
CSCD37H - Analysis of Numerical
Algorithms for Computational Mathematics

c©
W.H. Enright

Computer and Mathematical Sciences Division,
University of Toronto at Scarborough

(enright@cs.utoronto.ca)

1 Overview and Course Organization

1.1 General Information and Mathematical Background [2 weeks]

• Administration Details:
Grading Scheme, Course Website, Tutorials, Office hours Prerequisites etc.

• What is Numerical Analysis ?
The generic difficulty, Mathematical Modelling and Numerical issues, Conditioning
and Stability of a problem, The need to approximate, Using existing methods as
implemented in available Software libraries

• An interesting example showing that Numerical Algorithms can be very important
(and developing them can be rewarding).

• Mathematical Preliminaries and Notation:
Floating Point arithmetic, Relevant notation and results/theorems from Linear
Algebra and Calculus.

1.2 QR Decomposition and Applications [4 weeks]

• Review of Gaussian Elimination [2.4]

• Matrix Norms and Condition Number [2.3]

• QR Decomposition

• Solving Linear Systems with QR [3.5]

• Linear Least Squares (LLSQ) Problems [3.1, 3.5]

• Eigenvalue Problems [4.1 – 4.5]

1

1.3 Nonlinear Systems and Optimization [2 weeks]

• Review of Methods for Scalar (1 dimensional) Problems [5.1 – 5.5]

• Extension of Newton’s method to Systems of Nonlinear Equations [5.6]

• Optimization Problems [6.1]

1.4 Numerical methods for Ordinary Differential Equations [4

weeks]

• Motivation and Mathematical Preliminaries [5.1]

• Taylor Series Methods [5.2, 5.3]

• Runge-Kutta Methods [5.4]

• Higher-order Runge-Kutta Methods [5.4, 5.5]

• Error Estimates [5.5]

• Stepsize Control [5.5]

1.5 Gauss Quadrature and Multidimensional integration [op-

tional]

• Errors in Interpolatory Rules [4.3]

• Orthogonal Polynomials and Gauss Quadrature [4.7]

• Two Dimensional Quadrature [4.8]

2 General information / Mathematical Background

2.1 What is Numerical Analysis?

• Consider the investigation of a well defined mathematical model arising in any
application area. The problem is ‘well defined’ in the sense that there exists a
‘solution’ and it is unique.

• In addition to investigating the solution of these models, we are interested in the
‘Conditioning’ (or sensitivity) of the underlying mathematical problem. That is,
do small changes in the data defining the problem lead to ‘small’ changes in the
exact (unique) solution?

• For virtually all mathematical models of practical interest one cannot determine
a useful ‘closed form’ expression for the exact solution and one must approximate
the exact solution.

2

• In Numerical Analysis we develop and analyse algorithms to approximate the exact
solution to mathematical problems.

– Algorithms must be constructive and finite (time and space).

– We will analyse the errors in the approximation.

– We will also quantify the stability and efficiency of the algorithms.

• The focus of this course is on the intelligent use of existing algorithms embedded
in widely used numerical software. (It is NOT focused on deriving algorithms or
writing code.)

– How to interpret the numerical (approximate) results.

– What method (algorithm) should be used.

– Can a ‘standard’ method (eg. a library routine) be applied to a particular
problem?

– What methods are available in the usual ‘Problem Solving Environments’ that
scientists, engineers and students work in. For example in MATLAB, MAPLE
or Mathematica.

– In order to appreciate the limitations of the methods we will work with (primar-
ily in MATLAB) we will analyse and understand the underlying algorithms
on which the methods are based.

2.2 An Example of An Important Numerical Algorithm:

A readable reference providing more details for this example is [A $25 Billion Dollar
Eigenvector Algorithm, SIAM Review, September 2006, pp. 569-581.] This example is
concerned with the key insight that led to the development of the effective algorithm
behind the Google search engine. To understand this development, we must first identify
the tasks of a search engine:

• Locate and access all public web pages.

• Identify those pages that satisfy a search criteria. Let this set of pages be p1, p2, . . . pn.

• Rank these ’hit pages’ in order of their importance.

1. The important pages (the most relevant) must be listed first.

2. This ordering is accomplished using a Page Rank Algorithm.

3. A ’score’, xi, is assigned to each page, pi, i = 1, 2 . . . n with xi ≥ 0.

• Pages are returned (listed) in order of decreasing scores.

Consider using a directed graph, G, to represent the set of all ‘hit’ pages with vertices,
v1, v2 . . . vn and with an edge (vi, vk) iff pi has a link to pk. Now one assumes that a
page is relatively important (an authority) if several pages link to it (in particular if

3

important pages link to it). The key observation behind a Google search is that the
links can be as important as the contents when determining the ordering (of the ‘hit’
pages).

For example consider the case where there are four hit pages represented by, v1, v2, v3, v4,
where the first page has links to p2, p3, p4; the second page has links to to p3, p4; the
third page has a link to p1; and the fourth page has links to p1, p3. This graph can be
represented by its adjacency (or incidence) matrix, A:

A =




0 1 1 1
0 0 1 1
1 0 0 0
1 0 1 0


 .

Note that, with this representation of the hit pages, and with, e = (1, 1 . . . 1)T we
have:

1.

A e = (m1, m2 . . .mn)T ,

where mi is the number of pages that pi links to and similarly the ith component
of AT e is the number of pages that have links to pi.

2. If xi is the score of pi and x = (x1, x2 . . . xn)T then,

y ≡ AT x = (y1, y2 . . . yn)
T ,

where yi is the sum of all the scores of pages that link to pi.

3. Therefore, a natural definition for xi is yi. That is, the vector x is identified by
x = AT x or AT x = x. This implies that x is an eigenvector of AT corresponding
to the eigenvalue λ = 1.

4. This definition for xi gives too much influence to those pages with lots of links (mi

large) and we can improve the measure of importance by modifying our definition
of G and A, by assigning a weight of 1/mi to the edge from vi to vk (if it exists).
That is, for the above example, A is modified and becomes:

A =




0 1/3 1/3 1/3
0 0 1/2 1/2
1 0 0 0

1/2 0 1/2 0


 .

5. With this modified definition (for A as well as the corresponding x and y) we will
always have:

(a) The rows of A sum to 1. That is, A e = e, and therefore 1 is an eigenvalue
of A with an associated eigenvector v = e.

4

(b) The corresponding importance of pi, yi, is then (as above), the ith component
of y = AT x.

We have shown that an appropriate score vector, x, is the solution of:

x = AT x or AT x = x.

Note that λ = 1 is an eigenvalue of AT , since it is an eigenvalue of A. As a result of
this observation, a suitable Page Rank Algorithm can be designed based on finding
the eigenvalue of AT corresponding to the ‘known’ eigenvalue λ = 1.

Questions:

1. Is such an x unique and does it matter?

2. Will the resulting scores all be non-negative (ie. xi ≥ 0)?

3. Is there a fast algorithm for computing x?

For the above example, with n = 4, the eigenvector is v = (12, 4, 9, 6)T , which when
normalised becomes, x = v/‖v‖2 = (.72, .24, .54, .36)T .

2.3 Mathematical Preliminaries and Notation (A Review):

1. Floating Point Arithmetic (from CSCC37H or CSCB70H):
Recall that a floating point number system, Z, can be characterized by four pa-
rameters, (β, s, m, M), and each element of Z is defined by:

z = .d1d2 · · ·ds × βe,

where d1 6= 0, 0 ≤ di ≤ β, and m ≤ e ≤ M .

The floating point representation mapping, fl(x), is a mapping from the Reals to
Z that satisfies:

fl(x) = x(1 + ε), with |ε| ≤ µ.

where µ is the ‘unit roundoff’ and is defined to be 1/2 β1−s.

For any standard elementary arithmetic operation (+, -, × and /), we have the
corresponding F.P. approximation (denoted by ⊕,	,⊗ and �) which satisfies, for
any a, b ∈ Z,

a � b = fl(a · b) = (a · b)(1 + ε),

where |ε| ≤ µ and · is any elementary operation.

For any real-valued function, F (a1, a2, · · ·an), the most we can expect is that the
floating point implementation F̄ , will return (when invoked) the value ȳ satisfying:

ȳ = F̄ (fl(a1), f l(a2), · · ·fl(an)),

= F̄ (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)),

= fl(F (a1(1 + ε1), a2(1 + ε2), · · ·an(1 + εn)).

5

Therefor if y = F (a1, a2, · · ·an) is the desired result (defined by exact arithmetic
over the Reals), the computed value (computed in FP arithmetic), ȳ, will at best
satisfy (for differentiable functions, F):

|ȳ − y|
|y| ≤

‖(∂F
∂x

)T‖ ‖ε‖
‖F‖ ,

≤
‖∂F

∂x
‖ ‖ε‖

‖F‖ ,

where ε = [ε1, ε2 · · · εn]T , and

(
∂F

∂x
)T = [

∂F

∂x1
,
∂F

∂x2
, · · · ∂F

∂xn
],

evaluated at x = (a1, a2, · · ·an). From this expression we see that we could be in
trouble with an inherent (independent of the approximation used) amplification of
relative error whenever

‖∂F
∂x
‖

‖F‖
is large.

2. Linear Algebra – Notation and Review (from MATB24H and CSCC37H):
We will first review results from Linear Algebra. In doing so we introduce our
notation and recall the standard definitions and results which you have seen from
previous work.

(a) The n × m matrix, A is represented by,

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

...
an1 an2 · · · ann




, where aij ∈ <.

<n×m denotes the set of all such matrices.

(b) Basic Definitions:

i. The elements {aii : i = 1, 2 · · ·min(n, m)} form the diagonal of A.

ii. {ai i+1 : i = 1, 2 · · ·min(n, m − 1)} is the superdiagonal of A.

iii. {ai i−1 : i = 2, 3 · · ·min(n, m + 1)} is the subdiagonal of A.

iv. A is Lower Triangular if aij = 0 for i < j. A is Upper Triangular if
aij = 0 for i > j. Furthermore we will say that A is ‘strictly’ Lower
(Upper) Triangular if it is Lower (Upper) Triangular and the diagonal of
A is = 0.

6

(c) Matrix Multiplication:
If A and B are both n × n (square) matrices then the product is,

C = A B, where C ≡ [cij]

and cij is the inner product of row i of A with column j of B. That is,

cij ≡
n∑

r=1

airbrj.

For nonsquare matrices (m 6= n) the definition of matrix multiplication holds
as well provided the inner product is well defined.

(d) Properties of Matrix Multiplication:

• Matrix Multiplication is Associative:

A(BC) = (AB)C.

• Matrix Multiplication is not Commutative:

AB may not = BA.

• The cancellation law does not hold in general. That is

AB = AC and A 6=




0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0




,

does not imply B = C. To see this consider the example,

A =

[
1 0
0 0

]
, B =

[
0 0
0 1

]
, C =

[
0 0
0 0

]
.

• The unit element for matrix multiplication is the identity matrix, denoted
by In or diag(1, 1 · · ·1). It is the n × n square matrix defined by,

In ≡




1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1




.

For any A ∈ <n×m we have

InA = AIm = A.

Note that we will often write I for In if the dimension is obvious from
the context of the expression.

7

(e) The Transpose of a matrix:

• For A ∈ <n×m, AT ∈ <m×n and is defined by,

AT ≡ (αij), i = 1, 2 · · ·m, j = 1, 2 · · ·n,

where
αij = aji.

Note that AT is called the transpose of A and can be considered the
‘reflection’ of A about the diagonal.

• For vectors x ∈ <n×1 we have,

x =




x1

x2
...

xn




, xT = [x1, x2 · · ·xn] , xT ∈ <1×n.

• The matrix A is symmetric iff A = AT .

• Properties of matrix products: For matrices A and B with the dimensions
such that the products and sums are well defined we have,

i. (AT)T = A

ii. (A + B)T = AT + BT

iii. For λ ∈ <, (λA)T = λAT

iv. (A B)T = BT AT

v. AT A and A AT are symmetric

(f) Solving Linear Equations:

i. From mathematics we know that the problem,

Ax = b,

where A ∈ <n×n and b, x ∈ <n×1 has a solution iff b is linearly dependent
on the columns of A. That is, if

A =







a1







a2




· · ·




an







, then b =
n∑

r=1

crar,

for some c1, c2 · · · cn. The solution is unique ⇔ det A 6= 0 ⇔ A is nonsin-
gular ⇔ ∃B ∈ <n×n 3 BA = AB = In. Such a B is the inverse of A and
is denoted A−1.

ii. The matrix Q ∈ <n×n is orthogonal if Q−1 = QT . (Note if Q is both
symmetric and orthogonal then Q2 = Q Q−1 = In.)

iii. Properties of inverses:

8

A. (A−1)−1 = A.

B. (λA)−1 = 1
λ
A−1 for λ ∈ <.

C. (AB)−1 = B−1A−1 for nonsingular A, B.

iv. Formally, for nonsingular A, we can ‘solve’ the equation

Ax = b

by multiplying both sides of the equation by A−1 to obtain,

A−1(Ax) = A−1b

(A−1A)x = A−1b

x = A−1b.

This is useful from a theoretical (or notational) point of view but is not
algorithmically useful.

v. An alternative technique is to ‘solve’ the equation by first factoring (de-
composing) A into the product of two matrices

A = S T,

where S and T are n×n nonsingular matrices with special structure such
that ‘solving’ the linear systems Sx = b, and Tx = b are both ‘easy’.
(For example these matrices may be Triangular or Orthogonal.)
If we have such a decomposition and let z = Tx we have,

Ax = b

S Tx = b

Sz = b.

Therefore to determine x we first solve the ‘easy’ problem Sz = b, and
then solve the ‘easy’ problem Tx = z. The special cases we will consider
are when S and T are either triangular (forward or Back substitution is
used) or orthogonal (inverse is free).

vi. Classification of Numerical Methods for Linear Equations

• Direct methods yield the exact answer if exact arithmetic is used
(the only error is that caused by FP arithmetic). These methods are
effective for n ≤≈ 1000 and Gaussian elimination is the best known
direct method.

• Iterative methods are based on an underlying iteration,

xi = G(xi−1) for i = 1, 2 · · · ,

where G must be carefully chosen as a function of A and an initial
guess supplied, x0, to ensure xi → x. These methods are used for
n >> 1000 when A has special structure. They avoid O(n2) storage
and O(n2) floating point operations (FLOPS).

9

3. Calculus – Notation and Review (from MATA37H/MATA36H and MATB41H):
We will use standard notation from calculus and analysis. For example:

• [a, b] is the closed interval, (x ∈ R, such that a ≤ x ≤ b).

• (a, b) is the open interval, (x ∈ R, such that a < x < b).

• fn(x) = dn

dxn f(x).

• f ∈ Cn[a, b] ⇒ f is n times differentiable on [a, b] and fn(x) is continuous
on (a, b).

• gx(x, y) ≡ ∂
∂x

g(x, y), gy(x, y) ≡ ∂
∂y

g(x, y), gxy(x, y) ≡ ∂2

∂x∂y
g(x, y) etc.

• g(h) = O(hn) as h → 0 ⇔ ∃h0 > 0 and K > 0 3 |g(h)| < Khn ∀ 0 < h < h0.

Some Relevant Theorems from Calculus:

We will also frequently use the classical theorems from analysis such as:

Intermediate Value Theorem Let f(x) be continuous on [a, b]. If f(x1) < α <
f(x2) for some α and x1, x2 ∈ [a, b], then α = f(η) for some η ∈ [a, b].

Max-Min Theorem Let f(x) be continuous on [a, b]. Then f(x) assumes its
maximum and minimum values on [a, b]. (That is, ∃x and x̄ ∈ [a, b] 3 ∀x ∈
[a, b], we have f(x) ≤ f(x) ≤ f(x̄).)

Mean Value Theorem for Integrals Let g(x) be a non-negative (or non-positive)
integrable function on [a, b]. If f(x) is continuous on [a, b] then

∫ b

a
f(x)g(x)dx = f(η)

∫ b

a
g(x)dx,

for some η ∈ [a, b].

Mean Value Theorem for Sums Let f(x) ∈ C1[a, b], let x1, x2, · · · , xn be points
in [a, b] and let w1, w2, · · · , wn be real numbers of one sign, then

n∑

i=1

wif(xi) = f(η)
n∑

i=1

wi,

for some η ∈ [a, b].

Rolle’s Theorem Let f(x) ∈ C1[a, b]. If f(a) = f(b) = 0 then f ′(η) = 0 for
some η ∈ (a, b).

Mean Value Theorem for Derivatives If f(x) ∈ C1[a, b] then

f(b) − f(a)

b − a
= f ′(η),

for some η ∈ (a, b).

10

Fundamental Theorem of Calculus If f(x) ∈ C1[a, b] then ∀x ∈ [a, b] and any
c ∈ [a, b] we have

f(x) = f(c) +
∫ x

c
f ′(s)ds.

Taylor’s Theorem (with remainder) If f(x) ∈ Cn+1[a, b] and c is any point
in [a, b], then for x ∈ [a, b], we have

f(x) = f(c) + f ′(c)(x − c) + f ′′(c)
(x − c)2

2
· · ·+ fn(c)

(x − c)n

n!
+ Rn+1(x),

where Rn+1(x) = 1
n!

∫ x
c (x − u)nfn+1(u)du.

Note that Taylor’s Theorem is particularly relevant to this course. We can observe
that, since (x − u)n is of constant sign for u ∈ [c, x] we can write

Rn+1(x) =
1

n!

∫ x

c
(x − u)nfn+1(u)du = fn+1(η)

(x − c)n+1

(n + 1)!
,

for some η ∈ [c, x] .

We can also observe the first few terms of the Taylor Series provides an accurate
approximation to f(c + h) for small h since we have

f(c + h) = f(c) + hf ′(c) + · · · h
n

n!
fn(c) +

hn+1

(n + 1)!
fn+1(η).

where the error term, E(h) is O(hn+1).

3 QR Decomposition and Applications

3.1 Solving Linear Systems with Gaussian Elimination

The linear system of equations,

Ax = b, where A is n × n and b ∈ Rn,

can be solved using Gaussian elimination with partial pivoting. We have seen that this
is equivalent to determining the permutation matrix P and lower and upper triangular
matrices, L and U so that P A = L U . One then solves the system, A x = b, by
solving the equivalent system PAx = LUx = Pb.

To solve for x using this decomposition we first transform b → Pb and then solve,

LUx = Pb,

using standard forward substitution and back substitution. That is, first solve Lz = Pb
followed by Ux = z.

11

3.2 Error Analysis

In exact arithmetic we have no truncation error in implementing GE and, from the
previous analysis we would have LU = PA, Lz = Pb and Ux = z. When implemented
in FP arithmetic we compute L U ≈ PA and corresponding x, z. We will now investigate
the accuracy of the computed x.

• It can be shown that if the Decomposition (DECOMP) stage and the Solve stage
(SOLVE) of GE are implemented in a FP system with nµ < .01 then the computed
x of Ux = z is the exact solution of,

(A + E)x = b,

with E = (ei j) satisfying

|ei j| < 1.02(2n2 + n)ρ|A| max
i,j

|Li j|µ,

where |A| = maxi,j|ai j| and ρ, (the ‘growth factor’) is defined by

ρ =
1

|A| max
i,j,r

|a(r)
i j |.

If ‘partial pivoting’ is used when implementing the L U decomposition, then one
can show maxi,j |Li j| = 1 and ρ < 2n−1.

Note that:

1. The bound ρ < 2n−1 is pessimistic for most problems.

2. With this strategy the corresponding error bound reduces to,

|ei j| ≤ 1.02ρ|A|(2n2 + n)µ,

where ρ|A| can be monitored during the computation and is guaranteed to
be bounded by a quantity that doesn’t grow faster than 2n.

What about |x − x| ??

[For a detailed, long but elementary proof of this result see Forsythe and Moler,
Computer Solution of Linear Equations, Prentice Hall, pp. 87-108.]

• The true error, (x − x) (due to FP arithmetic):
Consider the following example in FP arithmetic:

.780x1 + .563x2 = .217

.913x1 + .659x2 = .254

The true solution (exact arithmetic) is x = (1,−1)T . Consider two approximate
solutions generated in FP arithmetic by different methods, x = (.999,−1.001)T

and x̂ = (.341,−.087)T . Which is the ‘better’ approximation?

12

First consider the corresponding residuals (the amount by which the approxima-
tions fail to satisfy the system),

r ≡ Ax − b = (−.00136, −.00157)T ,

while
r̂ ≡ Ax̂ − b = (−.000001, .000000)T .

That is x̂ is the exact solution of

Ax = b + ε,

where |ε| < (10−5, 10−5)T . This demonstrates that for general problems a small
residual (which can be confirmed as it is computable) does not necessarily reflect
a small error.

3.3 Matrix Norms and Condition Number

To quantify and investigate the potential ‘size’ of ‖x−x̄‖ we will need to use matrix norms
and this will allow us to describe the sensitivity of this error measure to small changes
in the problem.

1. Definitions:

(a) For x ∈ <n consider two common vector norms,

‖x‖∞ ≡ n
max
i=1

|xi| and ‖x‖2 ≡ (xT x)1/2.

(b) For A ∈ <n×n, A = (ai j), we define the induced or subordinate matrix norm
(corresponding to any vector norm) to be, ‖A‖ ≡ max‖v‖=1‖Av‖.

For the above two examples of vector norms we then have:

‖A‖∞ =
n

max
i=1

[
n∑

j=1

|ai j|],

‖A‖2
2 = max

‖x‖2=1
(Ax)T (Ax)

= max
‖x‖2=1

[xT (AT A)x].

Properies of matrix norms:

• ‖AB‖ ≤ ‖A‖‖B‖ .

• If y = Ax we have ‖y‖ ≤ ‖A‖‖x‖.

13

2. Recall that for the computed approximation, x̄, associated with GE with partial
pivoting we have have the corresponding residual vector, r̄ ≡ Ax̄ − b, and

(A + E)x̄ = b ⇒ r̄ = Ax̄ − b = −Ex̄.

This implies from the properties of matrix norms, ‖r̄‖∞ ≤ ‖E‖∞‖x̄‖∞. But we
also know from our previous analysis that E = (ei j) satisfies,

|ei j| < 1.02ρ(2n2 + n)|A|µ,

so

‖E‖∞ =
n

max
i=1

[
n∑

j=1

|ei j|] ≤ 1.02ρ(2n3 + n2)|A|µ,

and
‖r̄‖∞ ≤ ‖E‖∞‖x̄‖∞ ≤ 1.02ρ(2n3 + n2)|A|‖x̄‖∞µ.

Therefore, GE with partial pivoting for any system Ax = b will generate a approx-
imate solution, x̄ with a guaranteed small residual. In fact since |A|, ‖x̄‖∞, and ρ
are all known we have a precise bound on the size of the residual.

3. The true solution x need not be close to x̄ since,

(x̄ − x) = x̄ − A−1b = A−1(Ax̄ − b) = A−1r̄,

and this implies

‖(x̄ − x)‖∞ ≤ ‖A−1‖∞‖r̄‖∞
≤ ‖A−1‖∞‖A‖∞1.02ρ(2n3 + n2)µ‖x̄‖∞.

Note:

• In general we do not know how large ‖A−1‖∞ might be.

• If A is singular then A−1 is not defined so it is clear that if A is ‘nearly
singular’ then ‖A−1‖∞ must be very large.

4. We define the Condition Number of A, wrt linear equations, to be.

cond(A) ≡ ‖A‖∞‖A−1‖∞.

Clearly cond(A) is an indication of how far away the computed x̄ might be from
the true x.

When cond(A) is large the problem is said to be Ill-Conditioned since a small
change in the RHS vector, b, can cause a large change in the solution vector, x.
Consider the previous Example where we have,

A =

[
.780 .563
.913 .659

]
, and A−1 = 106 ×

[
.659 −.563

−.913 .780

]
.

In this case we have cond(A) = ‖A‖∞‖A−1‖∞ = 2.6 × 106 which indicates an
ill-conditioned problem.

14

5. Although we have used the concept of the condition number to quantfy the errors
arising in GE with partial pivoting, it is a more general concept and can be defined
for any matrix norm. In particular it describes the inherent sensitivity of the exact
solution to small changes in the data defining the problem. To see this consider x
to be the exact solution of Ax = b and x′ the exact solution of Ax′ = b + ε. We
then have,

x′ = A−1(b + ε) = x + A−1ε = x + δ,

where ‖δ‖∞ = ‖A−1 ε‖∞. It is possible to choose the perturbation, ε so that the
resulting δ satisfies

‖δ‖∞ = ‖A−1‖∞‖ε‖∞,

and we see how small perturbation in b can result in a large change in the corre-
sponding exact solution.

3.4 QR Decomposition - for Linear Systems

1. A Householder Reflection is an elementary matrix of the form,

Q = I − 2wwT , where w ∈ <n satisfies ‖w‖2 = 1.

(Recall that ‖w‖2 = 1 ⇔ wwT = 1.)

Properties of Householder reflections:

(a) QT = Q (symmetric) since [I−2wwT]T = [IT −2(wwT)T] = [I−2(wT)T wT] =
[I − 2wwT] = Q.

(b) QT Q = Q2 = I since ,

[I − 2wwT][I − 2wwT] = I − 4wwT + 4wwTwwT

= I − 4wwT + 4w(wTw)wT

= I − 4wwT + 4wwT

= I.

Therefore we have Q−1 = Q = QT .

(c) ‖Q‖2 = 1, since for a general matrix A we have,

‖A‖2
2 = max

‖x‖2=1
{xT (AT A)x},

and therefore, for a Householder reflection,

‖Q‖2
2 = max

‖x‖2=1
{xT (QT Q)x} = max

‖x‖2=1
{xT x} = 1.

(d) if y = Qx then ‖y‖2 = ‖x‖2 since,

‖y‖2
2 = yTy = (Qx)T Qx = xT (QT Q)x = xT x = ‖x‖2

2.

15

2. We usually define Q in terms of an arbitrary vector u ∈ <n by,

Q = [I − 2
uuT

‖u‖2
2

],

Note that this corresponds to w = u/‖u‖2 but it avoids computing a square root
and the normalization of u.

Consider the affect of this transformation on a vector x, y = Qx,

y = [I − 2
uuT

‖u‖2
2

]x = x − 2
uTx

‖u‖2
2

u = x + γu.

That is, u = (y − x)/γ and u is a multiple of (y − x). This implies that for any y
such that ‖y‖2 = ‖x‖2 we can map x onto y using

Q = [I − 2
(y − x)(y − x)T

‖y − x‖2
2

].

3. An Example:

Determine the value(s) of t ∈ < such that there exists a Householder reflection, Q
that maps (7, 0, 1)T → (0, 5, t)T and find the corresponding transformation(s).

To do this we first observe that since the 2-norm must be preserved, we must have
72 + 12 = 52 + t2 or t = ±5.

Consider the solution corresponding to t = −5,

u = y − x =




0
5

−5
−5


−




7
0
1


 =



−7

5
−6


 .

We then have ‖u‖2
2 = 110 and −2/‖u‖2

2 = (−1/55). The corresponding Q =

I − 2 uuT

‖u2
2‖

, is then,

Q = I − 1

55




49 −35 42
−35 25 −30

42 −30 36


 =




6/55 35/55 −42/55
35/55 30/55 30/55

−42/55 30/55 19/55


 .

Exercise. Determine the corresponding Q for t = 5.

4. A Householder reflection can be used to transform a given vector x = [x1, x2 · · ·xr · · ·xn]T

onto [x1, x2 · · ·xr−1, s, 0, 0 · · ·0]T = yT where, to preserve the norm we must have,

s2 = x2
r + x2

r+1 · · ·x2
n.

16

In this case the corresponding u satisfies,

u = y − x =




0
0
...
0

−xr ± s
−xr+1

...
−xn




,

where the sign of s is usually chosen to agree with the sign of −xr (no cancellation).
With this choice of u, applying Q to any vector v becomes:

Qv = [I − 2
uuT

‖u‖2
2

]v = v −
(

2uTv

‖u‖2
2

)
u.

That is, we form the scalar uT v and then add a multiple of u to v. This transforma-
tion will leave the first (r−1) entries of v unchanged (as it adds ‘multiples’ of u to v).
It also has no affect on v if uT v = 0 (in particular, if vr+1 = vr+2 = · · · = vn = 0).

Now consider factoring A = QR (rather than A = LU), where R is upper trian-
gular and Q = Q1Q2 · · ·Qn−1, a product of Householder reflections. Note that,

Q−1 = QT = QT
n−1Q

T
n−2 · · ·QT

1 = Qn−1Qn−2 · · ·Q1 6= Q.

This factoring (or decomposition of A) is accomplished (analogous to LU) by
setting A0 = A and choosing Q1 to introduce zeros below the diagonal of the first
column of A1 = Q1A0,

A1 =




s1 (Q1a
(0)
2) (Q1a

(0)
3) · · · (Q1a

(0)
n)

0 × × · · · ×
0 × × · · · ×
...

...
...

...
...

0 × × · · · ×




.

From above we see that this can be done with Q1 defined by u1,

u1 =




−a
(0)
1 1 ± s1

−a
(0)
2 1
...

−a
(0)
n 1




,

where s2
1 = (a

(0)
1 1)

2 + (a
(0)
2 1)

2 · · ·+ (a
(0)
n 1)

2.

17

In general at the rth stage we have,

Ar−1 =




a
(r−1)
1 1 a

(r−1)
1 2 · · · a

(r−1)
1 r · · · a

(r−1)
1 n

0 a
(r−1)
2 2 · · · a

(r−1)
2 r · · · a

(r−1)
2 n

0 0 · · · a
(r−1)
3 r · · · a

(r−1)
3 n

...
...

...
...

...
...

0 0 · · · a(r−1)
r r · · · a(r−1)

r n

0 0 · · · a
(r−1)
r+1 r · · · a

(r−1)
r+1 n

...
...

...
...

...
...

0 0 · · · a(r−1)
n r · · · a(r−1)

n n




.

We choose Qr to map a(r−1)
r → (a

(r−1)
1 r , a

(r−1)
2 r · · ·a(r−1)

r−1 r , sr, 0 · · ·0)T ,

s2
r = (a(r−1)

r r)2 + (a
(r−1)
r+1 r)

2 · · · + (a(r−1)
n r)2.

That is,

ur =




0
0
...
0

−a(r−1)
r r ± sr

−a
(r−1)
r+1 r
...

−a(r−1)
n r




.

5. We then have, after (n − 1) stages,

QT A = QT A0

= [Q1Q2 · · ·Qn−1]
T A0

= [Qn−1Qn−2 · · ·Q1]A0

= (Qn−1(· · · (Q2(Q1A0︸ ︷︷ ︸
A1

))) · · ·)

= An−1

≡ R

Since QT A = R and QT = Q−1 we have, after multiplying both sides of this
equation by Q,

QR = Q(QT A) = (QQT)A = A.

An alternative decomposition of A which is easy to work with and compute.

Exercise: Show that the operation count for this decomposition is twice that for
the LU decomposition. That is, it is 2n3/3 + O(n2) flops.

18

3.5 Solving Linear Systems with QR

1. To solve the linear system Ax = b using QR we note that Q need not be explicitly
computed – it need only be represented by retaining the vectors u1, u2 · · ·un−1 and
the scalars ‖u1‖2

2, ‖u2‖2
2, · · · ‖un−1‖2

2. We then observe that,

A = QR = [Q1Q2 · · ·Qn−1R],

allows us to ‘solve’ Ax = b as

QRx = b, or Rx = Q−1b.

But
Q−1 = QT = [Qn−1Qn−2 · · ·Q1]

and we have that,
Rx = (Qn−1(Qn−2(· · · (Q1b︸︷︷︸

z1

) · · ·)).

This suggests the following efficient algorithm:

-set z = b ;
-for j = 1, 2 · · · (n − 1) do

-set z = Qjz (ie. ‘solve’ Qjzj = zj−1)
-end
-solve the triangular system Rx = z by back substitution.

Exercise:

Given that the Qj are ‘represented’ by the vectors, uj and the scalars ‖uj‖2
2,

determine the operation count for the above algorithm and compare it with the
that for the standard LU algorithm. (Recall that computing Qj v for an arbitrary

vector v can be done using fact that Qjv = v + γuj, where γ = −2
uT

j
v

‖uj‖2
2
.)

2. Error bounds for the QR algorithm.

One can show an analogous result to that we discussed for the LU algorithm
(ie., for GE with partial pivoting). If the above QR algorithm is implemented in
floating point arithmetic, then the computed solution, x̄, will satisfy,

(A + E)x̄ = b where E = (ei j),

and
|ei j| ≤ 1.02 max

r=0,1···n−1
[‖Ar‖2](2n

2 + n)‖Q‖2µ.

But ‖Q‖2 = 1 and ‖Ar‖2 ≤ ‖Qr‖2‖Ar−1‖2 = ‖Ar−1‖2 for r = 1, 2 · · · (n − 1), so

max
r=0,1···n−1

[‖Ar‖2] = ‖A0‖2 = ‖A‖2,

19

and
‖ei j‖ ≤ 1.02‖A‖2(2n

2 + 2)µ.

Note that this expression does not contain an extra ‘growth factor’ that was nec-
essary when analysing the LU algorithm. Thus the QR algorithm is more stable
than GE with PP since all the intermediate results (that arise in the computation)
are bounded by a smaller value than is the case for GE.

3. An alternative procedure (or algorithm) to form the QR decomposition of A is
based on the Gram Schmidt technique. It is equivalent in cost and a similar error
expression can be derived.

3.6 Iterative Improvement and Conditioning:

As with any numerical method we would like the software to signal if the underlying
problem is ill conditioned. Consider our example of an ill conditioned problem:

[
.780 .563
.913 .659

] [
x1

x2

]
=

[
.217
.254

]
.

The exact solution is x = (1,−1)T . Two candidate approximate solutions (deter-
mined by some unspecified methods) are:

x̃ = (.999,−.1001)T ,

and
x̂ = (.341,−.087)T ,

with corresponding residuals:

r̃ = Ax̃ − b = (−.00136,−.00157)T ,

and
r̂ = Ax̂ − b = (−.000001, .000000)T .

The ill conditioning is reflected by the size of cond(A) which is ≈ 2.6× 106. Can we
get any indication of this ill conditioning as we solve the linear system with GE or QR?

In 3-digit, base 10, FP arithmetic we determine L̄Ū by

Ū =A1 =(M1P12)A0 = M1(P12A0)

= M1

[
.913 .659
.780 .563

]

=

[
1.0 0.0

−.854 1.0

][
.913 .659
.780 .563

]

=

[
.913 .659
0.0 .000214

]
.

20

We then have

L̄ = M−1
1 =

[
1.0 0.0
.854 1.0

]
,

Ū =

[
.913 .659
0.0 .000214

]
.

In FP arithmetic we can compute

L̄Ū =

[
.913 .659
.780 .563

]
,

with no indication of trouble. In the SOLVE stage of GE we determine x̄ in FP arithmetic
using forward and back substitution.

Solving L̄z = P12b we obtain, z1 = .254 and

z2 = (.217 	 .854 ⊗ .254) = 0.00

and solving Ūx = z we obtain, x̄2 = z2 = 0.00 and

x̄1 = (.254 	 .659 ⊗ 0.00)/ � .913 = .278.

Therefore x̄ = (.278, 0.00)T with a corresponding residual,

r̄ = Ax̄ − b =

[
−.000160
−.000186

]
.

We will now consider an approach to improve the accuracy of the computed solution
as well as a technique for estimating the value of cond(A).

1. Consider the use of the QR method in floating point arithmetic to define x̄(1)

satisfying,
(A + E)x̄(1) = b, r̄(1) = Ax̄(1) − b,

with
|ei j| ≤ 1.02‖A‖(2n2 + n)µ ≤ C‖A‖µ.

To ‘improve’ x̄(1) consider solving,

Az(1) = −r̄(1).

If z(1) was to be computed in exact arithmetic then,

A(x̄(1) + z(1)) = Ax̄(1) + Az(1)

= (r̄(1) + b) − r̄(1)

= b

21

Therefore to improve the accuracy of x̄(1) we can compute r̄(1) (in higher precision);
solve Az(1) = −r̄(1); and use the resulting approximation, z̄(1) to improve x̄(1) (ie.,
x̄(2) = x̄(1) + z̄(1).)

We can continue in this way until x̄(i) converges to full accuracy. This is called
Iterative Improvement.

Note:

(a) The residual, r̄(i) should be computed in higher precision (although the first
iteration will always yield a more accurate value for x̄(2) even if this is not
the case).

(b) Solving Az(i) = −r̄(i) is inexpensive since the QR factors of A have been
computed and stored.

(c) Extra storage is required since, in order to compute the residual with enough
accuracy, we need to retain A as well as the L and U .

2. A computable estimate of cond(A) = ‖A‖‖A−1‖.

Let ε(1) ≡ (x̄(1) − x) = A−1(Ax̄(1) − b) = A−1r̄(1). Taking norms we have,

‖ε(1)‖ ≤ ‖A−1‖‖r̄(1)‖.

In t-digit, base β floating point arithmetic, µ ≈ β−t, and ‖r̄(1)‖ ≈ C‖A‖‖x̄(1)‖β−t,
and we have,

‖ε(1)‖ ≈ C‖A−1‖‖A‖‖x̄(1)‖β−t = Ccond(A)‖x̄(1)‖β−t.

Let cond(A) ≈ βp (we only want an order of magnitude estimate). Then, ‖ε(1)‖ ≈
C‖x̄(1)‖βp−t. Consider two situations:

(a) If p ≥ t the problem is badly conditioned and ‖ε(1)‖ will be larger than ‖x̄(1)‖
and we are in trouble. (In this case a large value of ‖z̄(1)‖/‖x̄(1)‖ will signal
trouble.)

(b) If q = t − p > 0 we see that the relative error in x̄(1) satisfies:

‖ε(1)‖/‖x̄(1)‖ ≈ Cβ−q.

This implies that approximately q digits of x̄(1) are correct.

Now in similarly solving Az(1) = −r̄(1) we have z̄(1) satisfies (agrees with ε(1) to q
digits):

‖z̄(1)‖
‖x̄(1)‖ ≈ ‖ε̄(1)‖

‖x̄(1)‖ ≈ β−q = βp−t, with µ ≈ β−t.

Therefore an estimate of cond(A) is given by,

cond(A) ≈ βp ≈ βt ‖z̄(1)‖
‖x̄(1)‖ = (1/µ)

‖z̄(1)‖
‖x̄(1)‖ .

22

3.7 The Linear Least Squares Problem

In many applications the linear systems of equations that arise do not have the same
number of equations as unknowns. In such situations, we can ‘solve’ the equations in
a least squares sense. the basic problem and solution technique are presented in this
section.

1. Given m linear equations in n unknowns,

Ax ≈ b, A ∈ <m×n, x ∈ <n, b ∈ <m.

The problem is to determine the vector x that minimises,

‖Ax − b‖2

Note that other norms (‖x‖∞, or ‖x‖1 for example) are not differentiable and
the corresponding minimisation problem is difficult to analyse and the algorithms
more complicated.

A Generic Example: – Data Fitting

Let the ‘unknown’ vector be c ∈ <n, the coefficients defining a polynomial pn(s)
of degree < n,

pn(s) = c1 + c2s · · · cnsn−1.

Assume we wish to approximate the function f(s) by pn(s) and we ‘know’ that
f(si) ≡ fi for i = 1, 2 · · ·m. Let A ∈ <m×n be defined by

ai j = sj−1
i , i = 1, 2 · · ·m, j = 1, 2 · · ·n.

Then it is easy to see that if,

s =




s1

s2
...

sm




, f =




f1

f2
...

fm




,

then

Ac =




pn(s1)
pn(s2)

...
pn(sm)




,

and therefore our task is to determine c such that,

‖Ac − f‖2

is minimised. This is an example of a Discrete Least Squares problem.

Note that:

23

(a) If the si are distinct then A is always full rank.

(b) A is a Vandermonde Matrix.

(c) If m = n, A is nonsingular but it can be badly conditioned (ie., cond(A) may
be very large).

For the general LLSQ problem (including this data-fitting example), there will be
three cases to consider:

m = n Standard case with a unique solution if A has full rank. In this case the
solution can be determined using either of the standard algorithms we have
analysed and discussed.

m > n Overdetermined case (where there are more equations than unkowns). Such
problems can have full rank or they can be rank deficient.

m < n Underdetermined case (fewer equations than unknowns). Such problems
can have full rank or they can be rank deficient.

2. Overdetermined Problems/Normal Equations




× × · · · ×
× × · · · ×
...

...
...

...
...

...
...

...
× × · · · ×







x1

x2
...

xn




=




b1

b2
...
...

bm




.

Let

Φ(x) = ‖Ax − b‖2
2

= (Ax − b)T (Ax − b) ≡ rT (x)r(x)

=
m∑

i=1

r2
i (x).

From standard results in calculus we know that Φ(x) is a minimum when,

∂Φ

∂xj

= 0 for j = 1, 2, · · ·n.

But since Φ(x) =
∑m

i=1 r2
i (x) we have,

∂Φ

∂xj

=
∂

∂xj

[
m∑

i=1

r2
i (x)

]
(1)

=
m∑

i=1

∂

∂xj
(r2

i (x)), (2)

= 2
m∑

i=1

ri(x)
∂ri(x)

∂xj
. (3)

24

But ri(x) = −bi + ai 1x1 + ai 2x2 · · · + ai nxn (= −bi+ inner product of ith row of
A with x, which = −bi+inner product of ith column of AT with x).

Therefore we have,

∂ri(x)

∂xj

=
∂

∂xj

[Ax − b]i ,

= (ai j),

for i = 1, 2, · · ·m; j = 1, 2, · · ·n.

It then follows that
∂Φ

∂xj
= 2

m∑

i=1

ri(x)ai j = 2
(
AT r

)
j
.

Therefore to achieve ∂Φ
∂xj

= 0 for j = 1, 2, · · ·n we must have,

(
AT r

)
j
= 0, for j = 1, 2, · · ·m.

This is equivalent to asking that,

AT r = 0 or AT (Ax − b) = 0.

Note that the matrix AT A is a square n×n nonsingular matrix and we can therefore
solve our LLSQ problem with m > n by solving the linear system,

A
�

Ax = A
�

b

These linear equations are called the Normal Equations.

We have shown that any solution to the LLSQ problem must be a solution to the
Normal Equations. The converse is also true (exercise).

Note:

(a) The (i, j)th entry of AT A = aT
i aj = aT

j ai.

(b) AT A is symmetric (since (AT A)T = AT (AT)T = AT A).

(c) The cost to determine AT A is [n + (n2 − n)/2]m = mn2+mn
2

flops.

It can be shown that, once AT A has been formed, solving AT Ax = b can be
accomplished in n3

6
+O(n2) flops (for nonsymmetric matrices it would be n3

3
+O(n2)

).

3. QR based Algorithms for LLSQs

We will introduce a QR based algorithm that doesn’t require the explicit compu-
tation of AT A.

25

Consider forming the QR factorization (or Schur decomposition) of the m × n
matrix A,

A = QR = (Q1Q2 · · ·Qn)R,

where Q is an orthogonal matrix and R is an upper triangular matrix. This is
a standard factorization in numerical linear algebra and is usually accomplished
using a sequence of Householder reflections.

That is, we will determine Q as a product of n Householder reflections:

QA = R ⇔ QT
n (QT

n−1 · · ·QT
1 A)) · · ·) = R,

where each Qi = QT
i is an m×m Householder reflection and R is an m× n upper

triangular matrix,

R =




× × · · · ×
0 × · · · ×
0 0 · · · ×
...

...
... ×

0 0 · · · 0
...

...
...

...
0 0 · · · 0




≡
[

R
0

]
,

and R is a square n × n upper triangular matrix.

With such a factorization of A we have,

AT A = (QR)TQR = RTQTQR = RTR,

where

RTR =




× 0 0 · · · 0
× × 0 · · · 0
...

...
... · · · 0

× × × · · · 0







× × · · · ×
0 × · · · ×
0 0 · · · ×
...

... · · · ×
...

...
...

...
0 0 · · · 0




=




× × · · · ×
× × · · · ×
...

... · · · ...
× × · · · ×




=
[

RT 0
] [R

0

]
= RT R.

Now solving the Normal Equations to determine x can be done by solving the
equivalent linear system,

RT Rx = AT b.

This requires the computation of AT b (at a cost of nm flops) and two triangular
linear systems (at a cost of n2 flops). The cost of determining the QR factorization

26

of A is n2m + O(nm) and therefore the total cost of this algorithm to determine x
is n2m + O(nm) flops.

Note that in most applications m is much larger than n. With this approach we
have computed the LU (or Cholesky) decomposition of AT A (= RT R) without
forming AT A.

4. (Optional) Underdetermined Problems
In the case m < n we do not have enough constraints to uniquely determine x
from Ax = b,




× × · · · ×
× × · · · ×
...

...
...

...
× × · · · ×







x1

x2
...
...

xn




=




b1

b2
...

bm




.

Before discussing algorithms for this case we will first review some key results and
definitions from Linear Algebra:

• Mathematical Preliminaries:

(a) For an m × n matrix, A, the null space of A, N (A), is the subspace of
vectors, z ∈ <n such that Az = 0.

(b) If rank(A) = m (ie. full rank), the dimension of the null space of A =
n − m. That is, there exists n − m linearly independent vectors in <n

that span all of N (A).

(c) The range of A, R(A), is the subspace of <m spanned by the columns of
A (or the rows of AT).

• Properties:

(a) If y ∈ <n is any solution of Ax = b and if z ∈ N (A) then y + z is also a
solution of Ax = b. This follows since A(y + z) = Ay + Az = b + 0 = b.

(b) If y1 and y2 are two solutions of Ax = b then y1 − y2 ∈ N (A). This
follows since A(y1 − y2) = Ay1 − Ay2 = b − b = 0.

• To make the solution to an underdetermined problem well posed we usually
ask for the particular solution of smallest ‖ · ‖2. That is, find x such that
Ax = b and, for any other solution y ∈ <n, ‖x‖2 ≤ ‖y‖2. Such a solution is
unique.

• Theorem: If w is a solution of Ax = b and wT z = 0 for all z ∈ N (A) (ie. w
is ⊥ to N (A)) then w is the unique solution of smallest ‖ · ‖2.

Proof: Let u be any solution of Ax = b.
RTP: ‖w‖2 < ‖u‖2 unless u = w

27

We can write u as u = w + (u − w) where (u − w) ∈ N (A),

‖u‖2
2 = [w + (u − w)]T [w + (u − w)]

= wTw + wT (u − w) + (u − w)T w + (u − w)T (u − w)

= ‖w‖2
2 + 2wT (u − w) + ‖u − w‖2

2

= ‖w‖2
2 + ‖u − w‖2

2

> ‖w‖2
2 for u 6= w.

• The rows of A are orthogonal to N (A).

Proof: We can write A in terms of its rows as:

A =




rT
1

rT
2
...

rm




,

where the rows of A are also the columns of AT ,

AT =


 r1 r2 · · · rm


 .

Now the jth row of A = jth column of AT = AT ej, where ej ∈ <m is defined
by,

eT
j ≡ (0, 0 · · ·0︸ ︷︷ ︸

j

, 1, 0 · · ·0).

Now for any z ∈ N (A) we have,

zT rj = zT (AT ej) = (zT AT)ej = (Az)T ej = 0T ej = 0.

• For the full rank case we know that the rows of A span an m-dimensional
subspace of <n ≡ all of [N (A)]⊥. We can then view the subspace of all
n− vectors as a direct sum of the two subspaces, the null space of A and the
orthogonal complement of the null space of A. That is,

<n ≡ N (A) ⊕ [N (A)]⊥.

Therefore any vector w ∈ [N (A)]⊥ can be written as,

w =
m∑

i=1

tiri,

= AT




t1
t2
...

tm




,

= AT t,

28

where t ∈ <m.

But we have seen that if w ∈ N (A)⊥ and Aw = b, then w is the unique
solution of minimum ‖ · ‖2. Now w ∈ N (A)⊥ implies (from above),

w = AT t, for some t ∈ <m.

Therefore the solution we are seeking satisfies,

Aw = AAT t = b,

and a square m × m nonsingular system of linear equations determines
t ∈ <m . Once t is known we can recover w = AT t at a cost of O(m × n)
flops.

The total cost of this full-rank underdetermined algorithm is [m2n/2+m3/6+
m2] + O(mn) flops. (We must form AAT , find the Cholesky factorization of
AAT , and solve two triangular systems.)

Summary: We have shown that the Normal Equations approach can be
applied in both the overdetermined case (m > n):

x = (AT A)−1AT b, or (AT A)x = AT b,

and in the underdetermined case (m < n):

x = AT (AAT)−1b, or (AAT)t = b, x = AT t.

An alternative algorithm, based on a QR decomposition of AT can also be
developed for underdetermined problems. To see this, first determine,

AT = QR = [Q1Q2 · · ·Qm]R,

where each Qi is an n × n Householder reflection,

R =

[
R
0

]
,

where R is an m × m upper triangular matrix and 0 is an (m − n) × n zero
matrix.

With this decomposition we have,

AT = [Q1Q2 · · ·Qm]

[
R
0

]
,

and therefore,
A = [RT : 0][QmQm−1 · · ·Q1].

29

The matrix AAT can then be written as,

AAT = [RT : 0][QmQm−1 · · ·Q1][Q1Q2 · · ·Qm]




R
..
0


 ,

= [RT : 0]




R
..
0


 = RT R.

Therefore solving AAT t = b is equivalent to solving the two triangular sys-
tems,

RT Rt = b,

and setting x = AT t completes the algorithm at a cost of one QR decompo-
sition (of AT), two triangular systems, and one matrix-vector multiply.(Note
that a slightly different algorithm with the same cost is presented in the text.)

Exercise:

Carry out a detailed operation count for this algorithm and compare the
results with the cost of explicitly forming the normal equation matrix, AAT .

5. (Optional) Rank Defficient Problems:

In the case that the LLSQ problem does not have full rank, the QR based algo-
rithms we have discussed can still be applied with caution. Note that defficient rank
implies that for overdetermined problems rank(A) = rank(AT) = rank(AT A) <
n, while for underdetermined problems rank(A) = rank(AT) = rank(AAT) < m.
In either case the R we obtain from the QR algorithm will have the same deffi-
cient rank as that of the LLSQ problem. That is, for the overdetermined case,
rank(R) < n and for underdetermined problems rank(R) < m. In exact arith-
metic the rank of a triangular matrix is the number of non-zeros on the diag-
onal. In floating point arithmetic we don’t expect to see an exact zero but a
reliable indication of rank defficiency is to observe a large value for the ratio of
the largest to smallest magnitudes of the diagonal entries. That is since the di-
agonal entries are the eigenvalues of a triangular matrix, a large value for the
ratio of largest magnitude to smallest magnitude eigenvalue is an indication of
Numerical rank defficiency.

In problems where rank deffficiency is detected (using this idea) the algorithm can
either exit with a warning or attempt to produce a solution to a nearby exactly
rank defficient problem.

3.8 The Eigenvalue Problem

1. A Review

[Note that this background review material is discussed in chapter 4 of the text.]

30

The Basic Problem:

For a given matrix A ∈ <n×n determine λ ∈ C and x ∈ <n, x 6= 0 such that:

Ax = λx.

λ is an eigenvalue and x is an eigenvector of A.

(a) An eigenvalue and corresponding eigenvector, (λ, x) is called an eigenpair.

(b) The spectrum of A is the set of all eigenvalues of A.

(c) To make the definition of a eigenvector precise we will often normalize the
vector so it has ‖x‖2 = 1. (As we have defined it, any multiple of x is also an
eigenvector.)

Note that the definition of eigenvalue is equivalent to finding λ and x 6= 0 such
that,

(A − λI)x = 0.

But the linear system Bx = 0 has a nontrivial solution iff B is singular. Therefore
we have that λ is an eigenvalue of A iff [A − λI] is singular iff det(A − λI) = 0.

Properties from Linear Algebra:

(a) For A ∈ <n×n, det(A − λI) is a polynomial of degree ≤ n in λ – it is called
the characteristic polynomial of A. The roots of this polynomial are the
eigenvalues of A.(This follows from the definition of determinate and from
the above observation.)

(b) For a triangular matrix, L = (li j) or U = (ui j) we have,

det(L) =
n∏

i=1

li i, det(U) =
n∏

i=1

ui i.

Therefore the eigenvalues of a triangular matrix are the diagonal entries of
the matrix (since the determinate of a triangular matrix is the product of the
diagonal entries and therefore det(L− λI) =

∏n
i=1(li i − λ) has only the roots

l1 1, l2 2 · · · ln n.

(c) For an upper triangular matrix, U , an eigenvector corresponding to the eigen-
value, ui i, can be determined by solving the linear system of equations,

[U − ui iI]y = 0,

That is,




(u1 1 − ui i) u1 2 · · · u1 n

0 (u2 2 − ui i) · · · u2 n
...

...
...

...
0 0 0 (un n − ui i)







y1

y2
...
yn




=




0
0
...
0




.

31

A solution to this system can be determined by a modified back substitution
algorithm:

-set yn = yn−1 = · · · yi+1 = 0;
-set yi = 1;
-for j = (i − 1), (i − 2) · · ·1,

yj = −[
∑i

r=j+1 uj ryr]/(uj j − ui i);
-end
-normalize by setting x = y/‖y‖2;

Note that this algorithm must be modified for multiple eigenvalues (we will
consider this case later). A similar procedure works for lower triangular ma-
trices (exercise).

We have shown that the eigenvalue problem is easy for all triangular matrices
and the eigenvector problem is easy when the eigenvalues are distinct. We
will now consider algorithms for the case of general matrices. One approach
is to transform the general problem to an equivalent ‘easy’ problem (ie., an
equivalent triangular eigenproblem). Before we consider this approach we will
consider an alternative technique that is particularly appropriate if only the
largest (or smallest) magnitude eigenvalue is desired.

2. The Power Method

Assume that A ∈ <n×n has n eigenvalues λ1, λ2 · · ·λn, satisfying |λ1| ≥ |λ2| · · · ≥
|λn|. Also assume that A has a complete set of normalized eigenvectors, (v1, v2 · · ·vn),
(ie., A is non-defective). From linear algebra we have the result that these eigen-
vectors are linearly independent and any x ∈ <n can be expressed as,

x =
n∑

j=1

αjvj.

If we are given an initial vector x0 ∈ <n we define the normalized sequence xj, j =
1, 2, · · · by,

yj = Axj−1,

xj =
yj

‖yj‖
,

for j = 1, 2 · · ·.
It is straightforward to show that when |λ1| > |λ2|, we have,

xj → v1,

and the rate of convergence is O(ρj) where ρ = |λ2|
|λ1| .

Since ‖xj‖ = 1 and yj → λ1xj we must also have,

‖yj‖ → |λ1|,

32

We then have that the eigenvalue can be determined from the observation that
λ1 ∈ < (since |λ1| > |λ2| and non-real eigenvalues must appear as conjugate
pairs). This implies,

λ1 = ± lim
j→∞

‖yj‖,

where the correct sign can be determined by comparing the first non-zero compo-
nents of xj and yj.

The choice of norm used in the definion of xj and yj leads to different sequences but
the term Power Method is used to refer to any method based on such a sequence.
The text uses the l∞ norm which is efficient but makes the discussion more difficult
to follow. In many cases the l2 norm is used for discussion but is slightly more
expensive to implement since it requires one compute a sum of squares and a
square root to determine ‖yj‖.

Exercise:

For the three norms, l1, l2 and l∞ implement the power method in MATLAB and
verify that for various choices of A and x0 satisfying our assumptions, the resulting
sequences are different but all three converge with the same rate of convergence.

3. Transformational Methods for General Matrices:

Recall that, for Linear Equations, triangular systems Rx = b are easy and the LU
and QR algorithms are based on transforming a given general problem, Ax = b,
onto an equivalent triangular system,

Ux = b̃.

A similar approach will be developed for the eigenproblem.

For the general eigenvalue problem, we are given an n × n matrix, A, and we
introduce a sequence of transformations that transform the eigenproblem for A
onto equivalent eigenproblems for matrices Ai, where Ai → U (U upper trian-
gular) as i → ∞. This is an Iterative method. We will focus on developing an
Iterative QR method, where (n− 1) Householder reflections are used to define the
transformation on each iteration (defining Ai from Ai−1).

The Key Result from linear algebra that justifies this approach is the Theorem
that similarity transformations preserve eigenvalues and allow us to recover eigen-
vectors. That is, Given any nonsingular matrix, M , the eigenproblem,

Ax = λx,

has a solution (λ, x) iff the eigenproblem,

[MAM−1]y = λy,

has a solution (λ, y) where y = Mx.

33

Proof:

Let (λx) be a solution of Ax = λx and consider B = MAM−1, y = Mx. We then
have,

By = [MAM−1](Mx),

= MA(M−1M)x,

= MAx,

= Mλx,

= λ(Mx),

= λy.

To see the converse, let (λ, y) be an eigenpair for B = MAM−1, with x the solution
to Mx = y, (ie., x = M−1y). If we now let w = Ax = AM−1y we observe (since
(λ, y) is an eigenpair for MAM−1),

Mw = MAx,

= MAM−1y,

= λy,

= λMx,

or, after multiplying both sides by M−1,

Ax = λx,

which, by definition means that (λ, x) is an eigenpair for A.

The ‘trick’ then is to choose the nonsingular sequence, M1, M2 · · ·Mi such that,

A0 = A,

A1 = M1A0M
−1
1 ,

...
...

...

Ai = MiAi−1M
−1
i ,

for i = 1, 2 · · ·, and Ai → a triangular matrix. One such choice leads to the QR
Algorithm for eigenproblems.

4. QR Based Methods for Eigenproblems:

This is a stable and efficient technique first introduced and analyzed by Rutishauser
and Francis in the late 1950’s. The basic idea is,

(a) Factor Ai = QiRi, where Qi is orthogonal and Ri is upper triangular. Recall
that the cost of this decomposition is 2/3n3 flops.

34

(b) Set Ai+1 = RiQi. This can be accomplished by forming QT
i RT

i as a product
of n − 1 Householder reflections and then taking the transpose to recover
RiQi at a cost of 1/6n3 flops.

Note that we can make the following observations:

• Ai+1 is similar to Ai since,

Q−1
i AiQi = QT

i (QiRiQi) = (QT
i Qi)RiQi = Ai+1.

To recover the eigenvector we must ‘remember’ each Qi and each is a product
of n − 1 Householder reflections.

• Let Qi = Q1Q2 · · ·Qi and Ri = RiRi−1 · · ·R1 then we have,

Ai+1 = (Q1Q2 · · ·Qi)
T AQ1Q2 · · ·Qi,

= Qi
T
AQi.

This result follows from the first observation using induction.

Rutishauser proved that with this iteration the Ai converge to an upper triangular
matrix. For insight into why this is true consider QiRi = Qi−1(QiRi)Ri−1 =
Qi−1(Ai)Ri−1. From the second observation above,

QT
i−1AQi−1 = Ai or Qi−1Ai = AQi−1.

We then have,
QiRi = Qi−1AiRi−1 = AQi−1Ri−1,

which by induction implies the key observation,

QiRi = Ai.

That is we have the QR decomposition of the ith power of A. There is then a
strong relationship then between the sequence Ai and the power method [section
9.2 of the text]. As the power method is known to converge, under some mild
assumptions, it can be shown that this QR iteration will also converge.

5. Convergence and Implementation Issues:

Rate of Convergence: The rate of convergence depends on ratios (λj/λr)
i for

j 6= r, where i is the iteration number and λj and λr are the jth and rth

eigenvalues of A. Thus we will observe slow convergence for complex eigen-
values since such eigenvalues appear as complex conjugate pairs and have
equal magnitudes.

If the magnitudes of the largest eigenvalues are not well separated one can
apply a ‘shifted QR’ to accelerate convergence.

35

The Shifted QR: To improve the rate of convergence consider the iteration:

(Ai − kiI) = QiRi,

where,
Ai+1 = RiQi + kiI.

Note:

(a) Ai+1 is similar to Ai since,

QT
i AiQi = Qi(QiRi + kiI)Qi

= QT
i QiRiQi + kiQT

i IQi

= RiQi + kiI

= Ai+1

and the rate of convergence will depend on ratios,

|λj − ki|
|λr − ki|

.

(b) Choosing the ‘shift’ (ki) as an approximation to the largest eigenvalue,
ki ≈ λn, should ensure that the last row of Ai → [0, 0 · · ·0, λn] rapidly (2
or 3 iterations).
The usual choice of ki is the largest eigenvalue of the lower right 2 × 2
block of Ai. If ki is complex a ‘double shift’ is applied (avoiding complex
arithmetic).

(c) The cost of this version of the QR iteration is still O(n3) per iteration with
O(n) iterations. This results in an O(n4) method which is too expensive
and which can be improved.

6. (Optional) A Two Stage QR Iteration:

A More efficient QR algorithm can be developed by viewing the convergence to
an equivalent Triangular (or block triangular) matrix as consisting of two stages.
The first stage consists of applying n − 2 Householder-reflection, similarity trans-
formations to reduce A to an equivalent upper Hessenberg matrix An−2 = H.

The second stage applies the shifted QR iteration to H, Hi+1 = RiQi + kiI,
preserving the upper Hessenberg form for each Hi+1. The total cost is then O(n2)
flops per iteration or O(n3) flops to find all the eigenvalues of H.

Stage 1: Reduction to Hessenberg Form

(a) On first step (of stage 1) choose the Householder reflection,

H1 = [I − 2
u1u

T
1

‖u1‖2
2

] ,

36

so that the first column of A = A0 ,

a
(0)
1 =




a
(0)
11

a
(0)
21
...
...

a
(0)
n1




, is mapped onto a
(1)
1 =




a
(0)
11

±s
0
...
0




.

Therefore we have that u1 satisfies,

u1 = (a
(1)
1 − a

(0)
1) =




0

−a
(0)
21 ± s

−a
(0)
31
...

−a
(0)
n1




,

where, to preserve the l2 norm, we must have s2 = (a
(0)
21)2+(a

(0)
31)2 · · ·+(a

(0)
n1)2).

(b) The first step of stage 1 is then defined by the associated similarity transfor-
mation,

A0 = A

A1 = HT
1 A0H1 .

With this definition we observe that the first column of A1 is in upper Hessen-
berg form since (H1A0) clearly has its first column in this form and forming
(H1A0)H1 doesn’t change the first column. (That is, multiplying on the right
by H1 adds multiples of uT

1 to the rows of (H1A0) which doesn’t change the
first element of each row.)

Therefore we have,

A1 =




× × × · · · ×
× × × · · · ×
0 × × · · · ×
0 × × · · · ×
...

...
...

...
...

0 × × · · · ×




.

37

(c) On the jth step of stage 1 (j = 1, 2 · · · (n − 2)) we have

Aj−1 =




× × · · · × × · · · ×
× × · · · × × · · · ×
0 × · · · × × · · · ×
...

...
... × × · · · ×

...
...

... × × · · · ×
...

...
... 0 × · · · ×

...
...

... 0 × · · · ×
...

...
...

...
...

...
...

0 0 · · · 0 × · · · ×




,

with the first j − 1 columns in upper Hessenberg form (ie. zeros below the
first subdiagonal). We then choose The Householder reflection, Hj so that,

Hja
(j−1)
j =




a
(j−1)
1j

a
(j−1)
2j
...

a
(j−1)
jj

±s
0
...
0




= a
(j)
j .

We then set
Aj = HjAj−1Hj,

which will have its first j columns in upper Hessenberg form. (This follows
since multiplication on the right by Hj doesn’t affect the first j columns of
(HjAj−1).

To summarize, on step j:

uj ≡ (a
(j)
j − a

(j−1)
j) =




0
0
...

−a
(j−1)
j+1 j ± s

−a
(j−1)
j+2 j
...

−a
(j−1)
n j




, s2 =
n∑

i=j+1

(a
(j−1)
ij)2.

With this definition of uj we have

Hj = [I − 2uju
T
j

‖u‖2
2

] = [I − vvT],

38

where v =
√

2
‖uj‖2

uj. Therefore

Aj = HjAj−1Hj

= [I − vvT]Aj−1[I − vvT]

= Aj−1 − Aj−1vvT − vvTAj−1 − v (vT Aj−1v)︸ ︷︷ ︸
α

vT

= Aj−1 − Aj−1vvT − vvTAj−1 − αvvT ,

with α ∈ <.

Now if we let xT = α
2
vT −vT Aj−1 (having its first j−1 elements equal to zero)

and we let y = α
2
v − Aj−1v then Aj can be determined from the expression,

Aj = Aj−1 + vxT + yvT .

Note:

i. The first j − 1 columns of vxT and yvT are in upper Hessenberg form
which implies (from this expression) that the first j−1 columns of Aj are
in upper Hessenberg form. Our choice of uj ensures that the jth column
of Aj is in upper Hessenberg form.

ii. The cost of computing xT and y is 2(n − j)2 flops, and the cost of com-
puting,

a
(j)
ir = a

(j−1)
ir + vixr + yivr,

for i = j, j + 1 · · ·n; r = j + 1, j + 2 · · ·n is 2(n − j)2 flops.

iii. The total cost of Stage 1 is then 2
3
n3 + O(n2) flops (= 4

∑n−2
j=1 (n− j)2).

Stage 2: The Shifted QR iteration applied to H = An−2.

• If H is upper Hessenberg then the QR iterates, H1, H2 · · ·Hr · · · will all also
be upper Hessenberg. This follows since for an upper Hessenberg, H, the
standard QR algorithm we have discussed produces a Q that is symmetric and
tri-diagonal (and therefore upper Hessenberg). Furthermore since H1 = RQ
is a product of an upper triangular matrix and an upper Hessenberg matrix
it is upper Hessenberg.

• The QR iteration will converge (with real shifts) for any real matrix A0 to an
‘almost’ upper triangular matrix, Û ,

Û =




× × × × × · · · × × ×
× × × × × · · · × × ×
0 0 × × × · · · × × ×
0 0 × × × · · · × × ×
0 0 0 0 × · · · × × ×
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 × ×
0 0 0 0 0 · · · 0 × ×




.

39

Note that Û is an upper Hessenberg matrix with every second element of the
subdiagonal zero. This implies (from linear algebra) that the eigenvalues of
Û are the union of the eigenvalues of all the diagonal blocks (2× 2 and 1× 1
blocks).

• Recall that the eigenvalues of a 2 × 2 matrix can be computed explicitly as
the eigenvalues of

M =

[
a b
c d

]

are the roots of the polynomial det(M − λI) = 0. That is, the roots of the
equation (a − λ)(d − λ) − cb = 0. Using the quadradic formula to solve for
the roots of this equation we obtain,

λ =
(a + d) ±

√
(a + d)2 − 4(ad − cb)

2
,

=
(a + d) ±

√
(a − d)2 − 4cb

2
.

If (a − d)2 − 4cb < 0, this gives a pair of complex conjugate eigenvalues.

Otherwise the two eigenvalues are real.

4 Nonlinear Systems and Optimization

Recall that the basic problem of finding the solution of one equation in one unknown
can be formally defined as:

Given f(x), f : < → <, find a real root (or zero), α, such that f(α) = 0. We must
be satisfied with an ᾱ in our FP system, such that |ᾱ − α| is small.

The best known method to solve this class of problems is Newton’s Method, which
for real numbers x0, a, b and f(x) ∈ C1[a, b] with x0 ∈ [a, b], is defined by,

-for r = 1, 2 · · · until satisfied do:
xr+1 = xr − f(xr)

f ′ (xr)

-end

Note that this iteration can also be written as,

f
′

(xr)(xr+1 − xr) = −f
′

(xr).

Recall also that to analyze methods for solving this class of problems we need to
introduce two important definitions:

• Definition: A sequence xr converges to α iff |xr − α| → 0 as r → ∞.

40

• Definition: If xr → α and ρ ≥ 1 is the smallest real number such that,

lim
r→∞

|xr+1 − α|
|xr − α|ρ ≤ C 6= 0,

for some C > 0, then the convergence is order ρ. (Note that in this case, if xr is
accurate to k digits then xr+1 can be expected to be accurate to ρ k digits. In
particular, with order 2 convergence we should observe a doubling of the number
of digits of accuracy on each iteration.)

Note that the order of convergence quantifies the rate or speed of convergence and can
be very important in real computation.

The key properties for Newton’s Method are:

• If f(x) ∈ C1[a, b] and |x0 − α|, is sufficiently small, then xr will converge to α.

• If Newton’s Method converges and f ′(α) 6= 0, then the order of convergence is 2.

4.1 Systems of Nonlinear Equations

• The Basic Problem: find x ∈ <n such that F (x) = 0 where,

0 =




0
0
...
0




, F (x) =




f1(x)
f2(x)

...
fn(x)




.

Note that, in this section, n is the dimension of x (the number of unknowns) and
r will be the iteration number.

• Analogous with the scalar case, the vector sequence, x(0), x(1) · · ·x(r) converges to
α ∈ <n with order p if there exists c > 0 such that

lim
r→∞

‖x(r+1) − α‖
‖x(r) − α‖p

= c.

The three most common values for p are p = 1 (linear convergence), p = 2
(quadratic convergence) and p = 3 (cubic convergence).

• Of the widely used methods for scalar problems (n = 1) only Newton’s Method
extends directly to higher dimensional problems (n > 1).

Newtons Method for Systems:
Given an initial guess, x(0) ∈ <n we define the sequence x(r) for r = 0, 1 · · · by
solving the linear system,

∂F

∂x
|x=x(r)(x(r+1) − x(r)) = −F (x(r),

41

or with ∆r = x(r+1) − x(r), (the Newton Correction),

Wr∆
r = −F (x(r)),

where Wr = ∂F
∂x
|x=x(r) is the n × n matrix whose (i j)th element is (∂fi

∂xj
).

Note that:

1. One can re-write this equation as,

x(r+1) = x(r) − W−1
r F (x(r)).

2. The matrix Wr must be recomputed and a new LU or QR decomposition
computed on each iteration.

3. If ∂F
∂x
|x=α is nonsingular and the iterates converge, then the order of conver-

gence is 2.

• Approximate versions of Newtons Method have been developed for systems of
nonlinear equations that avoid the O(n3) flops per iteration or are more efficient
to implement for other reasons.

1. If we hold an approximation to Wr constant for several iterations we have a
Modified Newton method. For example one can use Wr = W1 for all r or one
can re-evaluate W once every k iterations. In either case one looses quadratic
convergence.

2. If ∂F
∂x

is difficult to compute we can use divided differences to define a Quasi Newton
method,

∂fi

∂xj

≈ fi(x + δej) − fi(x)

δ
,

where δ ≈ √
µ, and ej is the vector in <n whose components are all = 0

except for the jth component which is equal to 1.

3. We can approximate Wr by a ‘nearby’ matrix with special structure. This
is called pre-conditioning and can involve approximating Wrby a diagonal,
banded, or triangular matrix.

4. If the approximation Wr ≈ I is used the method is called Functional iteration.

These approximate versions of Newtons method often work in special cases and
can be readily analysed and justified only for these cases.

In the ‘very’ special case that F (x) is linear, that is, F (x) = Ax − b, Newton
method will converge in one iteration since,

∆r = (x(r+1) − x(r))

= −W−1
r F (x(r))

= −A−1(Ax(r) − b)

= A−1b − x(r)

= α − x(r)

42

In summary, we have that the various versions of Newtons Method that are used
in practice can be viewed as,

-guess x(0) = (x
(0)
1 , x

(0)
2 · · ·x(0)

n)T

-for r = 0, 1 · · · until satisfied do:
-Solve Wr∆

r = −F (x(r)

x(r+1) = x(r) + ∆r

-end

where Wr ≈
(

∂F
∂x

)
|x=x(r).

4.2 Optimization Problems

A special class of nonlinear systems are associated with optimization problems which
arise in a wide variety of application areas.

• The Basic Problem:
These problems have the form, Find x ∈ <n such that f(x) is a minimum (or
maximum) where

f : <n → <.

From calculus we know that f(x) will have a minimum (or maximum) value at
x = (x1, x2 · · ·xn)T when,

∇f(x) ≡




∂f
∂x1
∂f
∂x2
...

∂f
∂xn




= 0.

Therefore an optimization problem can be ‘reduced’ to solving an associated system
of nonlinear equations with F (x) ≡ ∇f(x). ∇f(x) has some very special structure
which we can exploit when we apply a version of Newton’s Method to solve the
associated set of nonlinear equations.

For a given f(x), x(r) ∈ <n and an arbitrary vector u ∈ <n define g(t), g : < → <
by,

g(t) ≡ f(x(r) + tu).

It then follows that,

dg

dt
≡ g′(t)

= (
∂f

∂x1
u1 +

∂f

∂x2
u2 · · ·+

∂f

∂xn
un)

= (∇f)T u.

43

This expression describes how f changes in the ‘direction’ u. In particular, if
(∇f)Tu < 0 then f decreases in that direction and u is called a ‘descent direction’.
This observation leads to the method of steepest descent: where we choose u =
−∇f (to obtain g′(t) = ∇fT u = −‖∇f‖2

2), and determine t̄ ∈ < to minimise
g(t) = f(x(r) − t∇f) .

With this approach we have the following method for optimization problems:

-guess x(0) = (x
(0)
1 , x

(0)
2 · · ·x(0)

n)T

-for r = 0, 1 · · · until satisfied do:
ur = ∇f(x(r)) (≡ F (x(r)))
-if ur ≈ 0 then signal convergence
-else

-find t̄ such that g(t) ≡ f(x(r) − tur) is minimum
-x(r+1) = x(r) − t̄ur

-end
end

With this approach there is only a 1D line search on each iteration and any scalar
nonlinear equation solver can be used. For example this line search can be done
with Bisection, Newton or Secant. We will always observe a descent, that is

f(x(r+1)) < f(x(r)) · · · < f(x(0)).

One can prove that the sequence of iterates, x(r), will always converge but conver-
gence may be slow.

• Just as we have shown how any Nonlinear equation method can be used to solve
optimization problems, the converse is also true. That is we can interpret a system
of nonlinear equations as a special case of an optimization problem. To see this,
consider the nonlinear system F (x) = 0 and define h : <n → < by,

h(x) ≡ ‖F (x)‖2
2 =

n∑

i=1

f 2
i (x).

Clearly,
F (α) = 0 ⇔ h(α) is minimum.

In this case,

∇h(x) = (
∂h

∂x1

,
∂h

∂x2

· · · ∂h

∂xn

)T .

where

∂h

∂xj

=
∂

∂xj

n∑

i=1

f 2
i (x)

= 2
n∑

i=1

∂fi

∂xj
fi

= 2
(
W T f

)
j
,

44

where W is the Jacobian matrix defined by,

W ≡ ∂F

∂x
whose(i j)thentry is

∂fi

∂xj
.

Therefore we have that ∇h(x) = 2W TF and this is the zero vector only when all
components of F are zero.

5 Numerical Solution of ODEs

1. Mathematical Preliminaries:

• Definition: A first-order ordinary differential equation is specified by:

y′ = f(x, y),

over a finite interval [a, b].

Note that a solution of this ODE, y(x), is a function of one variable (this
is the reason for the term ‘ordinary’ as opposed to ‘partial’). When the
solution depends on more than one variable (ie a multivariate function) it is
called a partial differential equation – PDE). The term first-order refers to the
highest derivative that appears in the equation. We will consider higher-order
equations later. For ODEs the variable x is called the independent variable
while y (which depends on x) is called the dependent variable. ‘Solving’ the
ODE is interpreted as determining a technique for expressing y as a function
of x in some explicit way.

• A function Φ(x) is a solution of this ODE if Φ(x) ∈ C1[a, b] and ∀x ∈ [a, b]
we have Φ

′

(x) = f(x, Φ(x)). (Note that this condition is often easy to check
or verify).

–An Example:

y′ = λy, has solutions Φ(x) = c eλx for any constant c. In particular this
ODE does not have a unique solution but rather a whole family of solutions
(characterized by the parameter c).

• To determine a unique mathematical solution we must add an additional
constraint as part of the problem specification. This can be done in many
ways. The most common is to prescribe the value of the solution at the initial
point of the interval. That is we specify,

y(a) = y0.

–Definition: An ODE together with the initial conditions specifies an initial
value problem for an ordinary differential equation (IVP for an ODE).

45

• Before we can attempt to approximate a solution to an IVP we must consider
some essential mathematical questions:

(a) Does a solution exist?

(b) If a solution exists, is it unique?

(c) Can the problem be solved analytically? (If so, is it worth it?)

• Definition: The function f(x, y) (a function of two variables that defines the
ODE) satisfies a Lipschitz condition in y (ie, wrt its second argument) if
∃L > 0 such that ∀x ∈ [a, b] and ∀ u, v we have

|f(x, u) − f(x, v)| ≤ L|u − v|.

In particular, if f(x, y) has a continuous partial derivative with respect to y
and this derivative is bounded for all y, then f satisfies a Lipschitz condition
in y since,

|f(x, u) − f(x, v)| = |∂f

∂y
(x, η)| |u − v|,

for some η between u and v.

• Theorem:

Let f(x, y) be continuous for x ∈ [a, b] and ∀y and satisfy a Lipschitz condi-
tion in y, then for any initial condition y0 the IVP,

y′ = f(x, y), y(a) = y0, over [a, b],

has a unique solution, y(x) defined for all x ∈ [a, b].

• Extension to systems of equations:

Often one must deal with a system of n ‘unknown’ dependent variables of the
form:

y′
1 = f1(x, y1, y2, · · · yn),

y′
2 = f2(x, y1, y2, · · · yn),
...

...
...

y′
n = fn(x, y1, y2, · · ·yn),

with initial conditions all specified at the same point,

y1(a) = c1,

y2(a) = c2,
...

...
...

yn(a) = cn,

46

In vector notation, this system of IVPs in ODEs can be written

Y ′ = F (x, Y), Y (a) = Y0,

where Y (x) = [y1(x), y2(x), · · ·yn(x)]T , Y0 = [c1, c2, · · · cn]T and F (x, Y) is a
vector-valued function,

F (x, Y) =




f1(x, Y)
f2(x, Y)
...
fn(x, Y)




.

The theory and the investigation of numerical methods that we present will be
the same for systems as for scalar IVPs. In particular, the main mathematical
Theorem quoted above holds for systems.

–Examples of systems:

(a) From Biology:
A predator-prey relationship can be modeled by the IVP:

y
′

1 = y1 − 0.1y1y2 + 0.02x

y
′

2 = −y2 + 0.02y1y2 + 0.008x

with
y1(0) = 30, y2(0) = 20.

Here y1(x) represents the ‘prey’ population at time x and y2(x) represents
the ‘predator’ population at time x. The solution can then be visualized
as a standard x/y solution plot or by a ‘phase plane’ plot. Figure 1
illustrates the solution to this system. We know that for different initial
conditions solutions to this problem exhibit oscillatory behaviour as x
increases.
A biologist may be interested in whether the solutions to this equation
are ‘almost periodic’ (in the sense that the difference between successive
maximum is constant) and whether the local maxima approach a steady
state exponentially. (See Figure 2).

(b) From Chemistry:
The chemical reaction involving the combination of two chemicals C1 and
C2, to yield a product C3 is represented (in chemistry) by the mechanism
(or notation)

K2

C1 + C2 ⇀↽ C3

K1 .

47

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

(a) Solution Plot

10 20 30 40 50 60 70 80 90 100 110
2

4

6

8

10

12

14

16

18

20

22

(b) Phase Plane Plot

Figure 1: Solutions to the predator prey problem for x in [0, 20]

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Figure 2: Typical behaviour of prey or predator population and decay to steady state

We can model this chemical reaction with the system of 3 ODEs, where
y1(x) = [C1] the concentration of the chemical C1 at time x, y2(x) = [C2]
and y3(x) = [C3]. The resulting system of IVPs whose solution for x ∈
[a, b] describes the change in concentrations over time as the reaction
takes place (possibly approaching a steady state) is,

y′
1 = K1y3 − K2y1y2,

y′
2 = K1y3 − K2y1y2,

y′
3 = K2y1y2 − K1y3.

48

• Extension to Second (and higher) order ODEs:

Often physical or biological systems are best described by second or higher-
order ODEs. That is, second or higher order derivatives appear in the math-
ematical model of the system. For example, from physics we know that New-
tons laws of motion describe trajectory or gravitational problems in terms
of relationships between velocities, accelerations and positions. These can
often be described as IVPs where the ODE has the form y ′′(x) = f(x, y) or
y′′(x) = f(x, y, y′).

(a) A Second-order ODE can be reduced to an equivalent system of first-

order ODEs as follows: With y
′′

= f(x, y, y′) we let Z(x) be defined
by,

Z(x) = [z1(x), z2(x)]T ,

where z1(x) = y(x) and z2(x) = y′(x). It is then clear that Z(x) is the
solution of the first order system of IVPs:

Z ′ =

[
z′1(x)
z′2(x)

]
,

=

[
y′(x)
y′′(x)

]
,

=

[
z2(x)
f(x, y, y′)

]
,

=

[
z2(x)
f(x, z1, z2)

]
,

= F (x, Z).

– Note that in solving this ‘equivalent’ system for Z(x), we actually de-
termine an approximation to y′(x) as well as to y(x). This has impli-
cations for numerical methods as, when working with this equivalent
system, we will actually be trying to accurately approximate y ′(x)
and this may be a more difficult problem than just approximating
y(x).

– Note also that to determine a unique solution to our problem we must
prescribe initial conditions for Z(a), that is for both y(a) and y ′(a).

– Higher order (greater than second order) equations can be reduced
to first order systems in a similar way.

2. Taylor Series Methods:

• If f(x, y) is sufficiently differentiable wrt x and y then we can determine the
Taylor series expansion of the unique solution y(x) to

y′ = f(x, y), y(a) = y0,

49

by differentiating the ODE at the point x0 = a. That is, for x near x0 = a
we have,

y(x) = y(x0) + (x − x0)y
′(x0) +

(x − x0)
2

2
y′′(x0) + · · · ,

• To generate the TS coefficients, y(n)(x0)/n!, we differentiate the ODE and
evaluate at x = x0 = a. The first few terms are computed from the expres-
sions,

y′(x) = f(x, y) = f,

y′′(x) =
d

dx
f(x, y) = fx + fyy

′

= fx + fyf.

y′′′(x) =
d

dx
[y′′(x)] = (fxx + fxyf) + (fyx + fyyf)f + fy(fx + fyf),

= fxx + 2fxyf + fyyf
2 + fyfx + f 2

y f.

• In general, if f(x, y) is sufficiently differentiable, we can use the first (k + 1)
terms of the Taylor series as an approximation to y(x) for |(x − x0)| ‘small’.
That is, we can approximate y(x) by ẑk,0(x),

ẑk,0(x) ≡ y0 + (x − x0)y
′
0 + · · · + (x − x0)

k

k!
y

(k)
0 .

Note that the derivatives of y become quite complicated so one usually chooses
a small value of k (for example k ≤ 6).

• One can use ẑk,0(x1) as an approximation, y1, to y(x1). We can then evaluate
the derivatives of y(x) at x = x1 to define a new polynomial ẑk,1(x) as an
approximation to y(x) for |(x − x1)| ‘small’ and repeat the procedure.

Note:

(a) The resulting ẑk,j(x) for j = 0, 1, · · · define a piecewise polynomial ap-
proximation to y(x) that is continuous on [a, b].

(b) How do we effectively choose hj = (xj − xj−1) and k?

• Let Tk(x, yj−1) denote the first k + 1 terms of the Taylor series expanded
about the discrete approximation, (xj−1, yj−1), and ẑk,j(x) be the polynomial
approximation (to y(x)) associated with this truncated Taylor series. That
is,

ẑk,j(x) = yj−1 + h Tk(x, yj−1),

Tk(x, yj−1) ≡ f(xj−1, yj−1) +
h

2
f

′

(xj−1, yj−1) + · · · h
k−1

k!
f (k−1)(xj−1, yj−1),

where h = (x − xj−1).

A simple, constant stepsize (fixed h) numerical method is then given by:

50

-Set h = (b − a)/N ;
-for j = 1, 2, · · ·N

xj = xj−1 + h;
yj = yj−1 + h Tk(xj−1, yj−1);

-end

3. Local and Global Errors:

Note that, strictly speaking, zk,j(x) is not a direct approximation to y(x) but to
the solution of the ‘local’ IVP:

z
′

j = f(x, zj), zj(xj−1) = yj−1.

Since yj−1 will not be equal to y(xj−1) in general, the solution to this local problem,
zj(x), will not then be the same as y(x).

To understand and appreciate the implications of this observation we distinguish
between the ‘local’ and ‘global’ errors.

Definitions:

• The local error associated with step j is zj(xj) − yj.

• The global error at xj is y(xj) − yj.

4. The Classical Approach:

A Classical (pre 1965) numerical method approximates y(x) by dividing [a, b] into
equally spaced subintervals, xj = a + j h, where h = (b − a)/N and (proceeding
in a step-by-step fashion), generates yj after y1, y2, · · ·yj−1 have been determined.

• If the Taylor series method is used in this way, then the TS theorem with
remainder shows that the local error on step j (for the TS method of order
k) is:

Ej =
hk+1f (k)(ηj, zj(ηj))

(k + 1))!
=

hk+1z
(k+1)
j (ηj)

(k + 1)!
.

• An Example:

If k = 1 we have Eulers Method where

yj = yj−1 + h f(xj−1, yj−1),

and the associated local error satisfies,

LEj =
h2

2
y

′′

(ηj).

51

• Classical convergence result (for a fixed-step method):

Definition: A method is said to converge if and only if,

lim
h→0,(N→∞)

{
max

j=1,2,···N
|y(xj) − yj|

}
→ 0.

• Theorem: (typical of classical convergence results)

Let [xj, yj]
N
j=0 be the approximate solution of the IVP, y

′

= f(x, y), y(a) =
y0 over [a, b] generated by Euler’s method with constant stepsize h = (b −
a)/N . If the exact solution, y(x), has a continuous second derivative and
|fy| < L, |y′′

(x)| < Y then the associated global error, ej = y(xj)− yj, at the
points xj = a + j h satisfies,

|ej| ≤ hY

2L
(e(xj−x0)L − 1) + e(xj−x0)L|e0|,

≤ hY

2L
(e(b−a)L − 1) + e(b−a)L|e0|.

Note:

(a) e0 will usually be equal to zero.

(b) This bound is generally pessimistic as it is exponential in (b − a) where
linear error growth is often observed.

(c) In the general case one can show that when local error is O(hp+1) the
global error is O(hp).

Proof of this Theorem (Outline only): Eulers Method satisfies,

yj = yj−1 + hf(xj−1, yj−1).

A Taylor series expansion of y(x) about x = xj−1 implies

y(xj) = y(xj−1) + hf(xj−1, y(xj−1)) +
h2

2
y

′′

(ηj).

Subtracting the first equation from the second we obtain,

y(xj) − yj = y(xj−1) − yj−1 + h [f(xj−1, y(xj−1)) − f(xj−1, yj−1)] +
h2

2
y

′′

(ηj).

If Y = maxx∈[a,b] |y′′

(x)| and |fy| ≤ L, then, from the definition of ej and the
observation that f(x, y) satisfies a Lipschitz condition with respect to y, we
have

|ej| ≤ |ej−1| + hL|y(xj−1) − yj−1| + |h
2

2
y

′′

(ηj)|,

≤ |ej−1| + hL|ej−1| +
h2

2
Y,

= |ej−1|(1 + hL) +
h2

2
Y.

52

This is a linear recurrence relation (or inequality) which after some work
(straightforward) can be shown to imply our desired result,

|ej| ≤
hY

2L
(e(b−a)L − 1) + e(b−a)L|e0|.

Note that this is only an upper bound on the global error and it may not be
sharp.

5. An Example:

Consider the following equation,

y
′

= y, y(0) = 1, on [0, 1].

Now since ∂f
∂y

= 1 , L = 1 and since y(x) = ex, we have Y = e and e0 = 0.

Applying our error bound with h = 1/N and yN ≈ y(1) = e we obtain,

|GEN | = |YN − e| ≤ he

2
(e − 1) < 2.4h.

But for h = .1 we observe that y10 = 2.5937.. with an associated true error of
.1246... This error bound is .24.

6. Limitations and Difficulties with Classical Approach:

• Analysis is valid only in the limit as h → 0.

• Bounds are usually very pessimistic (can overestimate the error by several
orders of magnitude).

• Analysis does not consider the affect of f.p. arithmetic.

To extend the analysis, consider applying Eulers method with roundoff error:

Assume fl(f(xj−1, yj−1)) = f(xj−1, yj−1) + εj and

yj = yj−1 ⊕ h ⊗ fl(f(xj−1, yj−1)),

= yj−1 + hf(xj−1, yj−1) + hεj + ρj,

where |εj|, |ρj| < µ.

Then, proceeding as before we obtain,

|ej| < |ej−1|(1 + hL) +
h2

2
M̄,

where M̄ = Y + µ/h + µ/(h2).

Therefore the revised error bound becomes:

|ej| ≤ e(b−a)L|e0| +
hM̄

2L
(e(b−a)L − 1),

= e(b−a)L|e0| + (e(b−a)L − 1)(
hY

2L
+

µ

2L
+

µ

2hL
).

So, as h → 0, the term µ
2hL

will become unbounded (unless the precision
changes) and we will not observe convergence.

53

• Special difficulties with fixed-h Euler:

– The low order results in requiring a small stepsize, which leads to a large
number of derivative evaluations and excessive amount of computer time.

– The use of a constant stepsize can be inappropriate if the solution behaves
differently on parts of the interval of interest. For example in integrating
satellite orbits ‘close approaches’ typically requires a smaller stepsize to
ensure accuracy.

7. Runge-Kutta Methods:

(a) We will consider a general class of one-step formulas of the form:

yj = yj−1 + hΦ(xj−1, yj−1). (4)

where Φ satisfies a Lipschitz condition with respect to y. That is,

|Φ(x, u) − Φ(x, v)| ≤ L|u − v|.

We will consider a variety of choices for Φ and will observe that, in each case
considered, Φ will be Lipschitz if f is.

Two examples of such formulas are:

Euler: Φ ≡ f .

Taylor Series: Φ ≡ Tk(x, y).

(b) Definition: A formula (4) is of order p if for all sufficiently differentiable
functions y(x) we have,

y(xj) − y(xj−1) − hΦ(xj−1, y(xj−1)) = O(hp+1). (5)

Note that:

i. The LHS of (5) is defined to be the Local Truncation Error (LTE) of the
formula.

ii. Order p implies that both the LE and the LTE are O(hp+1). (This follows
by substituting zj(x) for y(x) in the definition.)

(c) Main Result:

Theorem: A pth order formula applied to an initial value problem with con-
stant stepsize h satisfies,

|y(xj) − yj| ≤ |e0|eL(b−a) +
Chp

L (eL(b−a) − 1).

This result can be proved using a similar argument to that used in the Euler
convergence theorem.

54

(d) We wish to consider formulas Φ that are less ‘expensive’ than higher order
Taylor Series and yet are higher order than Euler’s formula. Consider a
formula Φ based on 2 derivative evaluations. That is,

Φ(xj−1, yj−1) = ω1k1 + ω2k2,

where,

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + αh, yj−1 + hβk1).

We determine the parameters ω1, ω2, α, β to obtain as high an order formula
as possible. From the definition of order we have order p if

y(xj) = y(xj−1) + h(ω1k1 + ω2k2) + O(hp+1) (6)

for all sufficiently differentiable functions y(x). To derive such a formula we
expand y(xj), k1, k2 in Taylor Series about the point (xj−1, yj−1), equate like
powers of h on both sides of (6), and set α, β, ω1, ω2 accordingly.

In what follows we omit arguments when they are evaluated at the point
(xj−1, yj−1). The expansion of the LHS of (6) is:

LHS = y(xj),

= y(xj−1) + hy
′

(xj−1) +
h2

2
y

′′

(xj−1) +
h3

6
y

′′′

(xj−1) + O(h4),

= y(xj−1) + hf +
h2

2
(fx + fyf)

+
h3

6
(fxx + 2fxyf + fyyf

2 + fyfx + f 2
y f) + O(h4).

The expansion of the RHS of (6) is more complicated and first requires the
expansions of k1 and k2,

k1 = f,

k2 = f(xj−1 + αh, y(xj−1) + βhk1),

= f(xj−1, y(xj−1) + βhf) + (αh)fx(xj−1, y(xj−1) + βhf)

+
α2h2

2
fxx(xj−1, y(xj−1) + βhf) + O(h3),

=

[
f + βhffy +

(βhf)2

2
fyy + O(h3)

]

+
[
αhfx + αβh2ffxy + O(h3)

]
+

[
α2h2

2
fxx + O(h3)

]
,

= f + (βffy + αfx) h + (
β2

2
f 2fyy + αβffxy +

α2

2
fxx) h2 + O(h3).

55

The expansion of the RHS of (6) then is (with these substitutions for k1 and
k2)

RHS = y(xj−1) + h(ω1k1 + ω2k2),

= y(xj−1) + hω1f + hω2 [· · ·] + O(h4),

= y(xj−1) + [(ω1 + ω2)f] h + [ω2(βffy + αfx)] h2

+

[
ω2(

β2

2
f 2fyy + αβffxy +

α2

2
fxx)

]
h3 + O(h4).

Finally these expansions are true for all values of h, so equating like powers
of h, in the LHS and RHS expansions, we observe the following:

For order 0 : The coefficients of h0 always agree and we have order at least
zero for any choice of the parameters.

For order 1: If ω1 + ω2 = 1 the coefficients of h1 agree and we have at least
order 1.

For order 2: In addition to satisfying the order 1 constraints we must have
the coefficient of h2 the same. That is αω2 = 1/2 and βω2 = 1/2.

For order 3: In addition to satisfying the order 2 constraints we must have
the coefficients of h3 the same. That is we must satisfy the equations,

ω2α
2 =

1

3
,

ω2αβ =
1

3
,

ω2β
2 =

1

3
,

1

6
fxy = ?,

1

6
f 2

y = ?.

Note that there are not enough terms in the coefficient of h3 in the expansion
of the RHS to match the expansion of the LHS. We cannot therefore equate
the coefficients of h3 and the maximum order we can obtain is order 2. Our
formula will be order 2 for any choice of ω2 6= 0, with ω1 = 1 − ω2 and
α = β = 1

2ω2
. This is a one-parameter family of 2nd-order Runge-Kutta

formulas.

Three popular choices from this family are:

Modified Euler: ω2 = 1/2

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + h, yj−1 + hk1),

yj = yj−1 +
h

2
(k1 + k2).

56

Midpoint: ω2 = 1

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
h

2
, yj−1 +

h

2
k1),

yj = yj−1 + hk2.

Heun’s Formula: ω2 = 3/4

k1 = f(xj−1, yj−1),

k2 = f(xj−1 +
2

3
h, yj−1 +

2

3
hk1),

yj = yj−1 +
h

4
(k1 + 3k2).

8. Higher-order Runge-Kutta formulas:

An s-stage explicit Runge-Kutta formula uses s derivative evaluations and has the
form:

yj = yj−1 + h(ω1k1 + ω2k2 · · ·+ ωsks),

where

k1 = f(xj−1, yj−1),

k2 = f(xj−1 + α2h, yj−1 + hβ21k1),
...

ks = f(xj−1 + αsh, yj−1 + h
s−1∑

r=1

βsrkr).

This formula is represented by the tableau,

- -
α2 β21 -

...
...

αs βs1 βs2 . . . βs−1,s -
ω1 ω2 . . . ωs

These s(s−1)
2

+ (s− 1) + s parameters are usually chosen to maximise the order of
the formula.

The maximum attainable order for an s-stage Runge-Kutta formula is given by
the following table:

s 1 2 3 4 5 6
max order 1 2 3 4 4 5

57

Note that the derivations of these maximal order formulas can be very messy
and tedious, but essentially they follow (as outlined above for the case s = 2) by
expanding each of the kr in a 2-dimensional Taylor series.

An Example – The Classical Fourth Order Runge Formula (1895)

- -
1/2 1/2 -
1/2 0 1/2 -
1 0 0 1 -

1/6 1/3 1/3 1/6

9. Error Estimates:

(a) Ideally a method would estimate a bound on the global error and adjust
the stepsize, h, to keep the magnitude of the global error less than a toler-
ance. Such computable bounds are possible but are usually pessimistic and
inefficient to implement.

(b) On the other hand, local errors can be reliably and efficiently estimated and
controlled. Consider a method which keeps the magnitude of the local error
less than h TOL on each step.

That is, if zj−1(x) is the local solution on step j,

z
′

j−1 = f(x, zj−1), zj−1(xj−1) = yj−1,

then a method will adjust h = xj − xj−1 to ensure that |zj−1(xj) − yj| ≤
h TOL, for j = 1, 2 · · ·NTOL.

(c) With this type of error control one can show that, for the resulting (xj, yj)
NTOL

j=0

there exists a piecewise polynomial, Z(x) ∈ C1[a, b] such that Z(xj) = yj for
j = 0, 1, · · ·NTOL and for x ∈ [a, b],

|Z ′

(x) − f(x, Z)| ≤ TOL.

We can also show that,

|y(xj) − yj| ≤
TOL

L
(eL(xj−a) − 1).

(d) Derivation of Local Error Estimates for Runge-Kutta formulas:

Consider the Modified Euler Formula:

- -
1 1 -

1/2 1/2

58

We have shown

zj−1(xj) = yj−1 +
h

2
(k1 + k2)

+
[
1

4
f 2fyy +

1

2
ffxy +

1

4
fxx − y

′′′

(xj)
]
h3 + O(h4),

= yj +
[

1

12
fyyf

2 +
1

6
ffxy +

1

12
fxx − fxy − f 2

y f
]
h3 + O(h4),

≡ yj + c(f)h3 + O(h4).

It then follows that the local error, LE, satisfies

LE = c(f)h3 + O(h4),

where c(f) is a complicated function of f . There are two general strategies
for estimating c(f) – the use of ”step halving” and the use of a 3rd order
”companion formula”.

Step Halving: let ŷj be the approximation to zj−1(xj) computed with two
steps of size h/2. If c(f) is almost constant the we can show

zj−1(xj) = ŷj + 2c(f)(
h

2
)3 + O(h4)

and from above
zj−1(xj) = yj + c(f)h3 + O(h4).

Therefore the local error associated with ŷj, L̂E, is

L̂E = 2c(f)(
h

2
)3 + O(h4),

=
1

3
(yj − ŷj) + O(h4).

The method could then compute ŷj, yj and accept ŷj only if 1
3
|yj − ŷj| <

h TOL.
Note that this strategy requires five derivative evaluations on each step
and assumes that each of the components of c(f) is slowly varying.

Third Order Companion Formula: To estimate the local error associ-
ated with the Modified Euler formula consider the use of a 3-stage, 3rd

order Runge-Kutta formula,

ŷj = yj−1 + h(ω̂1k1 + ω̂2k2 + ω̂3k3),

= zj−1(xj) + O(h4),

We also have

yj = yj−1 +
h

2
(k1 + k2),

= zj−1(xj) − c(f)h3 + O(h4).

59

Subtracting these two equations we have the local error estimate,

estj ≡ (ŷj − yj) = c(f)h3 + O(h4).

Note that, for any 3rd order formula, k1 = k̂1, so we require at most 4
derivative evaluations per step to compute both yj and estj. Furthermore,

if α̂2 = α2 = 1 and β̂21 = β21 = 1, we have k̂2 = k2 and the cost is only
three derivative evaluations per step. The obvious question is can one
derive such a 3-stage 3rd order Runge-Kutta formula ? The answer is yes
and the following tableau with α̂3 6= 1 defines a one-parameter family of
such ”companion formulas” for the Modified Euler formula:

- -
1 1 -

α̂3 β̂31 β̂32 -
ω̂1 ω̂2 ω̂3

with

β̂31 = α̂2
3, β̂32 = α̂3−α̂2

3, ω̂2 =
1

6(α̂3 − 1)
, ω̂3 =

−1

6(α̂3 − 1)
, ω̂1 = 1−(

1 + 3α̂3

6α̂3

).

Generalization to Higher Order: This idea of using a ”companion for-
mula” of order p + 1 to estimate the local error of a pth order formula
leads to the derivation of s-stage, order (p, p + 1) formula pairs with the
fewest number of stages. Such formula pairs can be characterized by the
tableau:

- -
α2 β21 -

...
...

αs βs1 . . . βs−1,s -
ω1 ω2 . . . ωs

ω̂1 ω̂2 . . . ω̂s

where

yj = yj−1 + h
s∑

r=1

ωrkr

= zj−1(xj) − c(f)hp+1 + O(hp+2),

ŷj = yj−1 + h
s∑

r=1

ω̂rkr

= zj−1(xj) + O(hp+2),

estj = (ŷj − yj)

= c(f)hp+1 + O(hp+2).

Note that the error estimate is a reliable estimate of the local error asso-
ciated with the lower order (order p) formula. The following table gives

60

the fewest number of stages required to generate formula pairs of a given
order.

order pair (2,3) (3,4) (4,5) (5,6) (6,7)
fewest stages 3 4 6 8 10

10. Stepsize Control:

• Step is accepted only if |estj| < hTOL.

• If h is too large, the step will be rejected and the derivative evaluations will
be wasted.

• If h is too small, there will be many steps and more function evaluations than
necessary.

The usual strategy for choosing the attempted stepsize, h, for the next step is
based on ‘aiming’ at the largest h which will result in an accepted step on the
current step. If we assume that c(f) is slowly varying then,

|estj| = |c(f)|hp+1
j + O(hp+2),

and on the next step attempted step, hj+1 = γhj, we want

|estj+1| ≈ TOL hj+1.

But

|estj+1| ≈ |c(f)|(γhj)
p+1,

= γp+1|estj|.

We can then expect
|estj+1| ≈ TOL hj+1,

if
γp+1|estj| ≈ TOL (γhj),

which is equivalent to
γp|estj| ≈ TOL hj.

The choice of γ to satisfy this heuristic is then,

γ =

(
TOL hj

|estj|

)1/p

.

A typical step-choosing heuristic, justified by the above discussion, is to use the
formula,

hj+1 = .9

(
TOL hj

|estj|

)1/p

hj,

where .9 is a ‘safety factor’. The formula works for use after a rejected step as well
but must be modified slightly when round-off errors are significant.

61

6 Gauss Quadrature and Multidimensional Quadra-

ture

1. The basic Problem – approximation of integrals:

We will consider how best to compute an approximation to the definite integral:

I(f) ≡
∫ b

a
f(x)dx.

The obvious generic approach is to approximate the integrand f(x) on the interval
[a, b] by a function that can be integrated exactly (such as a polynomial) and then
take the integral of the approximating function to be an approximation to I(f).

2. Interpolatory Rules:

When the approximating function is an interpolating polynomial, Pn(x), the corre-
sponding approximation I(Pn(x)) is called an interpolatory rule. You have aleady
investigated several widely used interpolatory rules. In this secion we will investi-
gate and justify a special class of interpolatory rules.

Consider writing Pn(x) in Lagrange form,

Pn(x) =
n∑

i=0

f(xi)li(x),

where li(x) is defined by

li(x) =
n∏

j=0,j 6=i

(
x − xj

xi − xj

)
.

We then have

∫ b

a
Pn(x)dx =

∫ b

a

n∑

i=0

f(xi)li(x)dx

=
n∑

i=0

f(xi)
∫ b

a
li(x)dx

=
n∑

i=0

ωif(xi).

Note:

• The ‘weights’ (the ωi’s) depend only on the interval (the value of a and b)
and on the xi’s. In particular these weights are independent of the integrand.

• The interpolatory rules then approximate I(f) by a linear combination of
sampled integrand evaluations.

62

3. Errors in Interpolatory Rules:

The error associated with an interpolatory rule is E(f) = I(f)−I(Pn) and satisfies,

E(f) =
∫ b

a
f(x)dx −

∫ b

a
Pn(x)dx =

∫ b

a
[f(x) − Pn(x)]dx,

=
∫ b

a
En(x)dx,

where En(x) is the error in polynomial interpolation and satisfies,

En(x) = (x − x0)(x − x1) · · · (x − xn)f [x0, x1, · · ·xn, x],

= Πn(x)f [x0, x1, · · ·xn, x],

with Πn(x) ≡ ∏n
j=0(x − xj).

This expression for the error is valid for all interpolatory rules. In some special
cases we can simplify this expression to obtain estimates and/or more insight into
the behaviour of the error.

• First special case – If Πn(x) is of one sign (on [a, b]) then the Mean Value
Theorem for Integrals implies,

E(f) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

= f [x0, x1, · · ·xn, ξ]
∫ b

a
Πn(x)dx,

for some ξ ∈ [a, b]. Also since f [x0, x1, · · ·xn, ξ] = f(n+1)(η)
(n+1)!

for some η ∈
(a, b), we have shown that if Πn(x) is of one sign then,

E(f) = 1
(n+1)!

f (n+1)(η)
∫ b
a Πn(x)dx

• Second special case – If
∫ b
a Πn(x)dx = 0 we have, for arbitrary xn+1,

f [x0, x1, · · ·xn, x] = f [x0, x1, · · ·xn, xn+1] + f [x0, x1, · · ·xn+1, x](x − xn+1),

and therefore,

E(F) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

=
∫ b

a
f [x0, x1, · · ·xn+1]Πn(x)dx +

∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx,

=
∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx.

As a result, if
∫ b
a Πn(x)dx = 0 and we can choose xn+1 so that Πn+1(x) is of

one sign, then using a similar argument to that presented in the first special
case, it follows that, if

∫ b
a Πn(x)dx = 0 and Πn+1(x) is of one sign,

63

E(f) = 1
(n+2)!

f (n+2)(η)
∫ b
a Πn+1(x)dx

4. Examples of Interpolatory Rules:

(a) Trapezoidal Rule (an example of the first special case):

T (f) ≡
∫ b

a
P1(x)dx,

where x0 = a and x1 = b. We then have,

P1(x) = l0(x)f0 + l1(x)f1 =
x − x1

x0 − x1
f0 +

x − x0

x1 − x0
f1.

Therefore we have

T (f) =
∫ b

a

x − b

a − b
dxf(a) +

∫ b

a

x − a

b − a
dxf(b),

=

(
b − a

2

)
f(a) +

(
b − a

2

)
f(b),

=

(
b − a

2

)
[f(a) + f(b)].

We also have that Π1(x) = (x − a)(x − b) is negative for x ∈ [a, b] and∫ b
a Π1(x)dx = − (b−a)3

6
. We therefore have satisfied the conditions of the first

special case and this implies,

T (f) = (b−a
2

)[f(a) + f(b)], ET (f) = −f
′′

(η)
12

(b − a)3.

(b) Simpsons Rule (an example of the second special case):

S(f) ≡
∫ b

a
P2(x)dx,

with x0 = a, x1 = a+b
2

, x2 = b.

Exercise: Using

P2(x) = l0(x)f(a) + l1(x)f

(
a + b

2

)
+ l2(x)f(b),

where

l0(x) =
(x − a+b

2
)(x − b)

(a − a+b
2

)(a − b)
,

l1(x) =
(x − a)(x − b)

(a+b
2

− a)(a+b
2

− b)
,

l2(x) =
(x − a)(x − a+b

2
)

(b − a)(b − a+b
2

)
.

64

Simplify and verify (after some tedious algebra) that,

∫ b

a
P2(x)dx = [

∫ b

a
l0(x)dx]f(a) + [

∫ b

a
l1(x)dx]f(

a + b

2
) + [

∫ b

a
l2(x)dx]f(b),

...
...

=

(
b − a

6

)[
f(a) + 4f(

a + b

2
) + f(b)

]
.

Note that for x ∈ [a, b], Π2(x) is antisymmetric about a+b
2

and this implies∫ b
a Π2(x)dx = 0. Furthermore by choosing x3 = a+b

2
we have

Π3(x) = (x − a)(x − a + b

2
)2(x − b),

is of one sign and this implies,

ES(f) = I(f) − S(F) =
1

4!
f (4)(η)

∫ b

a
Π3(x)dx.

But
∫ b
a Π3(x)dx = − 4

15
(b−a

2
)5 so we have,

S(f) = (b−a
6

)[f(a) + 4f(a+b
2

) + f(b)], ES(f) = −f(4)(η)
90

(b−a
2

)5

5. Gauss Quadrature (choosing the xi’s to “optimize” the error bound):

(a) Recall that the error in interpolatory rules satisfies,

E(f) =
∫ b

a
f [x0, x1, · · ·xn, x]Πn(x)dx,

and if
∫ b
a Πn(x)dx = 0 we have,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+1, x]Πn+1(x)dx,

for any choice of xn+1.

Now if
∫ b
a Πn+1(x) = 0 as well we can repeat this argument and obtain,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+2, x]Πn+2(x)dx.

For the general case, let q0(x) ≡ 1 and qi(x) ≡ (x − xn+1)(x − xn+2) · · · (x −
xn+i) for i = 1, 2, · · · (m − 1). We can then show that if

∫ b
a Πn(x)qi(x)dx = 0,

for i = 0, 1, · · · (m − 1) then,

E(f) =
∫ b

a
f [x0, x1, · · ·xn+m, x]Πn+m(x)dx.

65

(b) The key idea of Gauss Quadrature is to choose the nodes or interpolation
points, (x0, x1, · · ·xn) such that

∫ b
a Πn(x)q(x)dx = 0 for all polynomials, q(x),

of degree at most n. Therefore, in particular for the choice q(x) = qi(x) for
i = 0, 1, · · ·n we have

∫ b
a Πn(x)qi(x)dx = 0, and from the above observation,

E(f) =
∫ b

a
f [x0, x1, · · ·x2n+1, x]Π2n+1(x)dx.

To ensure that Π2n+1(x) is of one sign for x ∈ [a b] we can choose xn+i = xi for
i = 1, 2, · · ·n+1 and we then have Π2n+1(x) = Π2

n(x) with the corresponding
error expression,

E(f) = f [x0, x1, · · ·x2n+1, ξ]
∫ b

a
Π2

n(x)dx,

=
1

(2n + 2)!
f (2n+2)(η)sn+1,

where sn+1 =
∫ b
a Π2

n(x)dx.

Note that such rules will be exact for all polynomials of degree at most 2n +
1. That is, if the integrand is a polynomial of degree less than 2n + 2 the
corresponding Gauss Quadrature interpolatory rule (based on the n carefully
chosen points) will give the exact answer.

(c) How do we choose the xi’s to ensure that
∫ b
a Πn(x)q(x)dx = 0 for all polyno-

mials, q(x) of degree at most n ?

This question leads to the study of orthogonal polynomials.

• Definition: The set of polynomials {r0(x), r1(x), · · · rk(x)} is orthogonal
on [−1, 1] iff the following two conditions are satisfied:

i.
∫ 1
−1 ri(x)rj(x)dx = 0, for i 6= j,

ii. The degree of ri(x) is i for i = 0, 1, · · ·k.

• Properties of orthogonal polynomials:

i. Any polynomial qs(x) of degree s ≤ k can be expressed as.

qs(x) =
s∑

j=0

cjrj(x).

ii. rk(x) is orthogonal to all polynomials of degree less than k. (This
follows from the previous property.)

iii. rk(x) has k simple zeros all in the interval [−1, 1].
Proof:
For rk(x), let {µ1, µ2, · · ·µm} be the set of points in [−1, 1] where
rk(x) changes sign. It is clear that each µj is a zero of rk(x) and all
simple zeros of rk(x) in [−1, 1] must be in this set.
We then have m ≤ k as the maximum number of zeros of a polynomial
of degree k is k. To show that m ≥ k (and hence m = k) assume

66

the contrary, ie. m < k. With this assumption we have that

q̂m(x) ≡
m∏

i=1

(x − µi),

is a polynomial of degree m < k that changes sign at each µi and,

∫ 1

−1
q̂m(x)rk(x)dx = 0,

but q̂m(x) and rk(x) have the same sign for all x in [−1, 1] (they
change sign at the same locations) and this implies a contradiction
(the integrand is of one sign but the integral is zero) and therefore
our assumption must be false and m ≥ k.

iv. The rk(x) satisfy a 3-term recurrence,

rs+1(x) = as(x − bs)rs(x) − csrs−1(x),

for s = 1, 2, · · ·k, where the as are normalization constants, r−1(x) =
0, and if ts =

∫ 1
−1 r2

s(x)dx then,

bs =
1

ts

∫ 1

−1
xr2

s(x)dx,

cs =
asts

as−1ts−1
.

For example, we obtain the classical Legendre polynomials if we nor-
malise so rs(−1) = 1. This leads to,

as =
2s + 1

s + 1
, bs = 0, cs =

s

s + 1
.

• Orthogonal Polynomials on arbitrary intervals [a, b].
To transform orthogonal polynomials defined on [−1, 1] to [a, b] consider
the linear mapping from [−1, 1] → [a, b] defined by x = b−a

2
y + a+b

2
. The

corresponding inverse mapping is y = 1
b−a

[2x − b − a] and from calculus
we know,

∫ b

a
g(x)dx = (

b − a

2
)
∫ 1

−1
g(

b − a

2
y +

a + b

2
)dy.

This relationship, combined with the properties of Legendre polynomials
(that we have identified above) give a prescription for the selection of the
set of interpolation points (the xi’s) that define Gauss Quadrature:
For i = 0, 1, · · ·n, set yi to the ith zero of the Legendre Polynomial,
rn+1(y). With this choice we note that

∏n
j=0(y − yj) = K rn+1(y) for

67

some constant K 6= 0. Then with xi = b−a
2

yi + b+a
2

we have,

Πn(
b − a

2
y +

a + b

2
) =

n∏

j=0

(
b − a

2
y +

a + b

2
− xj),

=
n∏

j=0

(
b − a

2
y +

a + b

2
− (

b − a

2
yj +

a + b

2
)),

=
n∏

j=0

[
b − a

2
(y − yj)

]
,

= (
b − a

2
)n+1

n∏

j=0

(y − yj),

= (
b − a

2
)n+1K rn+1(y),

and therefore for any polynomial, q(x) of degree at most n,
∫ b

a
Πn(x)q(x)dx = (

b − a

2
)
∫ 1

−1
Πn(

b − a

2
y +

b + a

2
)q(

b − a

2
y +

b + a

2
)dy,

= (
b − a

2
)
∫ 1

−1
Πn(

b − a

2
y +

b + a

2
)q̂(y)dy,

(where q̂(y) is a polynomial of degree at most n since the degree of q(x)
is at most n)

= (
b − a

2
)n+2K

∫ 1

−1
rn+1(y)q̂(y)dy,

= 0.

That is with the xi’s chosen as the ‘transformed zeros’ of the Legen-
dre polynomial, rn+1(y), we have the interpolation points satisfying our
desired property.

6. Composite Gauss Quadrature Rules:

Approximating the integrand with a piecewise polynomial leads to the class of
Composite Rules. Let a = x0 < x1 < · · ·xM = b and S(x) be a piecewise poly-

nomial approximation to f(x) for x ∈ [a, b]. We can then use
∫ b
a S(x)dx as

the approximation to I(f) =
∫ b
a f(x)dx. Recall that S(x) ≡ pi,n(x) for x ∈

[xi−1, xi] i = 1, 2, · · ·M . From calculus we have,

∫ b

a
S(x)dx =

M∑

i=1

∫ xi

xi−1

S(x)dx,

=
M∑

i=1

∫ xi

xi−1

pi,n(x)dx,

–A sum of basic interpolatory rules. When these interpolatory rules correspond
to Guassian rules the resulting Composite Gauss rules are very effective and are
widely used.

68

7. Error estimates for Gauss Quadrature Rules:

• Let Gn(f) =
∑n

i=0 ωif(xi) denote the (n + 1) – point Gauss quadrature rule.

(a) We have shown,

I(f) − Gn(f) = O(b − a)2n+3, as (b − a) → 0,

and this is optimal.

(b) The rules Gn+1, Gn+2, · · ·, are higher order and therefore asymptotically
more accurate (as (b − a) → 0) so we could form an error estimate from
one of these. That is, we could use,

ÊST Gn
≡ Gn+k(f) − Gn(f) = EGn

+ O(b − a)2(n+k)+3.

(c) The rules Gn+k and Gn have at most one common interpolation point
so the computation of this error estimate more than doubles the cost
(2n + k + 2 integrand evaluations).

• An alternative (to forming an error estimate based on Gn+k) is is to use the
integrand evaluations already available (for the computation of Gn(f)) and
introduce only the minimum number of extra evaluations required to obtain
an effective error estimate. This approach leads to a class of quadrature rules
called Kronrod quadrature rules, Kn+k(f). The error estimate for Gn(f), is
then Kn+k(f) − Gn(f), where Kn+k(f) is more accurate and less expensive
to compute than is Gn+k(f). Kronrod proposed a particularly effective class
of such rules where k = n + 1,

K2n+1(f) ≡
n∑

i=0

aif(xi) +
n+1∑

j=0

bjf(yj),

where the x′
is are the interpolation points associated with Gn(f), and the

yi’s are the extra interpolation points necessary to define an accurate approx-
imation to I(f). Kronrod derived these weights (the ai’s and the bi’s) and
the extra interpolation points (y0, y1, · · ·yn) so that the resulting rule is order
3n + 3. The resulting error estimate is then,

ESTGn
≡ K2n+1(f) − Gn(f),

with an associated cost of 2n + 3 integrand evaluations and an order of accu-
racy of O((b − a)3n+4).

• The resulting Gauss-Kronrod pairs of rules can be the basis for composite
quadrature rules and adaptive methods. These methods are widely used and
implemented in numerical libraries.

8. Two Dimensional Quadrature:

69

Consider the problem of approximating integrals in two dimensions,

I(f) =
∫ ∫

D
f(x, y)dxdy,

This problem is more complicated than the one dimensional case since D can take
many forms.

• One can develop the analogs of Gauss rules or interpolatory rules but the
weights and nodes will depend on the region D. Such rules can be determined
and tabulated for simple regions such as rectangles, triangles and circles. An
arbitrary region must then be transformed onto one of these simple regions
before the rule can be used. Such a transformation will generally be nonlinear
and may introduce an approximation error as well.

• One can apply a ‘product rule’ where one reduces the 2D-integral to a se-
quence of two 1D-integrals:

∫ b

a

∫ β(y)

α(y)
f(x, y)dxdy =

∫ b

a
g(y)dy,

where

g(y) ≡
∫ β(y)

α(y)
f(x, y)dx

is approximated, for a fixed value of y, by a standard method (for example,
≈ ∑M

j=0 ωjf(xj, y), and
∫ b
a g(y)dy is also approximated by a standard (possibly

different) standard method. That is

∫ b

a
g(y)dy ≈

M ′∑

r=0

ω̂rg(yr),

≈
M ′∑

r=0

ω̂r




M∑

j=0

ωjf(xj, yr)


 ,

=
M ′∑

r=0

M∑

j=0

(ω̂rωj)f(xj, yr).

Note that error estimates for product rules are not easy to develop since the
function g(y) ≈ ∑M

j=0 ωjf(xj, y) will not be a ‘smooth’ function of y unless
M and the xj’s are fixed. In particular this ‘inner rule’ cannot be adaptive.

70

