \cdots x_n = b$ are equally spaced the corresponding interpolatory rule is called a <u>Newton-Coates</u> quadrature rule.

Errors in Interpolatory Rules

The error associated with an interpolatory rule is $E(f) = I(f) - I(P_n)$ and satisfies,

$$E(f) = \int_{a}^{b} f(x)dx - \int_{a}^{b} P_{n}(x)dx = \int_{a}^{b} [f(x) - P_{n}(x)]dx,$$

= $\int_{a}^{b} E_{n}(x)dx,$

where $E_n(x)$ is the error in polynomial interpolation and satisfies,

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) f[x_0 x_1 \cdots x_n x],$$

= $\Pi_n(x) f[x_0 x_1 \cdots x_n x].$

In some special cases we can simplify this expression to obtain estimates and/or more insight into the behaviour of the error.

Error Analysis - Special Cases

First special case – If $\Pi_n(x)$ is of one sign (on [a, b]) then the Mean Value Theorem for Integrals implies,

$$E(f) = \int_{a}^{b} f[x_{0}x_{1}\cdots x_{n}x]\Pi_{n}(x)dx,$$
$$= f[x_{0}x_{1}\cdots x_{n}\xi]\int_{a}^{b}\Pi_{n}(x)dx,$$

for some $\xi \in [a, b]$. Also since $f[x_0x_1 \cdots x_n\xi] = \frac{f^{n+1}(\eta)}{(n+1)!}$ for some $\eta \in (a, b)$, we have shown that if $\Pi_n(x)$ is of one sign then,

$$E(f) = \frac{1}{(n+1)!} f^{n+1}(\eta) \int_{a}^{b} \prod_{n} (x) dx$$

Error Analysis - Special Cases

Second special case – If $\int_a^b \Pi_n(x) dx = 0$ we have, for arbitrary x_{n+1} , $f[x_0x_1\cdots x_nx] = f[x_0x_1\cdots x_nx_{n+1}] + f[x_0x_1\cdots x_{n+1}x](x-x_{n+1})$, and therefore,

$$E(F) = \int_{a}^{b} f[x_{0}x_{1}\cdots x_{n}x]\Pi_{n}(x)dx,$$

= $\int_{a}^{b} f[x_{0}x_{1}\cdots x_{n+1}]\Pi_{n}(x)dx + \int_{a}^{b} f[x_{0}x_{1}\cdots x_{n+1}x]\Pi_{n+1}(x)dx,$
= $\int_{a}^{b} f[x_{0}x_{1}\cdots x_{n+1}x]\Pi_{n+1}(x)dx.$

As a result, if $\int_a^b \Pi_n(x) dx = 0$ and we can choose x_{n+1} so that $\Pi_{n+1}(x)$ is of one sign, then using a similar argument as for the first special case, it follows that, if $\int_a^b \Pi_n(x) dx = 0$ and $\Pi_{n+1}(x)$ is of one sign,

$$E(f) = \frac{1}{(n+2)!} f^{n+2}(\eta) \int_a^b \Pi_{n+1}(x) dx$$

