Error Control

With this type of error control one can show that, for the resulting approximate solution

$$
\left(x_{j}, y_{j}\right)_{j=0}^{N_{T O L}}
$$

there exists a piecewise polynomial, $Z(x) \in C^{1}[a, b]$ such that $Z\left(x_{j}\right)=y_{j}$ for $j=0,1, \cdots N_{T O L}$ and for $x \in[a, b]$,

$$
\left|Z^{\prime}(x)-f(x, Z)\right| \leq T O L
$$

This inequality can be shown to imply,

$$
\left|y\left(x_{j}\right)-y_{j}\right| \leq \frac{T O L}{L}\left(e^{L\left(x_{j}-a\right)}-1\right) .
$$

Local Error Estimates

Consider the Modified Euler Formula:

-	-	
1	1	-
	$1 / 2$	$1 / 2$

We have shown

$$
\begin{aligned}
z_{j}\left(x_{j}\right)= & y_{j-1}+\frac{h}{2}\left(k_{1}+k_{2}\right) \\
& +\left[\frac{1}{4} f^{2} f_{y y}+\frac{1}{2} f f_{x y}+\frac{1}{4} f_{x x}-y^{\prime \prime \prime}\left(x_{j}\right)\right] h^{3}+O\left(h^{4}\right) \\
= & y_{j}+\left[\frac{1}{12} f_{y y} f^{2}+\frac{1}{6} f f_{x y}+\frac{1}{12} f_{x x}-\frac{1}{6} f_{x y}-\frac{1}{6} f_{y}^{2} f\right] h^{3}+O\left(h^{4}\right), \\
\equiv & y_{j}+c(f) h^{3}+O\left(h^{4}\right)
\end{aligned}
$$

Local Error Estimates (cont)

It then follows that the local error, LE, satisfies

$$
L E=c(f) h^{3}+O\left(h^{4}\right),
$$

where $c(f)$ is a complicated function of f. There are two general strategies for estimating this LE, - the use of "step halving" and the use of a $3^{r d}$ order "companion formula".

Step Halving

Let \hat{y}_{j} be the approximation to $z_{j}\left(x_{j}\right)$ computed with two steps of size $h / 2$. If $c(f)$ is almost constant the we can show

$$
z_{j}\left(x_{j}\right)=\hat{y}_{j}+2 c(f)\left(\frac{h}{2}\right)^{3}+O\left(h^{4}\right)
$$

and from above

$$
z_{j}\left(x_{j}\right)=y_{j}+c(f) h^{3}+O\left(h^{4}\right) .
$$

Therefore the local error associated with $\hat{y}_{j}, \widehat{L E}$, is

$$
\widehat{L E}=2 c(f)\left(\frac{h}{2}\right)^{3}+O\left(h^{4}\right)=\frac{-1}{3}\left(y_{j}-\hat{y}_{j}\right)+O\left(h^{4}\right) .
$$

The method could then compute \hat{y}_{j}, y_{j} and accept \hat{y}_{j} only if $\frac{1}{3}\left|y_{j}-\hat{y}_{j}\right|<h T O L$.
Note that this strategy requires five derivative evaluations on each step and assumes that each of the components of $c(f)$ is slowly varying.

$3^{r d}$-Order Companion Formula

To estimate the local error associated with the Modified Euler formula consider the use of a 3-stage, $3^{\text {rd }}$ order Runge-Kutta formula,

$$
\hat{y}_{j}=y_{j-1}+h\left(\hat{\omega}_{1} \hat{k}_{1}+\hat{\omega}_{2} \hat{k}_{2}+\hat{\omega}_{3} \hat{k}_{3}\right)=z_{j}\left(x_{j}\right)+O\left(h^{4}\right),
$$

We also have

$$
y_{j}=y_{j-1}+\frac{h}{2}\left(k_{1}+k_{2}\right)=z_{j}\left(x_{j}\right)-c(f) h^{3}+O\left(h^{4}\right) .
$$

Subtracting these two equations we have the local error estimate,

$$
e s t_{j} \equiv\left(\hat{y}_{j}-y_{j}\right)=c(f) h^{3}+O\left(h^{4}\right) .
$$

$3^{r d}$-Order Companion Formula

Note that, for any $3^{\text {rd }}$ order formula, $k_{1}=\hat{k}_{1}$ and if $\hat{\alpha}_{2}=\alpha_{2}=1$ and $\hat{\beta}_{21}=\beta_{21}=1$, we have $\hat{k}_{2}=k_{2}$ and the cost is only three derivative evaluations per step to compute both y_{j} and $e s t_{j}$. Can one derive such a 3 -stage $3^{r d}$ order Runge-Kutta formula? The following tableau with $\hat{\alpha}_{3} \neq 1$ defines a one-parameter family of such "companion formulas" for Modified Euler:

-	-		
1	1	-	
$\hat{\alpha}_{3}$	$\hat{\beta}_{31}$	$\hat{\beta}_{32}$	-
	$\hat{\omega}_{1}$	$\hat{\omega}_{2}$	$\hat{\omega}_{3}$

with
$\hat{\beta}_{31}=\hat{\alpha}_{3}^{2}, \hat{\beta}_{32}=\hat{\alpha}_{3}-\hat{\alpha}_{3}^{2}, \hat{\omega}_{2}=\frac{\left(3 \hat{\alpha}_{3}-2\right)}{6\left(\hat{\alpha}_{3}-1\right)}, \hat{\omega}_{3}=\frac{-1}{6 \hat{\alpha}_{3}\left(\hat{\alpha}_{3}-1\right)}, \hat{\omega}_{1}=\frac{13 \hat{\alpha}_{3}-1}{6 \hat{\alpha}_{3}}$.

Higher-Order Companion Formulas

This idea of using a "companion formula" of order $p+1$ to estimate the local error of a $p^{t h}$ order formula leads to the derivation of s-stage, order $(p, p+1)$ formula pairs with the fewest number of stages. Such formula pairs can be characterized by the tableau:

Higher-Order Companion Formulas

Where

$$
\begin{aligned}
y_{j} & =y_{j-1}+h \sum_{r=1}^{s} \omega_{r} k_{r}=z_{j}\left(x_{j}\right)-c(f) h^{p+1}+O\left(h^{p+2}\right), \\
\hat{y}_{j} & =y_{j-1}+h \sum_{r=1}^{s} \hat{\omega}_{r} k_{r}=z_{j}\left(x_{j}\right)+O\left(h^{p+2}\right), \\
\text { est }_{j} & =\left(\hat{y}_{j}-y_{j}\right)=c(f) h^{p+1}+O\left(h^{p+2}\right) .
\end{aligned}
$$

This error estimate is a reliable estimate of the local error associated with the lower order (order p) formula. The following table gives the fewest number of stages required to generate formula pairs of a given order.

order pair	$(2,3)$	$(3,4)$	$(4,5)$	$(5,6)$	$(6,7)$
fewest stages	3	4	6	8	10

Choice of Stepsize, h

- Step is accepted only if $\left|e s t_{j}\right|<h T O L$.
- If h is too large, the step will be rejected.
- If h is too small, there will be too many steps.

The usual strategy for choosing the attempted stepsize, h, for the next step is based on 'aiming' at the largest h which will result in an accepted step on the current step. If we assume that $c(f)$ is slowly varying then,

$$
\left|e s t_{j}\right|=|c(f)| h_{j}^{p+1}+O\left(h^{p+2}\right)
$$

and on the next step attempted step, $h_{j+1}=\gamma h_{j}$, we want

$$
\left|e s t_{j+1}\right| \approx T O L h_{j+1}
$$

Choice of h (cont)

But

$$
\left|e s t_{j+1}\right| \approx|c(f)|\left(\gamma h_{j}\right)^{p+1}=\gamma^{p+1}\left|e s t_{j}\right| .
$$

We can then expect

$$
\left|e s t_{j+1}\right| \approx T O L h_{j+1},
$$

if

$$
\gamma^{p+1}\left|e s t_{j}\right| \approx T O L\left(\gamma h_{j}\right),
$$

which is equivalent to

$$
\gamma^{p}\left|e s t_{j}\right| \approx T O L h_{j} .
$$

Choice of h (cont)

The choice of γ to satisfy this heuristic is then,

$$
\gamma=\left(\frac{T O L h_{j}}{\left|e s t_{j}\right|}\right)^{1 / p}
$$

A typical step-choosing heuristic is then,

$$
h_{j+1}=.9\left(\frac{T O L h_{j}}{\left|e s t_{j}\right|}\right)^{1 / p} h_{j}
$$

where .9 is a 'safety factor'. The formula works for use after a rejected step as well but must be modified slightly when round-off errors are significant (as might be the case for example when $T O L<100 \mu$).

Num. Integration - Quadrature

Basic Problem - Approximation of integrals

We will investigate methods for computing an approximation to the definite integral:

$$
I(f) \equiv \int_{a}^{b} f(x) d x
$$

The obvious generic approach is to approximate the integrand $f(x)$ on the interval $[a, b]$ by a function that can be integrated exactly (such as a polynomial) and then take the integral of the approximating function to be an approximation to $I(f)$.

Interpolatory Rules

When an interpolating polynomial, $P_{n}(x)$, is used the corresponding approximation $I\left(P_{n}(x)\right)$ is called an interpolatory rule, Consider writing $P_{n}(x)$ in Lagrange form,

$$
P_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) l_{i}(x),
$$

where $l_{i}(x)$ is defined by

$$
l_{i}(x)=\prod_{j=0, j \neq i}^{n}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right) .
$$

We then have

$$
\begin{aligned}
\int_{a}^{b} P_{n}(x) d x & =\int_{a}^{b} \sum_{i=0}^{n} f\left(x_{i}\right) l_{i}(x) d x \\
& =\sum_{i=0}^{n} f\left(x_{i}\right) \int_{a}^{b} l_{i}(x) d x \equiv \sum_{i=0}^{n} \omega_{i} f\left(x_{i}\right)
\end{aligned}
$$

Observations

- The 'weights' (the ω_{i} 's) depend only on the interval (the value of a and b) and on the x_{i} 's. In particular these weights are independent of the integrand.
- The interpolatory rules then approximate $I(f)$ by a linear combination of sampled integrand evaluations.
- If $a=x_{0}<x_{1}<\cdots x_{n}=b$ are equally spaced the corresponding interpolatory rule is called a Newton-Coates quadrature rule.

Errors in Interpolatory Rules

The error associated with an interpolatory rule is $E(f)=I(f)-I\left(P_{n}\right)$ and satisfies,

$$
\begin{aligned}
E(f) & =\int_{a}^{b} f(x) d x-\int_{a}^{b} P_{n}(x) d x=\int_{a}^{b}\left[f(x)-P_{n}(x)\right] d x, \\
& =\int_{a}^{b} E_{n}(x) d x
\end{aligned}
$$

where $E_{n}(x)$ is the error in polynomial interpolation and satisfies,

$$
\begin{aligned}
E_{n}(x) & =\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right) f\left[x_{0} x_{1} \cdots x_{n} x\right] \\
& =\Pi_{n}(x) f\left[x_{0} x_{1} \cdots x_{n} x\right]
\end{aligned}
$$

In some special cases we can simplify this expression to obtain estimates and/or more insight into the behaviour of the error.

Error Analysis - Special Cases

- First special case - If $\Pi_{n}(x)$ is of one sign (on $[a, b]$) then the Mean Value Theorem for Integrals implies,

$$
\begin{aligned}
E(f) & =\int_{a}^{b} f\left[x_{0} x_{1} \cdots x_{n} x\right] \Pi_{n}(x) d x \\
& =f\left[x_{0} x_{1} \cdots x_{n} \xi\right] \int_{a}^{b} \Pi_{n}(x) d x
\end{aligned}
$$

for some $\xi \in[a, b]$. Also since $f\left[x_{0} x_{1} \cdots x_{n} \xi\right]=\frac{f^{n+1}(\eta)}{(n+1)!}$ for some $\eta \in(a, b)$, we have shown that if $\Pi_{n}(x)$ is of one sign then,

$$
E(f)=\frac{1}{(n+1)!} f^{n+1}(\eta) \int_{a}^{b} \Pi_{n}(x) d x
$$

Error Analysis - Special Cases

Second special case - If $\int_{a}^{b} \Pi_{n}(x) d x=0$ we have, for arbitrary x_{n+1},

$$
f\left[x_{0} x_{1} \cdots x_{n} x\right]=f\left[x_{0} x_{1} \cdots x_{n} x_{n+1}\right]+f\left[x_{0} x_{1} \cdots x_{n+1} x\right]\left(x-x_{n+1}\right),
$$

and therefore,

$$
\begin{aligned}
E(F) & =\int_{a}^{b} f\left[x_{0} x_{1} \cdots x_{n} x\right] \Pi_{n}(x) d x \\
& =\int_{a}^{b} f\left[x_{0} x_{1} \cdots x_{n+1}\right] \Pi_{n}(x) d x+\int_{a}^{b} f\left[x_{0} x_{1} \cdots x_{n+1} x\right] \Pi_{n+1}(x) d x \\
& =\int_{a}^{b} f\left[x_{0} x_{1} \cdots x_{n+1} x\right] \Pi_{n+1}(x) d x
\end{aligned}
$$

As a result, if $\int_{a}^{b} \Pi_{n}(x) d x=0$ and we can choose x_{n+1} so that $\Pi_{n+1}(x)$ is of one sign, then using a similar argument as for the first special case, it follows that, if $\int_{a}^{b} \Pi_{n}(x) d x=0$ and $\Pi_{n+1}(x)$ is of one sign,

$$
E(f)=\frac{1}{(n+2)!} f^{n+2}(\eta) \int_{a}^{b} \Pi_{n+1}(x) d x
$$

