Simplified Fortran Guide

K. R. Jackson

Department of Computer Science

Originally Written November 1984
Last Revised January 1992

This is a guide to a subset of Fortran 77, the
current standard version of Fortran. For a com-
plete description of the language, refer to one of
the many Fortran texts.

Throughout this guide, items enclosed in
square brackets (i.e, []) are optional and items
enclosed in braces (i.e., { }) may occur zero or
more times.

Fortran key-words are capitalized; al other
words are uncapitalized. Standard Fortran con-
tains only capital letters. Although the UNIXT
Fortran compiler 77 alows both capital and small
letters in programs, the capitals are mapped to
small letters (except for those occurring in charac-
ter strings) before the program is compiled, so the
case of variables and key-words is immaterial.

To compile a Fortran program on a UNIX sys-
tem use

f77 name.f {others.f}

where ‘‘namef’’ is the name of the file containing
your Fortran main program and ‘‘{others.f}'’ are
the names of other optiona files containing For-
tran subprograms. Each source file name must
end with ““.f’. If a program or subprogram has
not been changed since it was last compiled, then
using the extension ‘*.0"" instead of ‘‘.f"’ links the
precompiled object code (produced earlier by f77)
to the other program segments being compiled and
thus saves some computer time.

In addition, f77 can link your program to
precompiled subroutine libraries. For example, to
compile a program that calls subroutines from the
Teapack library, use

f77 namef —Iteapack

If the f77 compiler finds no errors, it produces
afile called *‘aout’’. To run your program, sim-

T UNIX is atrademark of Bell Laboratories.

ply type the command
aout [<input] [> output]

where “‘input’”’ and ‘‘output’’ are optional input
and output files. If these are not supplied, the
default is to read from and write to the terminal.
You may rename a.out if you wish and execute
the renamed file in a similar manner.

The f77 compiler has many options. Two that
you might find helpful in debugging programs are
—u and —C. The first makes al undeclared vari-
ables undefined and second checks for subscripts
out of range. For a program compiled on a Sun 2
or 3 that does a significant amount of floating-
point computation, it is also worth setting the —f
option for the appropriate floating-point hardware
if available, since the default is to do all floating-
point computations in software. See

man f77

for further discussion of these and other options.

1. Textual Layout of a Program.

Fortran is a positional language: each line of the
program file is divided into subfields. Columns
1-5 are reserved for statement labels, which are
unsigned integers having at most 5 digits. State-
ments and declarations are written in columns
7—-72 inclusive. ‘*Card numbers’, which are not
of much use now that punch cards are rarely used,
may appear in columns 73-80. (Characters
beyond column 72 will not be read by the com-
piler. This is a very common source of error.)
Each new line begins a new statement unless there
is a nonblank character (often a +) in column 6.
In this case, the statement from the preceding line
is continued to this line. A comment begins with
aCin column 1. the rest of the line may contain
any comment and is ignored by the compiler.
Each comment must have a C in column 1: com-
ments may not be continued with a continuation
mark in column 6.

Blanks may be used freely in Fortran. Write
your programs so that their physical layout reflects
their logical structure.

2. Program Structure.
A Fortran program has the following structure:

{ declarations }
{ statements }
END

{ subprograms }

A subprogram is either

SUBROUTINE name [(ident{ ,ident})]
{ declarations }

{ statements }

END

or

type FUNCTION name (ident { ,ident})
{ declarations }

{ statements }

END

where ident above is an abbreviation for an
identifier. The parameter list for a subroutine may
be empty, in which case the parentheses following
the name of the subroutine are optional. However,
parentheses are aways required for a function
even if the parameter list is empty. Valid types
are listed below.

Assign the value that the function is to return
to the function name. This is just as if the func-
tion name were a variable; Pascal and many other
languages use the same convention. Also declare
the function name in any program or subprogram
that uses it. Declarations are described below.

If you pass either a function or subroutine X
as a parameter to another subprogram Y, then X's
name should be declared to be EXTERNAL in the
program or subprogram that contains the call to Y.
The EXTERNAL declaration is described below.

The main program must contain a STOP state-
ment and a subprogram must contain a RETURN
(or STOP) statement. When STOP is executed,
the program terminates; when RETURN is exe-
cuted, the subprogram terminates and execution
resumes at the point where the subprogram was
caled. STOP or RETURN is the last statement
executed in the program segment. Often, STOP or
RETURN immediately precedes the END state-
ment.

Subprograms are not recursive in Fortran 77.
That is, they must not cal themselves either

directly or indirectly. Although many compilers,
including f77, alow recursion, it is not wise to use
it, since this will limit your program’s portability.

Subroutines are called using the call statement
CALL name [(expr{, expr})]

where expr is an abbreviation for an expression.
Functions are called by using their name (followed
by an appropriate argument list, of the same form
as in the CALL statement) in an expression. The
argument list of a subprogram must have as many
arguments as there are parameters to the subpro-
gram. They are matched on a one-to-one basis
just as in Turing and many other languages. The
types of arguments must match appropriately,
although this is not enforced in Fortran as rigidly
asitisin Turing. Thisis a source of many seem-
ingly inexplicable bugs in Fortran programs.

If a value is to be returned through an argu-
ment, then that argument must be a variable or an
array element.

3. Declarations.

The declarations in a program or subprogram
should be in the same order as they are described
below.

Fortran identifiers must begin with a letter and
may contain up to six letters and digits. Using
such short names effectively requires some prac-
tice. Many compilers, including f77, alow longer
names, but using this extension limits portability.

3.1. Type

Each variable used in a program should be
declared in a type statement of the form

type variable {, variable }

where type is INTEGER, REAL, DOUBLE PRE-
CISION, COMPLEX, LOGICAL, EXTERNAL or
CHARACTER*n for a postive integer n.
EXTERNAL is used only to declare a subprogram
name in a program segment that passes that sub-
program name as an argument to another subpro-
gram. Note that there is no double precision com-
plex in standard Fortran 77, although many com-
pilers, including f77, provide it. Again, using this
extension limits portability.

A variable may be a simple identifier or an
array identifier declared as

identifier (range {, range })

where range is

n0 O nl:n2

In the first case, N0 must be = 1 and the array has
elements 1..n0. In the second case, n1 must be
< n2 and the array has elements nl1..n2.

An array element is referenced in the program
as

identifier (expression {, expression })

where each expression must lie within the declared
range of that dimension. A common error is sub-
scripts out of range which arises when an array
index falls outside the declared range of the array.
This error usually causes the program to crash
with a segmentation fault error and no helpful
error diagnostics. The f77 —C compiler option
mentioned at the start of this guide may help to
locate the error in this case.

3.2. Parameters.
A parameter statement has the form

PARAMETER (name =expr {, ... })

where ... is another instance of name = expr and
expr is an abbreviation for an expression. The
expressions may contain the arithmetic operators
+, —, %,/ and **; the exponents with ** must be
integers. The parameter declaration corresponds to
the const declaration in Pascal: the value assigned
to the identifier is fixed throughout the program.
(This is more rigid than Turing’'s const.) Unlike
those languages, though, the parameter statement
does not declare a variable. If you do not declare
it in a type statement (described above), the vari-
able will be given a default type, which may cause
errors if this type is not what you intended.

3.3. Data.
A data statement has the form

DATA nlist / clist / {, nlist / clist / }

Each nlist is alist of variable names, array names,
array element names, and implied DO lists. (See
READ and PRINT below for implied DO lists.)
Each clist is alist of constants or symbolic names
of constants, and may be preceded by an r* where
r is an unsigned positive integer indicating r
occurrences of the following constant in the list.
The values in the clist are assigned to the vari-
ablesin the nlist on a one-for-one basis.

3.4. Common.
A common statement has the form

COMMON / blockname / list

where list is alist of identifiers or array elements.
No subprogram argument or function name may
appear in the list. Fortran has no globa variables.
Common provides a means of sharing variables
between program segments. The blockname must
be the same in each segment. The identifiers in
the list are matched one-for-one by position
proceeding from left to right, without respect to
their names or types in the different program seg-
ments.

4, Statements.

The SUBROUTINE, FUNCTION, RETURN,
CALL, STOP, and END statements are described
above.

4.1. Assignment.
An assignment statement has the form

variable = expression

The left side may be either a simple variable or an
array element. Whole arrays cannot be assigned
al a once: they must be assigned an element at a
time in a DO loop (described below). If the type
of the left and right sides do not match, the value
of the expression is converted to the type of the
left side variable (if possible) after the expression
has been evaluated.

42. GO TO.
A GO TO statement is of the form

GO TO label

and transfers control to the statement having that
label in columns 1-5. (Remember, as stated
above, a label is an unsigned integer having at
most 5 digits.)

GO TOs should not be used indiscriminately
in Fortran programs. They should be used only to
construct well-structured loops as described below.

4.3. CONTINUE.

A CONTINUE statement does nothing, but serves
as a convenient point on which to attach a label as
described below with respect to loops.

44.

There are severa types of IF statements in Fortran
77. The following are particularly useful.

|F Statements.

4.4.1. Logical IF.
IF (logical expression) statement

(The parentheses around the logical expression are
required in the IF statement above and in those
below.) If the logical expression is true, then the
statement is executed. Otherwise the statement is
not executed. Only one executable statement may
be included.

44.2. IF-THEN.

IF (logical expression) THEN
{ statements }
END IF

If the logical expression is true, then the state-
ments between the IF and the END IF are exe-
cuted. Otherwise they are skipped.

44.3. IF-THEN-ELSE.

IF (logical expression) THEN
{ statements }

ELSE
{ statements }

END IF

If the logical expression is true, then the state-
ments between the IF and the ELSE are executed.
Otherwise the statements between the ELSE and
the END IF are executed.

4.4.4. |F-THEN-ELSE-IF ...

IF (logical expression) THEN
{ statements }

{ ELSE IF (logical expression) THEN
{ statements } }

[ELSE
{ statements }]

END IF

The statements after the first logical expression
that is true are executed; al the others are skipped.
If no logical expression is true and there is an
ELSE part, then the statements after the ELSE are
executed. In any case, execution resumes after the
END IF.

IFs may be nested. An ELSE is always asso-
ciated with the closest preceding IF.

4.4.5. Logical Constants and Expressions.

A logica constant is either . TRUE. or .FALSE. A
logical expression is of the form

logical constant

logical variable

comparison

.NOT. logical expression

logical expression .AND. logical expression
logical expression .OR. logical expression

where a comparison is
EXpression comparator expression

and a comparator is .LT. .LE. .GT. .GE. .EQ. or
.NE. Expressions in brackets are evaluated first,
then comparisons, then .NOT.s are applied, then
AND.s are performed, followed by .OR.s. Opera-
tions of equal precedence are performed left to
right.

45. Loops.

Unlike Turing, Fortran does not provide a general
‘“loop ... end loop’’ structure. You can build one
as follows using the logical IF and GO TO state-
ments.

C LOOP
labell CONTINUE
{ statements }
C EXIT WHEN logical expression
IF (logical expression) GO TO label2
{ statements }
GO TO labell
C END LOOP

label2 CONTINUE

4.6. DO loops.
A DO loop (or “‘indexed loop’") is of the form

DO label identifier = start, limit [, step]
{ statements }
label CONTINUE

where start, limit and step are expressions that
are evaluated before the loop is executed. The
loop is executed with the identifier initialized to
the value start and incremented by step (which
has a default of 1) until the value of the identifier
is greater than limit. In Fortran 77, unlike earlier
versions of Fortran, the statements within the loop
are not executed if start is greater than limit and
step is positive or start is less than limit and step
is negative. Usualy, al values are integers, but
other types are allowed.

4.7. Read and Print.
These statements are used to input and output
values. They have the form
READ * [, variable {, variable }]
or

READ labdl [, variable {, variable }]
label FORMAT (format item {, format item })

and
PRINT * [, expression {, expression }]
or

PRINT label [, expression {, expression }]
label FORMAT (format item {, format item })

An expression may be any valid expression or an
implied DO list. A variable is a simple identifier,
an array element or an implied DO list. An
implied DO list has the form

(dlist, identifier = start, limit [,step])

where dlist is a list of permissible input or output
items and start, limit and step are expressions.
The implied DO works just as the DO statement
described above does and is frequently used to
read and write arrays as, for example,

READ *, (a(i), i=1,10)
which reads elements a(1), a(2),....a10) of the
array a.

For both READ and PRINT, the * form uses
default formats. Use the * form of the READ
whenever possible. However, with PRINT, you
may want to supply your own output format rather
than using the default.

In a FORMAT statement, a format item is one
of the following.

nXx
nlw

skip the next n columns.

n integers right justified in fields of
width w.

n real or double precision values without
exponents right justified in fields of
width w with d digits to the right of the
decimal point.

n reas (or double precision) values with
an exponent right justified in fields of
width w with a leading O, followed by a
decimal point, followed by d digits.

nFw.d

nEw.d

nDw.d like nEw.d except that the exponent is

marked by a D rather than an E.

nAw n groups of w characters.

Fortran uses the first character of each output
line for carriage control. The first character should
be one of the following.

‘' (blank) start a new line.
start a new page.

skip a line then start a new line (double
space).

go back to the beginning of the current line
(overprint).

fpr can be used to print a Fortran output file con-
taining these carriage control characters. See

o
o

L

man fpr
for details.

5. Constants and Expressions.

Logical constants and expressions are described
above.

5.1. Arithmetic Constants and Expressions.

Integer constants are of the form

[sign] digit { digit }
Real constants are of the form

[sign]{ digits} . { digits} { E[sign] digit { digit } }

where at least one of the two groups of digits sur-
rounding the decimal point must be nonempty. A
few valid real numbers are

1. .33 1.5E4 0.333E+10 4.2E-10

A double precision number is similar to a rea
number except that the exponent E is replaced by
a D. The D is not optional — without it, the
number is a single precision real.

Expressions may be formed using the arith-
metic operators +, —, *, /, **, where ** represents
exponentiation. If a and b are integers, then ab
returns the integer quotient of a divided by b (e.g.,
3/2=1). Otherwise, the operators are as one
would expect. The precedence of these operators
is ** highest, * and / next, and + and — lowest.
When operators are of equal precedence they are
evaluated from left to right, except for ** which is
evaluated right to left. A**B is computed by
repeated multiplication if B is an integer, but is
computed as exp(B*log(A)) if B is area. Hence,
if A isnegative and B is real, an exception occurs
even though this expression may be mathemati-
caly valid.

5.2. Character Constants.

A character constant is any string of characters
enclosed in single gquotes not containing a single

quote.

A quote may be included in a character

constant by using two single quotes in a row.
Some examples are

'FRED’ 'X =24 'MR. O’REILLY’

6. Built-in Functions.

Fortran has many built-in functions. Some particu-
larly useful ones are listed below.

MOD(m,n) the remainder of m divided by n
ABS(X) the absolute value of x
MAX(x1,....xn) the maximum of x1,...,xn
MIN(x1,...,xn) the minimum of x1,...,xn
SQRT(X) the sguare root of x

EXP(x) etothe x

LOG(x) log to the base e of x

LOG10(x) log to the base 10 of x

SIN(X) the sin of x (X in radians)
COS(x) the cos of x (x in radians)
TAN(X) the tan of x (x in radians)
ATAN(X) the arctan of x (result in radians)

7. Sample Program

¢ Sample program to compute and print n!
c for n=0,..,limit

10

o

integer n, limit
double precision fac
parameter (limit = 20)

do 10 n = 0,limit
print 5, n, fac(n)
format('n =",i2,3x, n!
continue

’,d15.5)
stop

end

double precision function fac(n)
This function computes n!.

It assumes without checking

that n .ge. 0

integer i,n

fac = 1.dO
do10i=1n
fac = fac * dble(i)
10 continue

return
end

The output from this program follows.

n= 0, n! =0.1000000D+01
n= 1, n' =0.1000000D+01
n= 2, n' =0.2000000D+01
n= 3, n! =0.6000000D+01
n= 4, n' =0.2400000D+02
n= 5 n!=0.1200000D+03
n= 6, nl =0.7200000D+03
n= 7, n' =0.5040000D+04
n= 8, n! =0.4032000D+05
n= 9, n! =0.3628800D+06
n =10, n! = 0.3628800D+07
n=11, n! =0.3991680D+08
n=12, n! = 0.4790016D+09
n =13, n! =0.6227021D+10
n=14, n! =0.8717829D+11
n =15 n! =0.1307674D+13
n =16, n! =0.2092279D+14
n=17, n! =0.3556874D+15
n =18, n! =0.6402374D+16
n=19, n! =0.1216451D+18
n =20, n! =0.2432902D+19

