
CSCD37H – Analysis of Numerical
Algorithms for Computational

Mathematics
Wayne Enright

enright@cs.utoronto.ca

Department of Computer Science

University of Toronto

CSCD37H – Analysis of Numerical Algorithms – p.1/183



General Information and Math Review

1. What is Numerical Analysis ?
Why do we need to approximate?

2. Notation and Mathematical Review :

Floating point arithmetic
Linear Algebra: Notation and Review of key results.
Calculus: Notation and Review of key results.

CSCD37H – Analysis of Numerical Algorithms – p.2/183



What is Numerical Analysis?

Consider the investigation of a well defined mathematical model
arising in any application area. Assume the model is ‘well defined’ in
the sense that there exists a ‘solution’ and it is unique. Examples
include modelling the spread of an infectious disease, modelling
cancer treatments, or modelling the pricing of ‘options’.

We are interested in the ‘Conditioning’ (or sensitivity) of the underlying
mathematical problem to ‘small’ changes in the problem definition.

For virtually all mathematical models of practical interest one cannot
determine a useful ‘closed form’ expression for the exact solution and
one must approximate the exact solution.

CSCD37H – Analysis of Numerical Algorithms – p.3/183



Scientific Computing

1. Formulate a mathematical model of the problem.

2. Approximate the solution of the model.

3. Visualize the approximate solution.

4. Verify that the approximate solution is consistent with the model.

5. Verify that the model is well-posed.

In this course we will focus on developing, analysing and evaluating
software/methods for addressing 2.

CSCD37H – Analysis of Numerical Algorithms – p.4/183



Focus of Numerical Analysis

The emphasis is on the development and analysis of
algorithms to approximate the exact solution to
mathematical models.

Algorithms must be constructive and finite .

We must analyse the errors in the approximation.

We must also quantify the stability and efficiency of the
algorithms.

CSCD37H – Analysis of Numerical Algorithms – p.5/183



Numerical Analysis (cont)
We will be concerned with the intelligent use of existing algorithms
embedded in widely used numerical software. We will not spend much
time on developing algorithms or on writing code.

How to interpret the numerical (approximate) results.

What method (algorithm) should be used.

What methods are available in the usual ‘Problem Solving
Environments’ that scientists, engineers and students work in. For
example in MATLAB, MAPLE or Mathematica.

In order to appreciate the limitations of the methods we must analyse
and understand the underlying algorithms on which the methods are
based.

CSCD37H – Analysis of Numerical Algorithms – p.6/183



A Famous Numerical Algorithm
For details see [A $25 Billion Dollar Eigenvector Algorithm, SIAM Review,
September 2006, pp. 569-581.]
The development of an algorithm for the Google Search Engine.

Locate and access all public web pages.

Identify those pages that satisfy a search criteria. Let this set of pages
be p1, p2, . . . pn.

Rank these ’hit pages’ in order of their importance.

1. The important pages (the most relevant) must be listed first.

2. This ordering is accomplished using a Page Rank Algorithm.

3. A ’score’, xi, is assigned to each page, pi, i = 1, 2 . . . n with xi ≥ 0.

Pages are returned (listed) in order of decreasing scores.

CSCD37H – Analysis of Numerical Algorithms – p.7/183



Google Search Algorithm
Use a directed graph, G, to represent the set of all pages with vertices,
v1, v2 . . . vn and an edge (vi, vk) iff pi has a link to pk. Assume that a page
is important (an authority) if several pages link to it. For example consider
the case where there are four hit pages represented by, v1, v2, v3, v4,
where the first page has links to p2, p3, p4; the second page has links to to
p3, p4; the third page has a link to p1; and the fourth page has links to
p1, p3. G can be represented by its adjacency (or incidence) matrix, A:

A =




0 1 1 1

0 0 1 1

1 0 0 0

1 0 1 0




.

CSCD37H – Analysis of Numerical Algorithms – p.8/183



Search Algorithm (cont)
With this representation of G, and with, e = (1, 1 . . . 1)T we have:

1. A e = (m1, m2 . . .mn)T , where mi is the number of pages that pi links
to and the ith component of AT e is the number of pages that have
links to pi.

2. If xi is the score of pi and x = (x1, x2 . . . xn)T then,

y ≡ AT x = (y1, y2 . . . yn)T ,

where yi is the sum of all the scores of pages that link to pi.

3. Therefore, a natural definition for xi is yi. That is, the vector x is
identified by x = AT x or AT x = x. This implies that x is an
eigenvector of AT corresponding to the eigenvalue λ = 1.

CSCD37H – Analysis of Numerical Algorithms – p.9/183



The Google Algorithm (Cont)
This definition for xi gives too much influence to those pages with lots of
links (mi large) and we can improve the measure of importance by
modifying our definition of G and A, by assigning a weight of 1/mi to the
edge from vi to vk (if it exists). That is, for the above example, A is
modified and becomes:

A =




0 1/3 1/3 1/3

0 0 1/2 1/2

1 0 0 0

1/2 0 1/2 0




.

CSCD37H – Analysis of Numerical Algorithms – p.10/183



The Google Algorithm (Cont)
With this modified definition (for A as well as the corresponding x and y)
we will always have:

1. The rows of A sum to 1. That is, A e = e, and therefore 1 is an
eigenvalue of A with an associated eigenvector v = e.

2. The corresponding importance of pi, yi, is then (as above), the ith

component of y = AT x.

We have shown that an appropriate score vector, x, is the solution of:

x = AT x or AT x = x.

CSCD37H – Analysis of Numerical Algorithms – p.11/183



The Google Algorithm (Cont)
Note that λ = 1 is an eigenvalue of AT , since it is an eigenvalue of A. As a
result of this observation, a suitable Page Rank Algorithm can be
designed based on finding an eigenvector of AT corresponding to the
‘known’ eigenvalue λ = 1.
Questions:

1. Is such an x unique and does it matter?

2. Will the resulting scores all be non-negative (ie. xi ≥ 0)?

3. Is there a fast algorithm for computing x?

For the above example, with n = 4, an eigenvector is v = (12, 4, 9, 6)T ,
which when normalised becomes, x = v/‖v‖2 = (.72, .24, .54, .36)T .

CSCD37H – Analysis of Numerical Algorithms – p.12/183



Review of Relevant Mathematics
Floating Point Arithmetic

Recall that a floating point number system, Z, can be characterized by
four parameters, (β, s, m, M), and each element of Z is defined by:

z = .d1d2 · · · ds × βe,

where d1 6= 0, 0 ≤ di ≤ (β − 1), and m ≤ e ≤ M .

The floating point representation mapping, fl(x), is a mapping from
the Reals to Z that satisfies:

fl(x) = x(1 + ε), with |ε| ≤ µ.

where µ is the ‘unit roundoff’ and is defined to be 1/2 β1−s.

CSCD37H – Analysis of Numerical Algorithms – p.13/183



FP Arithmetic (cont)
For any standard elementary arithmetic operation (+, -, × and /), we
have the corresponding F.P. approximation (denoted by ⊕,	,⊗ and �)
which satisfies, for any a, b ∈ Z,

a � b = fl(a · b) = (a · b)(1 + ε),

where |ε| ≤ µ and · is any elementary operation.

For any real-valued function, F (a1, a2, · · ·an), the most we can expect
is that the floating point implementation F̄ , will return (when invoked)
the value ȳ satisfying:

ȳ = F̄ (fl(a1), f l(a2), · · · fl(an)),

= F̄ (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)),

= fl(F (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)).

CSCD37H – Analysis of Numerical Algorithms – p.14/183



FP Function Evaluation

In this case,

ȳ − y = [fl(F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))

−F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))]

+[F (a1(1 + ε1), a2(1 + ε2), · · · an(1 + εn))

−F (a1, a2 · · · an)].

≡ A + B,

where |A|
|y| < µ and |B| can be bounded using the MVT for

multivariate functions.

CSCD37H – Analysis of Numerical Algorithms – p.15/183



FP Error Bound
If y = F (a1, a2, · · ·an) is the desired result (defined by exact arithmetic
over the Reals), the computed value, ȳ, will at best satisfy:

|ȳ − y|
|y| ≤ µ +

‖(∂F
∂x )T (a1ε1, a2ε2 · · · anεn)T ‖

‖F‖ ,

≤ µ +
‖∂F

∂x ‖ ‖a‖µ
‖F‖ ,

where

(
∂F

∂x
)T = [

∂F

∂x1
,

∂F

∂x2
, · · · ∂F

∂xn
],

evaluated at x = a = (a1, a2, · · ·an). That is, the relative errors can be
large (independent of the approximation used) whenever

‖∂F
∂x ‖‖a‖
‖F‖ is large.

CSCD37H – Analysis of Numerical Algorithms – p.16/183



Linear Algebra – A Review
We will first review results from Linear Algebra. In doing so
we introduce our notation and recall the standard definitions
and results that you should be familiar with from previous
courses.

The n × m matrix, A is represented by,

A =




a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
...

an1 an2 · · · ann




, where aij ∈ <.

<n×m denotes the set of all such matrices.

CSCD37H – Analysis of Numerical Algorithms – p.17/183



Basic Definitions
The elements {aii : i = 1, 2 · · ·min(n,m)} form the
diagonal of A.

{ai i+1 : i = 1, 2 · · ·min(n,m − 1)} is the superdiagonal of
A.

{ai i−1 : i = 2, 3 · · ·min(n,m + 1)} is the subdiagonal of A.

A is Lower Triangular if aij = 0 for i < j. A is
Upper Triangular if aij = 0 for i > j. Furthermore we will
say that A is ‘strictly’ Lower (Upper) Triangular if it is
Lower (Upper) Triangular and the diagonal of A is = 0.

CSCD37H – Analysis of Numerical Algorithms – p.18/183



Matrix Multiplication
If A and B are both n × n (square) matrices then the
product is,

C = A B, where C ≡ [cij ]

and cij is the inner product of row i of A with column j of B.
That is,

cij ≡
n∑

r=1

airbrj .

For nonsquare matrices (m 6= n) the definition of matrix
multiplication holds provided the inner product is well
defined.

CSCD37H – Analysis of Numerical Algorithms – p.19/183



Matrix Multiplication (cont)

Matrix Multiplication is Associative:

A(BC) = (AB)C.

Matrix Multiplication is not Commutative:

AB may not = BA.

The cancellation law does not hold. That is

AB = AC and A 6=




0 0 · · · 0

0 0 · · · 0
...

...
...

...

0 0 · · · 0




, does not imply B = C.

CSCD37H – Analysis of Numerical Algorithms – p.20/183



Example

Consider,

A =

[
1 0

0 0

]
, B =

[
0 0

0 1

]
, C =

[
0 0

0 0

]
.

In this case B 6= C but AB = AC.

CSCD37H – Analysis of Numerical Algorithms – p.21/183



The Identity Matrix
The unit element for matrix multiplication is the identity matrix, denoted by
In or diag(1, 1 · · · 1). It is the n × n square matrix,

In ≡




1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1




.

For any A ∈ <n×m we have

InA = AIm = A.

Note that we will often write I for In if the dimension is obvious from the

context of the expression.

CSCD37H – Analysis of Numerical Algorithms – p.22/183



The Transpose of a Matrix
For A = (aij) ∈ <n×m, AT ∈ <m×n and is defined by,

AT ≡ (αij), i = 1, 2 · · ·m, j = 1, 2 · · ·n,

where

αij = aji.

Note that AT is called the transpose of A and can be considered the
‘reflection’ of A about the diagonal.

For vectors x ∈ <n×1 we have,

x =




x1

x2

...

xn




, xT = [x1, x2 · · ·xn] , xT ∈ <1×n.

CSCD37H – Analysis of Numerical Algorithms – p.23/183



Properties of the Transpose

The matrix A is symmetric iff A = AT .

Properties of matrix products: For matrices A and B with
the dimensions such that the products and sums are well
defined we have,

(AT )T = A

(A + B)T = AT + BT

For λ ∈ <, (λA)T = λAT

(A B)T = BT AT

AT A and A AT are symmetric

CSCD37H – Analysis of Numerical Algorithms – p.24/183



Linear Equations – A Review
From mathematics we know that the problem,

Ax = b,

where A ∈ <n×n and b, x ∈ <n×1 has a solution iff b is linearly
dependent on the columns of A. That is, if

A =





 a1





 a2


 · · ·


 an





 ,

then b =
∑n

r=1 crar, for some c1, c2 · · · cn.

The solution is unique ⇔ detA 6= 0 ⇔ A is nonsingular
⇔ ∃B ∈ <n×n 3 BA = AB = In. Such a B is the inverse of A and is
denoted A−1.

CSCD37H – Analysis of Numerical Algorithms – p.25/183



Mathematical Preliminaties
The matrix Q ∈ <n×n is orthogonal if Q−1 = QT . (Note if Q is both
symmetric and orthogonal then Q2 = Q Q−1 = In.)

Properties of inverses:

(A−1)−1 = A.

(λA)−1 = 1
λA−1 for λ ∈ <.

(AB)−1 = B−1A−1 for nonsingular A, B.

Formally we can ‘solve’
Ax = b

by multiplying by A−1 to obtain,

A−1(Ax) = A−1b

(A−1A)x = A−1b

x = A−1b.

This is useful from a theoretical (but not computational) viewpoint.

CSCD37H – Analysis of Numerical Algorithms – p.26/183



Solving Ax = b

An alternative technique is to ‘solve’ the equation by first factoring
(decomposing) A,

A = S T,
where S and T have special structure such that ‘solving’ the linear
systems Sx = b, and Tx = b are both ‘easy’. With this decomposition and
z = Tx we have,

Ax = b

S Tx = b

Sz = b.

Therefore to determine x we first solve the ‘easy’ problem Sz = b, and
then solve a second ‘easy’ problem Tx = z. The special cases we will
consider, are when S or T are triangular (forward or Back substitution is
used) or orthogonal.

CSCD37H – Analysis of Numerical Algorithms – p.27/183



Calculus – A Review
Notation:

[a, b] is the closed interval, (x ∈ R, such that a ≤ x ≤ b).

(a, b) is the open interval, (x ∈ R, such that a < x < b).

fn(x) = dn

dxn f(x).

f ∈ Cn[a, b] ⇒ f is n times differentiable on [a, b] and fn(x) is
continuous on (a, b).

gx(x, y) ≡ ∂
∂xg(x, y), gy(x, y) ≡ ∂

∂y g(x, y) , gxy(x, y) ≡ ∂2

∂x∂y g(x, y) etc.

g(h) = O(hn) as
h → 0 ⇔ ∃h0 > 0 and K > 0 3 |g(h)| < Khn ∀ 0 < h < h0.

CSCD37H – Analysis of Numerical Algorithms – p.28/183



Theorems From Calculus
Intermediate Value Theorem
Let f(x) be continuous on [a, b]. If f(x1) < α < f(x2) for some α and
x1, x2 ∈ [a, b], then α = f(η) for some η ∈ [a, b].

Max-Min Theorem
Let f(x) be continuous on [a, b]. Then f(x) assumes its maximum and
minimum values on [a, b]. (That is, ∃x and x̄ ∈ [a, b] 3 ∀x ∈ [a, b], we
have f(x) ≤ f(x) ≤ f(x̄). )

Mean Value Theorem for Integrals
Let g(x) be a non-negative (or non-positive) integrable function on
[a, b]. If f(x) is continuous on [a, b] then

∫ b

a

f(x)g(x)dx = f(η)

∫ b

a

g(x)dx,

for some η ∈ [a, b].

CSCD37H – Analysis of Numerical Algorithms – p.29/183



Theorems (cont)
Mean Value Theorem for Sums
Let f(x) ∈ C1[a, b], let x1, x2, · · · , xn be points in [a, b] and let
w1, w2, · · · , wn be real numbers of one sign, then

n∑

i=1

wif(xi) = f(η)
n∑

i=1

wi,

for some η ∈ [a, b].

Rolle’s Theorem
Let f(x) ∈ C1[a, b]. If f(a) = f(b) = 0 then f ′(η) = 0 for some
η ∈ (a, b).

CSCD37H – Analysis of Numerical Algorithms – p.30/183



Theorems (cont)
Mean Value Theorem for Derivatives
If f(x) ∈ C1[a, b] then

f(b) − f(a)

b − a
= f ′(η),

for some η ∈ (a, b).

Fundamental Theorem of Calculus
If f(x) ∈ C1[a, b] then ∀x ∈ [a, b] and any c ∈ [a, b] we have

f(x) = f(c) +

∫ x

c

f ′(s)ds.

CSCD37H – Analysis of Numerical Algorithms – p.31/183



Theorems (cont)
Taylor’s Theorem (with remainder)
If f(x) ∈ Cn+1[a, b] and c ∈ [a, b], then for x ∈ [a, b],

f(x) = f(c) + f ′(c)(x − c) + · · · + fn(c)
(x − c)n

n!
+Rn+1(x),

where Rn+1(x) = 1
n!

∫ x

c
(x − u)nfn+1(u)du.

Note that Taylor’s Theorem is particularly relevant to this course. We can
observe that, since (x − u)n is of constant sign for u ∈ [c, x],

Rn+1(x) =
1

n!

∫ x

c

(x − u)nfn+1(u)du = fn+1(η)
(x − c)n+1

(n + 1)!
,

for some η ∈ [c, x] .

CSCD37H – Analysis of Numerical Algorithms – p.32/183



Taylors Theorem (cont)

We can also observe the first few terms of the Taylor Series
provides an accurate approximation to f(c + h) for small h
since we have for h = x − c,

f(c + h) = f(c) + hf ′(c) + · · · hn

n!
fn(c)

+
hn+1

(n + 1)!
fn+1(η).

where the error term, E(h) is O(hn+1).

CSCD37H – Analysis of Numerical Algorithms – p.33/183


