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February 25, 2013 University of Toronto Due: March 11, 2013

1. Scientists have recently discovered a stable orbit that arises in the simulation of the restricted
three-body problem (where the orbits are planar). The bodies have equal mass (in our
example we assume m1 = m2 = m3 = 1.0) and, with the appropriate starting conditions, will
follow the same figure-eight orbit as a periodic steady-state solution. Figure 1a shows the
solution behaviour over several orbits by displaying the first spatial coordinate (as a function
of x) over the interval of interest for each body. Figure 1b displays the “phase portrait” of the
solution to this problem. This phase portrait is defined to be a plot of one spatial coordinate
vs the other spatial coordinate for each of the three bodies. For the set of initial conditions
in our example the solution vector is periodic and the orbits are identical (although out of
phase) for each body. Note that a solution to the system of IVPs, y ′ = f(x, y) is periodic with
period T if T is the smallest positive value such that y(x + T ) = y(x). (ie. all components of
y(x) must satisfy this equality.

The two spatial coordinates of the j th body are y1j , y2j for j = 1, 2, 3. Each of the six
coordinates satisfy a second-order differential equation (which can be easily derived from
Newtons law of motion applied to gravitational systems – see for example, Shamine[1994, pp.
90-95]):

y′′ij =
3∑

k=1,k 6=j

mk(
yik − yij

d3

jk

),

where

d2

kj =
2∑

i=1

(yik − yij)
2, k, j = 1, 2, 3.

When this system is re-written, as a first order system, the dimension of the problem is 12
and the initial conditions, at x = 0, are given by,

y11 = −0.97000436, y′
11

= 0.466203685,

y21 = 0.24308753, y′
21 = 0.43236573,

y12 = 0.0, y′12 = −0.93240737,

y22 = 0.0, y′
22

= −0.86473146,

y13 = 0.97000436, y′
13

= 0.466203685,

y23 = −0.24308753, y′
23

= 0.43236573.

We are interested in this solution for x ∈ [0, 20].

(a) For a general system of IVPs, y′ = f(x, y), y(0) = y0, discuss how you could determine
(using the routines of Matlab) whether the solution is periodic or not.
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(b) Use ode45 of MatLab to compute the solution to the above three-body problem with the
given initial conditions and determine the period of the solution. Note that in order to
carry out this numerical investigation you will have to make use of some of the options
available with ode45 which are invoked using the routine odeset.

(c) You are to determine, through some numerical experiments, whether the the stable
periodic solution observed for the three body problem with m1 = m2 = m3 = 1.0 is
sensitive to the value used for the constant mass. In particular, does the solution with
the above initial conditions appear to converge to a periodic solution when m1 = m2 =
m3 = M? (and M is close to 1.0.)
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(b) Phase Portrait

Figure 1: The approximate solution produced by ode45 for the Three Body problem

To help you get started, the MatLab script for specifying the vector of initial conditions and
for evaluating the equivalent ode (after conversion to a first order system) is given by:

% specify the initial conditions Y0

x00 = [-0.97000436; 0.24308753]; xp0 = [0.466203685;0.43236573];

x10 = [0;0]; xp1 = [-0.93240737;-0.86473146];

x20 = [ 0.97000436;-0.24308753]; xp2 = [0.466203685;0.43236573];

i0=[x00; xp0; x10; xp1; x20; xp2];

%---------The Function f.m (for three body problem-------------------

function Ydot = bodyf(t,Y,p1)

m0=1.0; m1=1.0; m2=1.0; %masses of the three bodies

x0 = Y(1:2); x1 = Y(5:6); x2 = Y(9:10);

d0 = (x2-x1)/norm(x2-x1)^3;

d1 = (x0-x2)/norm(x0-x2)^3;

d2 = (x1-x0)/norm(x1-x0)^3;

Ydot(1:2) = Y(3:4);

Ydot(5:6) = Y(7:8);
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Ydot(9:10) = Y(11:12);

Ydot(3:4) = m1*d2 - m2*d1;

Ydot(7:8) = m2*d0 - m0*d2;

Ydot(11:12) = m0*d1 - m1*d0;

Ydot=Ydot’;

%----------------------------------------------------
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