
CSC2307H/CSC2322H – The Numerical Solution of
ODEs

c©
W.H. Enright

Department of Computer Science,
University of Toronto

(enright@cs.utoronto.ca)

Overview and Course Organization

• Overview of problem area

• CSC2302H: Numerical Methods for IVPs

1. Mathematical Setting

2. General Properties of Numerical Methods

3. Standard Classes of Methods

(a) Runge-Kutta

(b) Multistep

4. Difficulty of Stiffness

5. Special Methods for Stiff Problems

6. Differential/Algebraic Equations

7. Delay Differential Equations

8. Validated Numerical Methods

9. Parallel Methods for IVPs

• CSC2322H: Numerical Methods for BVPs

1. Superposition (For linear problems)

2. Initial-value based BVP methods

(a) Shooting methods

3. Collocation BVP methods

(a) Derivation

(b) Mesh selection

1

4. Finite difference BVP methods

(a) Derivation

(b) Extrapolation/deferred correction

5. Runge-Kutta BVP methods

(a) Derivation

(b) Implementation

6. Special difficulties

(a) Convergence for nonlinear problems

(b) Singular perturbation problems

7. Future topics (to be added later)

(a) Multiple solutions

(b) Multipoint

2

1 Overview of Problem Area

Ordinary differential equations (ODEs) arise in all areas of scientific computation where
mathematical simulations of real phenomena are developed and used. Often these models
are developed to investigate the evolution of a system over time. Applications are very
diverse and include climate modeling, computational biology, computer games, orbit
calculations and computational finance.

In order to ensure that the underlying mathematical problem is well-posed we must
specify additional constraints (ie. in addition to specifying the ODE). These constraints
arise naturally in most applications and are considered part of the specification of the
mathematical model. The form of such constraints imposes a classification of ODE prob-
lems which is very important in the analysis and approximate solution of the resulting
problem. In these notes we will consider different classes of ODEs and focus on initial
value problems (IVPs) and on boundary value problems (BVPs). These are two areas
where effective software has been developed.

Classification of ODEs:

• IVP: An IVP in ODEs is defined by:

y′ = f(x, y), y(a) = y0, x ∈ [a, b],

where y, y0 ∈ <n and f : <× <n → <n.

1. A sufficient condition for this IVP to have a unique solution, y(x), is that
f(x, y) be continuous on [a, b] × <n and that it satisfy a Lipschitz condition
wrt y.

Definition: A function f : < × <n → <n satisfies a Lipschitz condition wrt
y iff there exists L > 0 such that for all x ∈ [a, b] and u, v,∈ <n,
‖f(x, u) − f(x, v)‖ ≤ L‖u − v‖ for some norm, ‖ ‖.

2. Higher order systems of ODEs can be reduced to first order systems. For
example, y′′ = f(x, y, y′) can be converted to a first order system of ODEs by
letting z(x) ∈ <2n be defined by,

z(x) ≡
[

z1(x)
z2(x)

]
≡
[

y(x)
y′(x)

]

We then have,

z′(x) =

[
y′(x)
y′′(x)

]
=

[
z2(x)

f(x, z1(x), z2(x))

]
= F (x, z).

Therefore it suffices to consider only numerical methods for first order systems
(applies to BVPs as well as IVPs). A consequence is that one approximates
y′(x) as well as y(x) whereas a direct second order method may avoid this
requirement.

3

3. Very little can be done (numerically) to exploit linearity (ie. f(x, y) =
A(x)y(x) + h(x)) where A(x) is an n × n matrix valued function. (This is
not the case for BVPs.)

• BVP: A Two Point Boundary Value Problem (TBVP) in ODEs is defined by:

y′ = f(x, y), x ∈ [a, b],

with
g(y(a), y(b)) = 0, g : <n ×<n → <n.

1. Sufficient conditions for this TPBVP to have a solution or for the solution to
be unique are very restrictive and not very well understood. Multiple solutions
are common. For example, y′′ = y2 for x ∈ [1, 10] with y(1) = 6, y(10) = .06
has one solution, y(x) = 6/x2 as well as at least one other ‘nearby’ solution.

2. Often we consider a TPBVP ’solved’ when it can be reduced to an IVP (by
determining the ‘unknown’ vector y(a)).

3. Special cases of TPBVPs can often be solved more efficiently or reliably.

– separated boundary conditions: g(y(a), y(b)) = 0 replaced by
g1(y(a)) = 0, g2(y(b)) = 0.

– linear problems: f(x, y) = A(x)y + h(x), and g(y(a), y(b)) = Bay(a) +
Bby(b) or Bay(a) = β, Bby(b) = α.

– The theory is better understood for these cases.

• Generalizations of BVPs: frequently BVPs that are not TPBVPs arise. We
will consider the following generalizations:

1. Eigenvalue problems (parameter determination),

y′ = f(x, y, λ), λ ∈ <m,

and the number of boundary conditions, m + n, is sufficient to resolve the
unknowns y(a) and λ (whose solution will reduce the problem to an equivalent
IVP).

2. Multipoint Problems – the boundary conditions are specified at more than 2
points (interior constraints are included). These constraints can be specified
as

hj(xj, y(xj), λ) = 0, for j = 1, 2 · · ·J,

where hj : <× <n × <m → <.

3. Overdetermined Systems – often arise when sampled solution values are avail-
able at a sequence of x′

js. Usually only a subset of the solution components
are sampled (time series/parameter fitting).

4

4. Parameter Continuation – we want to determine the solution of,

y′ = f(x, y, λ, α)

for a range of α ∈ < (eg. for α ∈ [0, 1]).

2 Numerical Methods for IVPs

2.1 Mathematical Setting:

In the numerical solution of an IVP there are three potential sources of error:

1. Modelling errors (depends on the mathematical model only) which arise when the
actual system we are interested in is,

u′ = g(x, u), u(a) = y0,

were g() is either not completely known or very complicated but ‖g(x, u)−f(x, u)‖
is small for all (x, u) of interest. That is, y(x) (the exact solution of our IVP
satisfies:

y′ = f(x, y)

= g(x, y) + β(x), y(a) = y0,

where β(x) ≡ f(x, y) − g(x, y) is small in norm.

2. Floating Point Errors (depends only on the FP arithmetic) which arise because
the IVP is defined by supplying a subroutine, FCN(x, y, yp) to evaluate f(x, y).
Each derivative evaluation is computed in FP arithmetic and satisfies:

yp = fl(f(x, y))

= f(x, y) + α(x),

where ‖α(x)‖ ≤ w‖f‖µ, w depends on f and how the subroutine is coded and µ is
the unit round-off (µ ≈ 10−15 in double precision on IEE FP systems). As a result
of these two sources of error, the best we can expect (no matter which numerical
method we use), is that the numerical solution, v(x), satisfies:

v′ = f(x, v) + α(x),

= g(x, v) + β(x) + α(x), v(a) = y0.

3. Discretization or Truncation Error (depends only on the numerical method) and
arises because there is no closed form expression for the exact solution of most
IVPs and an aproximation must be used. Consider applying a numerical method
to approximate the solution of our IVP. It actually appears to the method that

5

the problem being solved is v′ = f(x, v) + α(x), but the user is interested in the
solution of y′ = f(x, y) or y′ = g(x, y). In many cases (as we will see) the numerical
method will generate a continuous approximation, z(x) defined on [a, b] satisfying,

z′ = f(x, z) + α(x) + δ(x), z(a) = y0, (1)

where ‖δ(x)‖ ≤ TOL and TOL is a parameter supplied to the method.

Even when z(x) is not directly determined by the method this approach provides
an effective way to analyze the associated errors that arise.

Note:

• If γ(x) = β(x) + α(x) + δ(x), then we can interpret all three sources of error
in terms of perturbations of the desired ODE,

y′ = g(x, y), y(a) = y0,

z′ = g(x, z) + γ(x), z(a) = y0.

• The analysis of errors is reduced to the question of how small perturbations
affect the solution of IVPs. That is, what is the relation between ‖γ(x)‖ and
‖y(x) − z(x)‖.

• We will assume that ‖δ(x)‖ will dominate ‖β(x)‖ and ‖α(x)‖.

An example of a numerical method which attempts to produce an approximation,
z(x), satisfying (1), when applied to z′ = f(x, z) + α(x), is the method, DVERK
in the Visual Numerics (IMSL) library. This method has the calling sequence,

DV ERK(N, FCN, X, Y, XEND, TOL, IND, C, NW, W)

and determines a partitioning,

X = x0 < x1 · · ·xNTOL
= XEND

and corresponding approximations yi ≈ y(xi) for i = 0, 1, · · ·NTOL. This is actually
an essential feature of all current adaptive numerical methods for ODEs.

Given this discrete approximation, (xi, yi)
NTOL
i=0 , this method also generates a con-

tinuous interpolant, ẑ(x) (a piecewise polynomial or, more precisely a vector of
piecewise polynomials), that satisfies:

ẑ′ = f(x, ẑ) + α(x) + δ̂(x),

with α(x) as before and,
‖δ̂(x)‖ ≤ Ĉ TOL,

where Ĉ depends on the problem and the method. Note that provided TOL >> µ,
one can ‘absorb’ α(x) in δ̂(x) . We will see that the local error estimates of a
numerical method will be the basis for good approximations to δ̂(x). That is,
bounds on ‖δ̂(x)‖ are often computable.

6

2.1.1 Solution of Perturbed Systems

In this section we develop a mathematical framework for the error analysis of ODE
methods using perturbation theory. The approach will allow us to quantify the condi-
tioning of our task and provide us with insight into what we can expect from a numerical
method. We will begin with a first order expansion (local linearization) of the error and
then provide a more complete rigorous analysis of the error.

1. Let y(x) and z(x) satisfy perturbed systems:

y′ = f(x, y), y(a) = y0 (2)

z′ = f(x, z) + δ(x), z(a) = y0 (3)

where ‖δ(x)‖ is ‘small’ for x ∈ [a, b].

Let ε(x) = z(x) − y(x), then

ε′(x) = z′(x) − y′(x) = f(x, z) − f(x, y) + δ(x),

and, using local linearization (ignoring [ε2(x)] terms) we have,

ε′ ≈ J(x)ε + δ(x), ε(a) = 0,

where

J(x) =
∂f

∂y
|z(x).

Note:

• This equation is valid (relevant) only if ‖ε(x)‖ is small.

• If v(x) satisfies the linear IVP,

v′ = J(x)v + δ(x), v(a) = 0,

then ‖v(x)‖ (for any norm) will provide an estimate of the norm of the er-
ror, ‖ε(x)‖. (Sometimes we will estimate or bound ‖ε(x)‖ directly without
estimating ε(x).)

• An Example
Consider the IVP,

y′ = y − 2x/y, y(0) = 1.

The known true solution is y(x) = (1 + 2x)1/2.

J(x) =
∂f

∂y
= 1 +

2x

y2
= 1 +

2x

1 + 2x
< 2, for x > 0,

and therefore the solution of the variational equation (defining v(x)) will have
a component whose growth is bounded by e2x.

7

2. An alternative estimate of ε(x) is possible using the approach of defect correction
(introduced by Zadainasky, Stetter etc. in the 1970’s). It is based on the assump-
tion that the actual error in solving a known ‘nearby’ problem should be a good
estimate of the true error in the original problem. That is, if we know that y(x)
and z(x) satisfy (2, 3) (and that z(x) is, computable), then we can apply the same
numerical method to the IVP (3) (using the same stepsize sequence) obtaining a
sequence (ẑi)

N
i=0 as a discrete approximation to (z(xi))

N
i=0. We can then use

ε(xi) = z(xi) − y(xi) = yi − y(xi) ≈ ẑi − z(xi) = ẑi − yi.

Note that this approach requires the explicit computation of δ(x), it assumes that
δ(x) is differentiable and that ‖δ(x)‖ dominates ‖α(x)‖.

2.1.2 Qualitative Behaviour of the Error

To investigate the qualitative behaviour of the error, ε(x), we will first study solutions
of linear IVPs of the form,

v′ = J(x)v + δ(x), v(a) = 0.

1. Consider the special case of a = 0 and δ(x) arbitrary. That is, the linear system:

v′ = A(x)v + w(x), v(0) = v0, (4)

with A(x) continuous in [0, xF].

Theorem I: (For example, see Bellman)
There exists a unique solution to (4). To determine the solution, find the matrix
solution (Matrizant or Fundamental Matrix) to :

dY

dx
= A(x)Y (x), Y (0) = I.

Exercise: Show that the jth column of Y (x), yj(x), is the solution of,

y′
j(x) = A(x)yj, yj(0) = ej,

where ej is the vector with jth component = 1 and all other components = 0.

Theorem II:
Y (x) is not singular in [0, xF]. More precisely,

det(Y (x)) = e(
∫ x

0

∑n

i=1
aii(s) ds).

Now consider the homogeneous form (ie., w(x) = 0) of (4) with arbitrary initial
conditions (specified at x = a),

v′ = A(x)v, v(a) = v0. (5)

8

We then have,
v(x) = Y (x)Y −1(a)v0.

This follows since it satisfies the defining IVP and there is a unique solution (from
Theorem I).

To determine the solution of the nonhomogeneous form of (4) with arbitrary initial
conditions (specified at x = a), let v(x) = Y (x)u(x) for any u(x). Then,

v′ = Y ′u + Y u
′

= A(x)Y u + Y u
′

= A(x)v + Y u
′

.

Therefore v is the solution of (4) iff,

Y u′ = w(x), and v(0) = v0.

Note that this first condition implies u(x) =
∫ x
0 Y −1(s)w(s)ds+u0 while the second

condition implies v(0) = u(0) = u0 = v0.

We then have,

v(x) = Y (x)v0 +
∫ x

0
Y (x)Y −1(s)w(s)ds.

2. For the constant coefficient case (A(x) ≡ A, constant) we have,

Y ′ = AY, Y (0) = I,

with the solution,

Y (x) = eAx ≡
∞∑

i=0

(Ax)i

i!
.

This equation defines the Matrix exponential. It has the following properties:

(a) It is well defined since

‖eAx‖ ≤
∞∑

i=0

‖Ax‖i

i!
= e‖Ax‖,

and this implies uniform convergence in any finite interval.

(b) eAx satisfies this constant coefficient IVP.

(c) eA(x+s) = eAxeAs. That is, Y (x + s) = Y (x)Y (s), Y −1(x) = Y (−x).

(d) eAx is nonsingular for any A, x.

9

(e) For the nonhomogeneous constant coefficient IVP:

v′ = Av + w(x), v(0) = v0,

we have,

v(x) = eAxv0 +
∫ x

0
eA(x−s)w(s)ds.

(f) Let A = SDS−1, D a diagonal matrix,

D =

λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 0 · · · λn

,

then we have,
eAx = SeDxS−1,

where

eDx =

eλ1x 0 · · · 0
0 eλ2x · · · 0
...

...
...

...
0 0 · · · eλnx

.

This follows from the definition of the matrix exponential and the fact that
Ak = SDkS−1.

(g) With A = SDS−1 (as above), the homogeneous IVP, v′ = Av, v(0) = v0,
has the solution,

v(x) =
n∑

j=1

αje
λjxsj ,

where the sj are the columns of S and satisfy, Asj = λjsj , and α = (α1, α2 · · ·αn)T ,
satisfies, Sα = v0.

This follows since eAx = SeDxS−1 implies,

v(x) = Y (x)v0 = SeDx(S−1v0) = SeDxα.

Note that

SeDx =

 u1 u2 · · · un

 ,

where uj = eλjxsj . We then have the desired result:

v(x) =
n∑

j=1

αje
λjxsj .

10

(h) When A is not diagonalizable properties analagous to (f) and (g) are more
complicated. Consider the ‘shift’ matrix,

U =

0 ε1 0 · · · 0
0 0 ε2 · · · 0
...

...
...

...
0 0 0 · · · εn−1

0 0 0 · · · 0

,

where εj = 0 or 1. Exercise: – Show that eUx is a polynomial in Ux, (what
degree?).

Now if A = [λI + U], then

eAx = eλIxeUx = eλxP (Ux).

Therefore for any matrix, A = TJT−1 where J is in Jordan Normal Form,
we have

eAx = TeJxT−1

= T (
m∑

j=1

eλjxPj(Ujx))T−1,

where m is the number of distinct eigenvalues of A, Uj is the shift matrix
associated with the Jordan block for λj and Pj is a polynomial.

(i) eA+B = eBeA iff A and B commute (AB = BA) .

3. Stability of IVPs:(sensitivity to the initial conditions)
One component of the mathematical conditioning of an IVP is the sensitivity of
the solution to perturbations in the initial conditions.

• Definition:
The solution, y(x) of the IVP

y′ = f(x, y), y(a) = y0,

is stable with respect to changes in the initial conditions if, given ε > 0, there
exists δ > 0 such that if ‖y(a) − ŷ(a)‖ ≤ δ and y(x) and ŷ(x) both satisfy
y′ = f(x, y) then,

‖y(x) − ŷ(x)‖ < ε, for all x > a.

This is a strong property since it assumes an infinite interval of interest. If
we consider y(x) as a curve in n-space surrounded by ‘tubes’ of increasing
radii; then this states that if ŷ ever gets inside a tube it stays inside a slightly
larger tube.

11

• Definition:
The solution, y(x) of the IVP

y′ = f(x, y), y(a) = y0,

is asymptotically stable with respect to changes in the initial conditions if, in
addition to being stable, ‖y(x) − ŷ(x)‖ → 0 as x → ∞.

Now consider the constant coefficient linear IVP,

y′ = Ay,

The spectral absicca of A, α(A), is defined as

α(A) =
n

max
j=1

Re(λj),

(where λj are the eigenvalues of A).

• Theorem:
y(x), a solution of this linear problem is stable iff α(A) ≤ 0 and all the
eigenvalues of A with Re(λj) = 0 are simple. (asymptotically stable iff α(A) <
0.)

This follows since,

y(x) = eA(x−a)y0 = S[
m∑

j=1

eλj(x−a)Pj(Uj(x − a))]S−1y0.

Note that there is no such theorem for the variable coefficient IVP, y ′ =
A(x)y. y(x) may be unbounded even if α(A(x)) < 0 for all x > a. (Sufficient
conditions for stability do exist.)

2.1.3 General Error Bounds for Perturbed Systems

In this section we will derive bounds on the growth of solutions of the general linear
IVP,

v′ = A(x)v + w(x),

using differential inequalities. In some cases we will be able to compute these bounds
without having to compute direct approximations to v(x).

1. Differential Inequality Theorem (Coppel) Let y(x) be a solution of the scalar
ODE y′ = f(x, y) where f(x, y) is continuous. If u(x) is continuous and satisfies
u(a) ≤ y(a) and

u′ ≤ f(x, u) ; on [a, b],

then
u(x) ≤ y(x) on [a, b].

Similarly, if s(a) ≥ y(a) and s′ ≥ f(x, s), then s(x) ≥ y(x) on [a, b]. The proofs
of these inequalities are given in Coppel, pp. 27-29.

12

2. Lemma: For u(x) differentiable and in <n,

d ‖u(x)‖
dx

≤ ‖du

dx
‖.

Proof:
du

dx
= lim

h→0

u(x + h) − u(x)

h
.

From the triangle inequality for norms we know (for any vectors w, z),

‖w‖ ≤ ‖w − z‖ + ‖z‖ ⇒ ‖w − z‖ ≥ ‖w‖ − ‖z‖.

Therefore we have (with w = u(x + h) and z = u(x)),

‖du

dx
‖ = lim

h→0
‖u(x + h) − u(x)

h
‖ ≥ lim

h→0
(
‖u(x + h)‖ − ‖u(x)‖

h
) =

d ‖u(x)‖
dx

.

3. Classical Approach for bounding solutions to,

v′ = A(x)v + w(x), on [a, b].

d‖v‖
dx

≤ ‖dv

dx
‖ ≤ ‖A‖ ‖v‖ + ‖w(x)‖ ≤ L‖v‖ + W.

(a scalar equation) where L = supx∈[a,b] ‖A(x)‖ and W = supx∈[a,b] ‖w(x)‖ This
implies (from the above theorem with p′ = Lp + W, p(a) = ‖v(a)‖),

‖v(x)‖ ≤ p(x) ≡ eL(x−a)‖v(a)‖ + (
eL(x−a) − 1

L
)W.

4. Logarithmic Norms can be used to obtain sharper bounds.

Definition: The logarithmic norm of a matrix, A, is defined, for any norm sub-
ordinate to a vector norm, to be,

µ‖ ‖(A) ≡ lim
h→0+

‖I + hA‖ − 1

h
.

• For example if A = λI, λ ∈ <,

‖I + hA‖ = ‖(1 + hλ)I‖ = |(1 + hλ)|‖I‖ = |(1 + hλ)|.

This follows since ‖I‖ = 1 for norms that are subordinate to a vector norm.
We then have

µ‖ ‖(A) = lim
h→0

|(1 + hλ)| − 1

h
= lim

h→0

(1 + hλ − 1)

h
= λ.

Note that the lognorm of a matrix can be negative.

13

Now consider v′(x) = A(x)v + w(x),

v(x + h) = v(x) + hv′(x) + O(h2),

= [I + hA(x)]v(x) + hw(x) + O(h2).

This implies,

‖v(x + h)‖ ≤ ‖I + hA(x)‖ ‖v(x)‖ + h‖w(x)‖ + O(h2),

or (subtracting ‖v(x)‖ from both sides and dividing by h),

‖v(x + h)‖ − ‖v(x)‖
h

≤ (‖I + hA(x)‖ − 1)

h
‖v(x)‖ + ‖w(x)‖ + O(h).

Taking limits we obtain,

d ‖v(x)‖
dx

≤ µ‖ ‖(A(x))‖v(x)‖ + ‖w(x)‖
≤ M‖v(x)‖ + W,

where M = supx∈[a,b] µ‖ ‖(A(x)). Therefore, as above (using differential inequali-
ties), and p′ = Mp + W, p(a) = ‖v(a)‖), we obtain the bound,

‖v(x)‖ ≤ eM(x−a)‖v(a)‖ + (
eM(x−a) − 1

M
)W.

Exercise: what about the case M ≤ 0.

5. Applications of this Result (Examples):

y′ = Ay, y(0) = y0.

If we assume we have a numerical solution, z(x) such that,

‖z′ − Az‖ ≤ TOl, z(0) = y0,

we can conclude from the above theorem that,

‖z(x) − y(x)‖ ≤ ρ(x) for x ∈ [0, T].

where
ρ′ = µ(A)ρ + TOL, ρ(0) = 0.

Therefore

‖z(x) − y(x)‖ ≤ (
eµ(A)x − 1

µ(A)
)TOL

is a guaranteed bound.

Two examples:

14

(a)

A =

−1 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

...
...

0 0 0 · · · −1

.

In this case µ∞(A) = 0 and we can conclude that

‖z(x) − y(x)‖ ≤ xTOL.

This follows since lims→0
esx−1

s
= x.

(b)

A =

[
−2 1
1 −2

]
, µ∞(A) = −1,

and
‖z(x) − y(x)‖ ≤ (1 − e−x)TOL.

6. Properties of the Lognorm: (µ(A) depends on the ‖ ‖.)

(a) µ(λI) = λ for λ ∈ <.

(b) µ(zI) = Re(z) for complex z.

(c) µ(λA) = λµ(A) if λ ∈ <, λ > 0.

(d) |µ(A)| ≤ ‖A‖.
(e) µ(A + B) ≤ µ(A) + µ(B) ≤ µ(A) + ‖B‖.
(f) µ(A) ≥ α(A).

Proof of this property:
let y be a unit eigenvector of A, such that Ay = λy. Then we have,

‖(I + hA)y‖ − ‖y‖ = |(1 + hλ)| − 1 → hRe(λ)

and
‖(I + hA)y‖ − ‖y‖ ≤ ‖I + hA‖ − 1 → hµ(A).

Therefore taking limits h → 0, we obtain for each eigenvalue of A,

Re(λ) ≤ µ(A).

(g) Computing µ(A) for different norms:

15

‖y‖ ‖A‖ µ(A)
l∞ maxn

i=1 |yi| maxn
i=1(

∑n
j=1 |aij|) maxn

i=1(Re(aii) +
∑n

j=1,j 6=i |aij|)

l1
∑n

i=1 |yi| maxn
j=1(

∑n
i=1 |aij|) maxn

j=1(Re(aii) +
∑n

i=1,j 6=i |aij|)

l2 (
∑n

i=1 |yi|2)(1/2) [largest ev of AT A](1/2) largest ev of 1/2(A + AT)

7. Theorem:
Let A(x) be continuous and y(x) be a solution of y′ = A(x)y, then

−µ(−A(x))‖y‖ ≤ d‖y‖
dx

≤ µ(A(x))‖y‖.

Corollaries: (application of differential inequalities)

• y(x) is stable if,

lim
x→∞

∫ x

a
µ(A(s))ds < ∞.

• y(x) is asymptotically stable if,

lim
x→∞

∫ x

a
µ(A(s))ds = −∞.

8. Lemma: (Dahlquist)
If the ODE u′ = J(x, u)u + w(x) is valid in an open neighborhood of the point
(a, u0), then

d‖u‖
dx

≤ µ(J(x, u))‖u(x)‖ + ‖w(x)‖,

is valid in that neighborhood. (Proof is as for the linear case.)

Recall our Key Interest:

z′ = f(x, z) + δ(x), with ‖δ(x)‖ ≤ ρ(x).

for some known function, ρ(x) (eg, ρ(x) = TOL), and

y′ = f(x, y).

We want to derive a bound on ‖z(x) − y(x)‖ which is not too pessimistic, and
which is potentially computable.

16

9. Main Theorem: (Dahlquist)
Let z(x) be a known function which satisfies the differential inequality:

‖dz

dx
− f(x, z)‖ ≤ ρ(x), for a ≤ x ≤ b,

(note that ρ(x) is a bound on ‖δ(x)‖), and let y(x) be a solution to

y′ = f(x, y), for a ≤ x ≤ b.

Assume that for each x ∈ [a, b], there exists a region Dx ∈ <n and a function l(x),
such that for all q ∈ Dx,

µ[
∂f

∂y
(x, q)] ≤ l(x).

Then
‖z(x) − y(x)‖ ≤ p(x),

where p(x) is the solution of the scalar IVP,

p′ = l(x)p + ρ(x), p(a) = p0 ≥ ‖z(a) − y(a)‖,

provided
{η : ‖η(x) − z(x)‖ ≤ p(x)} ∈ Dx for x ∈ [a, b].

Proof:
Let u(x) = z(x) − y(x). We then have,

du

dx
= f(x, z) − f(x, y) + δ(x), with ‖δ(x)‖ ≤ ρ(x).

Let q(θ, x) = z(x) − (1 − θ)u(x) for a ≤ x ≤ b. We then have dq
dθ

= u(x) and,

f(x, z) − f(x, y) =
∫ z

y

[
∂f(x, q)

∂q

]

q=q(θ,x)

dq.

(note that q = y ⇒ θ = 0 and q = z ⇒ θ = 1). Therefore,

f(x, z) − f(x, y) =
∫ 1

0

[
∂f(x, q)

∂q

]

q=q(θ,x)

udθ, = A(x, u)u,

where

A(x, u) ≡
∫ 1

0

[
∂f

∂q

]

q=z(x)−(1−θ)u(x)

dθ.

Therefore we have,
u′ = A(x, u)u + δ(x),

17

so we can apply the above lemma with

µ(A(x, u)) ≤ max
0≤θ≤1

µ(
∂f

∂q
(x, q(x, θ)) ≤ l(x)

(using µ[A(x, u)] ≤ ∫ 1
0 µ(∂f

∂q
)dθ.)

Note this is only valid if q(θ, x) ∈ Dx for θ ∈ [0, 1]. We then have, from the above
Lemma,

d‖u‖
dx

≤ l(x)‖u‖ + ‖δ(x)‖ ≤ l(x)‖u‖ + ρ(x),

and we can conclude from the theorem on differential inequalities,

‖u(x)‖ = ‖z(x) − y(x)‖ ≤ p(x) if {η : ‖η(x) − z(x)‖ ≤ p(x)} ∈ Dx.

2.2 General Properties of Numerical Methods:

Most numerical methods for IVPs determine a discrete approximation, (xi, yi)
NTOL
i=0 , to

the true solution, y(x), evaluated on a mesh, a = x0 < x1 · · · < xNTOL
= b. In general

the mesh and NTOL will depend on f(x, y) and the specified accuracy tolerance, TOL
(adaptive).

2.2.1 Classical Analysis of Numerical Methods

It is not at all clear how to quantify the effectiveness of a numerical method for IVPs.
In this section we will review the classical results for methods that apply a formula with
a fixed stepsize and then extend these results to allow us to analyze variable stepsize
(adaptive) methods. We will justify why the overall quality of a solution can be deter-
mined by analyzing the error introduced on a single step of the integration. (That is,
how is, the local behaviour of the numerical solution relates to the global behaviour.)

From mathematics we know that our problem,

y′ = f(x, y), y(a) = y0,

has a unique solution on [a, b], if f(x, y) satisfies certain smoothness conditions (such as
a Lipschitz condition).

Definition: f(x, y)is locally Lipschitz for our problem iff there exists L > 0, such that for all u, v ∈
a neighborhood of y(x), we have,

‖f(x, u) − f(x, v)‖ < L‖u − v‖.

1. What is an Acceptable Numerical Solution?

• Numerical methods generate a discrete approximate solution, (xi, yi)
N
i=0 with

a = x0 < x1 · · · < xN = b where yi is an approximation to y(xi).

18

• Numerical methods will generally determine yi+1 only after (xj, yj)
i
j=0 have

been determined and a suitable stepsize, hi+1 = (xi+1 − xi), has been chosen.
An underlying k-step formula is then applied,

yi+1 = yi + hi+1Φ(xi, yi+1, yi · · · yi−k+1).

Note that:

(a) The increment function, Φ, must depend on f().

(b) Numerical methods are classified according to the value of k:

k = 1 –One-step Methods (Runge-Kutta).

k > 1 –Multistep Methods (Adams, BDF).

(c) Numerical Methods can also be classified based on whether or not Φ de-
pends on yi+1. If there is a dependence the method is implicit, otherwise
it is explicit.

• The error at xi+1 will then depend on y(xi)− yi as well as on hi+1 and Φ. In
stepping to xi+1 the method cannot control y(xi)− yi, but hi+1 and possibly
Φ can be adjusted to improve the local behaviour of the numerical solution.

• Consider the ‘Local’ IVP associated with step i:

y′ = f(x, y), y(xi) = yi, x ∈ [xi, b].

Denote the true solution to this local problem, zi(x).

(a) If yi were exact (ie. yi = y(xi)) then y(x) ≡ zi(x).

(b) When we apply a k-step formula, the best we can expect is that yi+1 will
be a good approximation to zi(xi+1).

• Definition: The Global Error at xi+1, GEi+1, is y(xi+1) − yi+1.

• Definition: The Local Error associated with step i, LEi, is zi(xi+1)− yi+1.

The Global Error at xi+1 satisfies:

y(xi+1) − yi+1 = (y(xi+1) − zi(xi+1))︸ ︷︷ ︸
A

+ (zi(xi+1) − yi+1)︸ ︷︷ ︸
B

,

19

where A depends on the global error at xi and the ‘mathematical stability’ of
the ODE (and is independent of the method) while B is the local error and
depends only on hi+1 and Φ.

• Definition: The Local Truncation Error associated with step i , LTEi, is

zi(xi+1) − zi(xi) − hi+1Φ(xi, zi(xi+1) · · · zi(xi−k+1)).

For 1-step formulas we have that LTE = O(hp+1) iff LE = O(hp+1) but this
is not the case for multistep formulas. One can interpret the LTE as a direct
measure of how well the exact solution of the IVP satisfies the underlying
discrete approximation formula.

• One can characterize a numerical IVP (as opposed to the mathematical IVP
that is uniquely determined by our problem specification and some smooth-
ness assumptions) by,

< f, a, y0, b, TOL >,

where

(a) The first four components characterize the ”mathematical problem”.

(b) The last component, TOL, is the accuracy component and can be inter-
preted in several ways. We will consider two possible interpretations:

Defect Control: There exists Z(x) ∈ C[a, b] such that Z(a) = y0, Z(b) =
yN , Z ′(x) exists almost everywhere and

Z ′ = f(x, Z) + δ(x),

where ‖δ(X)‖ ≤ TOL, for x ∈ [a, b]. Note that Z(x) need not be
computable.

Error per unit Step – EPUS The local error per unit step (LEPUS)
is bounded by TOL. That is,

‖zi(xi+1) − yi+1‖ ≤ TOL(xi+1 − xi), for i = 0, 1 · · · (N − 1).

These two interpretations of accuracy are closely related as the following
result shows.
Lemma: If the problem is locally Lipschitz with the associated Lipschitz
constant L, the method keeps |hL| < c, and LEPUS ≤ TOL then there
exists Z(x) ∈ C[a, b] such that Z ′(x) exists at all but a finite number of
points in [a, b] and Z ′(x) = f(x, Z) + δ(x), with ‖δ(x)‖ ≤ (1 + c)TOL.
(That is, if the second criteria is, satisfied then the first is satisfied for a
slightly larger TOL.)

Proof :
Define Z̃(x) for x ∈ [a, b] in a piecewise fashion as:

Z̃(x) ≡ z̃i(x) = zi(x) −
(

x − xi

xi+1 − xi

)
εi, for x ∈ [xi, xi+1].

20

where εi is the discrete local error introduced on step i,

εi = zi(xi+1) − yi+1.

From our assumptions, ‖εi‖ ≤ TOL(xi+1 − xi) or ‖εi‖
(xi+1−xi)

≤ TOL. Now

Z̃(xi) = zi(xi) = yi and

lim
x→x−

i

Z̃(x) = zi−1(xi) − εi−1 = yi.

Therefore Z̃(x) is continuous on [a, b] and Z̃ ′(x) exists everywhere except
perhaps at the xi.

Now for x ∈ (xi, xi+1) we have (from the definition of Z̃(x)),

Z̃ ′(x) = z′i(x) − 1

xi+1 − xi
εi

= f(x, zi(x)) − 1

xi+1 − xi
εi

= f(x, Z̃(x))− 1

xi+1 − xi
εi + [f(x, zi(x)) − f(x, Z̃(x))]

︸ ︷︷ ︸
δ(x)

= f(x, Z̃(x)) + δ(x),

where,

‖δ(x)‖ ≤ 1

xi+1 − xi
‖εi‖ + ‖f(x, zi(x)) − f(x, Z̃(x))‖

≤ 1

xi+1 − xi
‖εi‖ + L‖zi(x) − Z̃(x))‖

=
1

xi+1 − xi
‖εi‖ + L

x − xi

xi+1 − xi
‖εi‖

= (1 + L(x − xi))
‖εi‖

(xi+1 − xi)

≤ (1 + c)TOL = TOL.

Note that the converse of this lemma is also true (an easy exercise).

2. Fixed Stepsize Classical Analysis of the underlying Formula:

Note that this type of analysis is still relevant since it identifies a necessary (al-
though not sufficient) criteria for determining suitability of a formula to be used
as the basis for a numerical method for solving IVPs.

• An ODE is well conditioned (or well posed) with respect to initial conditions,
y0 on the interval [a, b] if there exists K > 0 and ε̄ > 0 such that for all ε < ε̄
any solution of a perturbed IVP:

z′ = f(x, z) + δ(x), z(a) = y0 + ε0,

21

with ‖δ(x)‖ < ε for x ∈ [a, b] and ‖ε0‖ < ε, satisfies:

‖z(x) − y(x)‖ < Kε, for all x ∈ [a, b].

Theorem (A corollary of earlier results)
If f(x, y) satisfies a local Lipschitz condition then the ODE is well posed with
respect to any initial conditions (with the corresponding K ≈ 2eL(b−a)).

• A formula is stable if for each well conditioned ODE, there exists a constant
h0 > 0 such that a change in the starting value(s) by a fixed amount produces
a bounded change in the discrete numerical solution that results from from
applying the formula with a constant stepsize h, for any h < h0, on the finite
interval [a, b].

• A formula is said to converge if any desired degree of accuracy can be achieved
for any problem satisfying a Lipschitz condition by choosing a small enough
constant stepsize h. (That is, the maximum global error → 0 as h → 0.)

Note that convergence ⇒ stability but the converse is not true (eg. the
formula yi+1 = yi is stable but not convergent).

• A formula is of order p iff p is the largest value for which there exists h̄ >
0, K > 0, such that for any x ∈ [a, b], i > (x − a)/h̄, when the formula is

applied to an IVP with fixed stepsize, h = (x−a)
i

we have (after i steps of size
h), ‖y(xi) − yi‖ < Khp. (Note that after i steps of size h, yi approximates
y(a + ih), where a + ih = a + i(x − a)/i = x.)

Classical Theorem: (see Henrici for proof)
A discrete numerical formula with local error O(hp+1) is of order p. That is,
‖yi+1 − zi(xi + h)‖ = O(hp+1) ⇒ The formula is of order p.

• A formula is consistent iff order is at least one. The Main Classical Result
is that a formula is convergent iff it is stable and consistent. (This theorem
applies only to fixed stepsize.) In particular we have

One-Step Methods Order p ⇔ local error = O(hp+1) ⇒ global error =
O(hp).

Multistep Methods Order p and numerical stability ⇔ local error = O(hp+1) ⇒
global error = O(hp).

• The absolute stability of a formula is defined in terms of fixed h, but finite
(and not h → 0).

– Consider the model scalar IVP:

y′ = λy, y(x0) = y0, λ ∈ <, λ << 0.

The solution is,

y(x) = eλ(x−x0)y0, on any interval [x0, xF],

and therefore |y(x)| = eλ(x−x0)|y0|.

22

– Consider applying Euler’s formula with constant stepsize to this problem
(simplest one-step formula),

yi+1 = yi + hy′
i = (1 + hλ)yi,

When |λ| is large, hλ << −2, |1 + hλ| >> 1 and,

|yi+1| = |1 + hλ|i+1|y0|.

This leads to an unstable computation.

– Consider applying the Implicit Euler (Backward Euler) formula with con-
stant stepsize to this problem,

yi+1 = yi + hy′
i+1 =

1

(1 − hλ)
yi,

When |λ| is large, hλ << −2, | 1
(1−hλ)

| << 1 and,

|yi+1| = | 1

(1 − hλ)
|i+1|y0|.

This leads to a very stable computation as the |yi| → 0 rapidly.

23

Now consider the slightly more general model problem,

y′ = λy, y(x0) = y0, where λ ∈ C.

A formula, when applied to this problem with constant stepsize h, is consid-
ered stable (for the particular values of h and λ) if |yi| remains bounded as
i → ∞ for any initial condition vector, y0.

Definition
The Region of absolute stability associated with a formula is

R ≡ {hλ : when applied to the model problem with constant h, |yi| → 0}.

• Limitations of constant stepsize and h → 0 analysis:

(a) Error bounds can be pessimistic (not necessarily true of error estimates).

(b) Problem characteristics often change over [a, b] and one fixed h is not
suitable (adaptive choice of stepsize is warranted).

(c) (h → 0) analysis ignores round-off error. (Precision must increase as
h → 0 if analysis is to be meaningful and convergence observed.)

• Practical convergence as TOL → 0 for EPUS.

(a) The global error is difficult to estimate/bound but local error can be
estimated and controlled efficiently and reliably. To do this a method
must have an associated formula to determine the discrete solution as
well as another formula for estimating the local error (or the defect of an
associated interpolant, S(x)).

(b) The stepsize should vary so that LEPUS ≈ TOL on each step. We
then have from the ‘equivalence of the error criteria, that there exists a
Z(x) ∈ C[a, b] satisfying the IVP,

z′ = f(x, z) + δ(x), z(a) = y0,

with
‖δ(x)‖ ≤ K TOL ⇒ ‖GE‖ = O(TOL).

24

2.2.2 Extension of Classical Analysis

Variable stepsize (adaptive) methods are now widely available and are the basis for most
reliable and effective general purpose software for IVPs.

1. Often one can associate, with the underlying discrete numerical solution (xi, yi)
NTOL
i=0 ,

a ‘natural’ computable piecewise polynomial, S(x), which interpolates the discrete
solution and provides a continuous (possibly C1[a, b]) approximation to y(x). That
is, for x ∈ [xi, xi+1], S(x) is, a polynomial of degree ≤ k, (which we will denote by
ẑi(x)) interpolating the ‘local data’ yi, yi+1.

2. When such an interpolant, S(x), exists then ẑi(x) ≈ zi(x) over [xi, xi+1]. One can
then ask how well ẑi(x) satisfies the local IVP that defines zi(x). That is, one
can define the approximate (or numerical solution) to be S(x) and ask how well it
satisfies the original IVP over [a, b].

3. The defect, δ̂(x), associated with this particular continuous numerical solution,
S(x), is defined for x ∈ [a, b], to be

δ̂(x) ≡ S ′(x) − f(x, S(x)).

Note:

• S(x) is computable and is a vector of piecewise polynomials (one for each
component of y(x)).

• δ̂(x) will be computable and continuous everywhere except possibly at the
meshpoints, x1, x2, · · ·x(NTOL−1).

4. The notion of GE and LE extend from the discrete to continuous case in a straight-
forward way,

CGE ≡ y(x) − S(x), for x ∈ [a, b].

CLE ≡ zi(x) − S(x) = zi(x) − ẑi(x), for x ∈ [xi, xi+1].

The following theoretical results can be shown,

• δ̂(x) = O(hp) ⇒ CLE = O(hp+1) ⇒ CGE = O(hp), where h is the maximum
stepsize.

• If ẑi(x) is computed on each step (and hence S(x) determined globally), then
the associated δ̂(x) can be sampled (at some extra cost) and a bound on ‖δ̂(x)‖
over (xi, xi+1) estimated. An error control strategy can ‘accept’ (xi+1, yi+1)
only if this estimated bound is less than TOL. That is, an attempt is made to
ensure ‖δ̂(x)‖ ≤ TOL for all x ∈ [a, b] and therefore S(x) will satisfy exactly
a slightly pertubed IVP, where the perturbation is bounded by TOL in norm.

25

2.3 Runge-Kutta methods:

Runge-Kutta methods are one-step methods where the ODE is sampled at s points in
the interval [xi, xi+1] and the associated Φ(xi, yi) is defined as a weighted average of
these sampled values.

1. More specifically an s-stage Runge-Kutta formula uses s derivative evaluations and
has the form:

yi+1 = yi + hi+1(ω1k1 + ω2k2 · · ·+ ωsks),

where hi+1 = xi+1 − xi and, for j = 1, 2 · · · s,

kj = f(xi + hi+1αj, yi + hi+1

s∑

r=1

βjrkr).

This formula is characterized by the tableau,

α1 β11 β12 . . . β1s

α2 β21 β22 . . . β2s
...

...
...

...
αs βs1 βs2 . . . βss

ω1 ω2 . . . ωs

These s2 +2s parameters are usually chosen to make implementation easier and/or
to maximize the order. The maximum attainable order for an s-stage Runge-Kutta
formula is 2s.

2. Runge-Kutta formulas can be classified into three categories:

Explicit If βjr = 0 for r ≥ j the formula is explicit and the kj can be computed
sequentially as,

kj = f(xi + hi+1αj, yi + hi+1

j−1∑

r=1

βjrkr), for j = 1, 2 · · · s.

Semi-implicit If βjr = 0 for r > j and βj,j 6= 0 for some j, the formula is called
semi-implicit and the kj can be determined sequentially by solving an order
n nonlinear system (at most s such systems per step).

Implicit Otherwise the formula is implicit and the equations defining the kj are
a fully coupled nonlinear system of order sn.

3. The derivation of maximum order (for a given s) Runge-Kutta formula has received
considerable attention in recent years. Recall that a formula will be order p if for
all sufficiently differentiable functions y(x) we have,

y(xi+1) − y(xi) − hΦ(xi, y(xi)) = O(hp+1). (6)

26

Consider a formula Φ corresponding to a 2-stage explicit Runge-Kutta formula,

Φ(xi, yi) = ω1k1 + ω2k2,

where,

k1 = f(xi, yi),

k2 = f(xi + αh, yi + hβk1).

We determine the parameters ω1, ω2, α, β to obtain as high an order formula as
possible. From the definition of order we have order p if

y(xi+1) = y(xi) + h(ω1k1 + ω2k2) + O(hp+1) (7)

for all sufficiently differentiable functions y(x). To derive such a formula we expand
each of y(xi+1), k1, k2 in a Taylor Series about the point (xi, yi), equate like powers
of h on both sides of (7), and set α, β, ω1, ω2 accordingly.

In what follows we omit arguments when they are evaluated at the point (xi, yi).
The expansion of the LHS of (7) is:

LHS = y(xi+1),

= y(xi) + hy
′

(xi) +
h2

2
y

′′

(xi) +
h3

6
y

′′′

(xi) + O(h4),

= y(xi) + hf +
h2

2
(fx + fyf)

+
h3

6
(fxx + 2fxyf + fyyf

2 + fyfx + f 2
y f) + O(h4).

The expansion of the RHS of (7) is more complicated and first requires the expan-
sions of k1 and k2,

k1 = f,

k2 = f(xi + αh, y(xi) + βhk1),

= f(xi, y(xi) + βhf) + (αh)fx(xi, y(xi) + βhf)

+
α2h2

2
fxx(xi, y(xi) + βhf) + O(h3),

=

[
f + βhffy +

(βhf)2

2
fyy + O(h3)

]

+
[
αhfx + αβh2ffxy + O(h3)

]
+

[
α2h2

2
fxx + O(h3)

]
,

= f + (βffy + αfx) h + (
β2

2
f 2fyy + αβffxy +

α2

2
fxx) h2 + O(h3).

The expansion of the RHS of (7) then is (with these substitutions for k1 and k2)

RHS = y(xi) + h(ω1k1 + ω2k2),

27

= y(xi) + hω1f + hω2 [· · ·] + O(h4),

= y(xi) + [(ω1 + ω2)f] h + [ω2(βffy + αfx)] h2

+

[
ω2(

β2

2
f 2fyy + αβffxy +

α2

2
fxx)

]
h3 + O(h4).

Finally, these expansions are valid for small h and all sufficiently differentiable
f(x, y), so equating like powers of h, in the LHS and RHS expansions, we observe
the following:

For order 0 : The coefficients of h0 always agree and we have order at least zero
for any choice of the parameters.

For order 1: If ω1 +ω2 = 1 the coefficients of h1 agree and we have at least order
1.

For order 2: In addition to satisfying the order 1 constraints we must have the
coefficient of h2 the same. That is αω2 = 1/2 and βω2 = 1/2.

For order 3: In addition to satisfying the order 2 constraints we must have the
coefficients of h3 the same. That is we must satisfy the equations,

ω2α
2 =

1

3
,

ω2αβ =
1

3
,

ω2β
2 =

1

3
,

1

6
fxfy = ?,

1

6
f 2

y f = ?.

Note that there are not enough terms in the coefficient of h3 in the expansion
of the RHS to match the expansion of the LHS. We cannot therefore equate the
coefficients of h3 and the maximum order we can obtain is order 2. Our formula
will be order 2 for any choice of ω2 6= 0, with ω1 = 1 − ω2 and α = β = 1

2ω2
. This

is a one-parameter family of 2nd-order Runge-Kutta formulas.

Three popular choices from this family are:

Modified Euler: ω2 = 1/2

k1 = f(xi, yi),

k2 = f(xi + h, yi + hk1),

yi+1 = yi +
h

2
(k1 + k2).

28

Midpoint: ω2 = 1

k1 = f(xi, yi),

k2 = f(xi +
h

2
, yi +

h

2
k1),

yi+1 = yi + hk2.

Heun’s Formula: ω2 = 3/4

k1 = f(xi, yi),

k2 = f(xi +
2

3
h, yi +

2

3
hk1),

yi+1 = yi +
h

4
(k1 + 3k2).

Note that the derivations of maximal order formulas can be very messy and tedious,
but essentially they follow (as outlined above for the case s = 2) by expanding
each of the kj in a bi-variate Taylor series. The maximum attainable order for an
s-stage, explicit Runge-Kutta formula is given by the following table:

s 1 2 3 4 5 6 7 8 9 10 11
max order 1 2 3 4 4 5 6 6 7 7 8

An Example – The Classical Fourth Order Runge Formula (1895)

- -
1/2 1/2 -
1/2 0 1/2 -
1 0 0 1 -

1/6 1/3 1/3 1/6

4. Error Estimates:

(a) Ideally a method would estimate a bound on the global error and adjust
the stepsize, h, to keep the magnitude of the global error less than a toler-
ance. Such computable bounds are possible but are usually pessimistic and
inefficient to implement.

(b) On the other hand, local errors can be reliably and efficiently estimated and
controlled. Consider a method which keeps the magnitude of the local error
less than h TOL on each step.

We will consider the derivation of computable local error estimates for such
methods.

As an example, consider the Modified Euler Formula:

29

- -
1 1 -

1/2 1/2

We have shown

zi(xi+1) = yi +
h

2
(k1 + k2)

+
[
1

4
f 2fyy +

1

2
ffxy +

1

4
fxx − y

′′′

(xi)
]
h3 + O(h4),

= yi+1 +
[

1

12
fyyf

2 +
1

6
ffxy +

1

12
fxx − fxy − f 2

y f
]
h3 + O(h4),

≡ yi+1 + c(f)h3 + O(h4).

It then follows that the local error, LE, satisfies

LE = c(f)h3 + O(h4),

where c(f) is a complicated function of f . There are two general strategies
for estimating c(f) – the use of ”step halving” and the use of a 3rd order
”companion formula”.

Step Halving: let ŷi+1 be the approximation to zi(xi+1) computed with two
steps of size h/2. If c(f) is almost constant then we can show

zi(xi+1) = ŷi+1 + 2c(f)(
h

2
)3 + O(h4)

and from above

zi(xi+1) = yi+1 + c(f)h3 + O(h4).

Therefore the local error associated with ŷi+1, L̂E, is

L̂E = 2c(f)(
h

2
)3 + O(h4),

=
1

3
(yi+1 − ŷi+1) + O(h4).

The method could then compute ŷi+1, yi+1 and accept ŷi+1 only if 1
3
|yi+1−

ŷi+1| < h TOL.
Note that this strategy requires five derivative evaluations on each step
and assumes that each of the components of c(f) is slowly varying.

Third Order Companion Formula: To estimate the local error associ-
ated with the Modified Euler formula consider the use of a 3-stage, 3rd

order Runge-Kutta formula,

ŷi+1 = yi + h(ω̂1k̂1 + ω̂2k̂2 + ω̂3k̂3),

= zi(xi+1) + O(h4),

30

We also have

yi+1 = yi +
h

2
(k1 + k2),

= zi(xi+1) − c(f)h3 + O(h4).

Subtracting these two equations we have the local error estimate,

esti ≡ (ŷi+1 − yi+1) = c(f)h3 + O(h4).

Note that, for any 3rd order formula, k1 = k̂1, so we require at most 4
derivative evaluations per step to compute both yi+1 and esti. Further-
more, if α̂2 = α2 = 1 and β̂21 = β21 = 1, we have k̂2 = k2 and the cost is
only three derivative evaluations per step. The obvious question is can
one derive such a 3-stage 3rd order Runge-Kutta formula ? The answer is
yes and the following tableau with α̂3 6= 1 defines a one-parameter family
of such ”companion formulas” for the Modified Euler formula:

- -
1 1 -

α̂3 β̂31 β̂32 -
ω̂1 ω̂2 ω̂3

with

β̂31 = α̂2
3, β̂32 = α̂3−α̂2

3, ω̂2 =
1

6(α̂3 − 1)
, ω̂3 =

−1

6(α̂3 − 1)
, ω̂1 = 1−(

1 + 3α̂3

6α̂3
).

(c) Generalization to Higher Order:

Both of these approaches generalize to higher order Runge-Kutta methods. In
particular, the idea of using a ”companion formula” of order p+1 to estimate
the local error of a pth order formula leads to the derivation of s-stage, order
(p, p + 1) formula pairs with the fewest number of stages. Explicit formula
pairs of this type can be characterized by the tableau:

- -
α2 β21 -

...
...

αs βs1 . . . βs−1,s -
ω1 ω2 . . . ωs

ω̂1 ω̂2 . . . ω̂s

where

yi+1 = yi + h
s∑

r=1

ωrkr

= zi(xi+1) − c(f)hp+1 + O(hp+2),

31

ŷi+1 = yi + h
s∑

r=1

ω̂rkr

= zi(xi+1) + O(hp+2),

esti = (ŷi+1 − yi+1)

= c(f)hp+1 + O(hp+2).

Note that the error estimate is a reliable estimate of the local error associated
with the lower order (order p) formula. The following table gives the fewest
number of stages required to generate formula pairs of a given order.

order pair (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9)
fewest stages 3 4 6 8 10 13 17

The widespread development and use of variable stepsize methods over the last
40-50 years has been accompanied by significant improvements in the effectiveness
of the underlying formulas and the associated local error estimates.

• Prior to the 1960’s the only real alternative was to use 4th order formulas
with step halving to estimate the local error. Two example formulas that
were widely used as the basis for software at that time were the classical 4th

order formula proposed by Runge in 1895 and the 4th order formula proposed
by Gill (and discussed in [Gear pp. 83-84]).

• In 1957 Merson showed that, for y′ = A(x)y + w(x), the formula pair,

- -
1/3 1/3 -
1/3 1/6 1/6 -
1/2 1/8 0 3/8 -
1 1/2 0 -3/2 2 -

1/6 0 0 2/3 1/6
1/2 0 -3/2 2 0

satisfies

yi+1 = zi(xi+1) −
1

720
h5y(5) + O(h6),

ŷi+1 = zi(xi+1) −
1

120
h5y(5) + O(h6),

That is, this ‘formula pair’ consists of two 4th order formulas with s = 5
that provides an asymptotically correct local error estimate only for linear
problems. For such problems one can estimate the local error by,

esti =
1

5
(yi+1 − ŷi+1) =

1

720
h5y(5) + O(h6).

32

• In the 1960s and earlier Fehlberg (working at NASA Houston) derived a
large class of Runge Kutta formula pairs that were suitable for all sufficiently
smooth problems. An example of a particularly popular order (4, 5) formula
pair is:

- -
1/4 1/4 -
3/8 3/32 9/32 -

12/13 1932/2197 -7200/2197 7296/2197 -
1 439/216 -8 3680/513 -845/4104 -

1/2 -8/27 2 -3544/2565 1859/4104 -11/40 -
25/216 0 1408/2565 2197/4104 -1/5 0
-16/135 0 6656/12825 28561/56430 -9/50 2/55

• In the last 3 decades Fehlberg and others (Verner, Dormand, Sharp, Bettis,
Prince) have proposed such formula pairs with orders up to (8, 9).

5. Stepsize Control:

• Step is accepted only if |esti| < hTOL.

• If h is too large, the step will be rejected and the derivative evaluations will
be wasted.

• If h is too small, there will be many steps and more function evaluations than
necessary.

The usual strategy for choosing the attempted stepsize, h, for the next step is
based on ‘aiming’ at the largest h which will result in an accepted step on the
current step. If we assume that c(f) is slowly varying then our current estimate
satisfies,

|esti| = |c(f)|hp+1
i+1 + O(hp+2),

and, on the next step attempted step hi+2 = γhi+1, we want

|esti+1| ≈ TOL hi+2.

But

|esti+1| ≈ |c(f)|(γhi+1)
p+1,

= γp+1|esti|.

We can then expect
|esti+1| ≈ TOL hi+2,

if
γp+1|esti| ≈ TOL (γhi+1),

which is equivalent to
γp|esti| ≈ TOL hi+1.

33

The choice of γ to satisfy this heuristic is then,

γ =

(
TOL hi+1

|esti|

)1/p

.

A typical step-choosing heuristic, justified by the above discussion, is to use the
formula,

hi+2 = .9

(
TOL hi+1

|esti|

)1/p

hi+1,

where .9 is a ‘safety factor’. The formula works for use after a rejected step as well
but must be modified slightly when round-off errors are significant.

6. Interpolants for RK formula pairs (ie. defining a suitable computable S(x)):

For an s-stage, order (p, p + 1) RK formula pair one can determine suitable com-
putable interpolants, S(x), on the mesh a = x0 < x1 · · · < xNTOL

= b (associated
with the underlying discrete method). There are several alternatives possible and
we will consider one of the least expensive alternatives. There is a trade-off that
arises between the cost and reliabilty of the resulting implementation.

A pth-order, s-stage RK formula determines

yi+1 = yi + hi+1

s∑

j=1

ωjkj,

where

kj = f(xi + hi+1αj, yi + hi+1

s∑

r=1

βjrkr).

A Continuous extension (CRK) is determined by adding (s̄ − s) extra stages to
obtain an order p approximation for x ∈ (xi, xi+1)

ui(x) = yi + hi+1

s̄∑

j=1

bj(
x − xi

hi+1

)kj,

where bj(τ) is a polynomial of degree p and τ = x−xi

hi+1
.

• The [ui(x)]NTOL
i=1 define the piecewise polynomial S(x) for x ∈ [a, b]. This will

be considered the numerical solution generated by the CRK method.

• S(x) ∈ C0[a, b] and will interpolate the underlying discrete RK values, yi, if
bj(1) = ωj for j = 1, 2 · · · s and bs+1(1) = bs+2(1) = · · · bs̄(1) = 0.

• Similarly a simple set of constraints on the b
′

j(τ), will ensure S ′(x) interpolates
f(xi, yi) and therefore S(x) ∈ C1[a, b].

34

���������
	�� � ��
������� � � �
������� � � �
�����
���! � " #!#
�����
�
" " � #$�
�����
��% % #$& '�#

()�+*�	-, #!.�� �0/21435,$�6/217,$38�:9;/2�!�<, ���6� 9=�!���>��	?�!/

7. Local extrapolation One can use an asymptotically correct estimate of the local
error to improve the accuracy (and order) of the numerical solution.

• Recall, if the local error estimate is asymptotically correct we have for a
pthorder formula:

esti = (zi(xi + h) − yi+1) + ĉhp+2 + O(hp+3),

and therefore,

ŷi+1 = yi+1 + esti = zi(xi + h) + ĉhp+2 + O(hp+3).

That is, ‘Adding in the estimate’ increases the order by one.

• For a RK formula pair of order (p, p + 1) we have esti = ŷi+1 − yi+1, and
therefore yi+1 + esti = ŷi+1.

• We sacrifice any ‘estimate’ of the local error (in ŷi+1) if we advance with ŷi+1.

• Several current methods indirectly control the LEPUS of ŷi+1, by estimating
and bounding the LEPS of yi+1.

That is, if the error estimate is asymptotically correct and yi+1 = zi(xi +
h) + chp+1 + O(hp+2), ‖esti‖ = |c|hp+1 + O(hp+2), then LEPS, ‖esti‖ < TOL
implies,

|c|hp+1 < TOL + O(hp+2) ⇒ |c|hp+2 < TOLh + O(hp+3).

This then implies,

|ĉ|hp+2 < | ĉ
c
|TOLh + O(hp+3),

or the EPUS for ŷi+1 = yi+1 + esti < | ĉ
c
|TOL + O(hp+2). Note that this

observation applies to any IVP method with an error estimate, but | ĉ
c
| can

vary considerably for different RK formulas and depends on f(x, y).

35

2.4 An example of software and its use:

Any general purpose method for IVPs which provides a continuous approximation to the
IVP can be used in a problem solving environment to investigate interesting questions
arising in particular application areas. As an example we will consider a typical question
that may arise in the study of a predator-prey relationship in biology.

A predator-prey relationship can be modeled by the IVP:

y
′

1 = y1 − 0.1y1y2 + 0.02x

y
′

2 = −y2 + 0.02y1y2 + 0.008x

with
y1(0) = 30, y2(0) = 20.

Here y1(x) represents the ‘prey’ population at time x and y2(x) represents the ‘predator’
population at time x. The solution can then be visualized as a standard x/y solution
plot or by a ‘phase plane’ plot. Figure 1 illustrates the solution to this system. We
know that for different initial conditions solutions to this problem exhibit oscillatory
behaviour as x increases.

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

(a) Solution Plot

10 20 30 40 50 60 70 80 90 100 110
2

4

6

8

10

12

14

16

18

20

22

(b) Phase Plane Plot

Figure 1: Solutions to the predator prey problem for x ∈ [0, 40]

A biologist may be interested in whether the solutions to this equation are ‘almost
periodic’ (in the sense that the difference between successive maximum is constant) and
whether the local maxima approach a steady state exponentially. (See Figure 2).

In the next few pages we will illustrate how one can use the methods, DVERK and
ode45 (of matlab), to solve this test problem and to investigate this particular question.

We first identify the generic calling sequence used by the DVERK family of IVP
methods. The only thing that changes for different members of this family, is the required
size of the workspace and the location (within the workspace array, W) of the ’next’
discrete solution vector, yi+1.

36

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Figure 2: Typical behaviour of prey or predator population and decay to steady state

C This file contains the internal documentation only for DVERK. The

C documentation also is relevant to the complete suite of codes developed

C with the same design and calling sequence as DVERK. In this latter case

C the calling sequence is intepreted in the same way, but the underlying

C strategies may have been modified.

C

C SUBROUTINE DVERK(N, FCN, X, Y, XEND, TOL, IND, C, NW, W)

C

C***

C

C PURPOSE - THIS IS A RUNGE-KUTTA SUBROUTINE BASED ON VERNER’S

C FIFTH AND SIXTH ORDER PAIR OF FORMULAS FOR FINDING APPROXIMATIONS TO

C THE SOLUTION OF A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL

C EQUATIONS WITH INITIAL CONDITIONS. IT ATTEMPTS TO KEEP THE GLOBAL

C ERROR PROPORTIONAL TO A TOLERANCE SPECIFIED BY THE USER. (THE

C PROPORTIONALITY DEPENDS ON THE KIND OF ERROR CONTROL THAT IS USED,

C AS WELL AS THE DIFFERENTIAL EQUATION AND THE RANGE OF INTEGRATION.)

C

C VARIOUS OPTIONS ARE AVAILABLE TO THE USER, INCLUDING DIFFERENT

C KINDS OF ERROR CONTROL, RESTRICTIONS ON STEP SIZES, AND INTERRUPTS

C WHICH PERMIT THE USER TO EXAMINE THE STATE OF THE CALCULATION (AND

C PERHAPS MAKE MODIFICATIONS) DURING INTERMEDIATE STAGES.

C

C THE PROGRAM IS EFFICIENT FOR NON-STIFF SYSTEMS. HOWEVER, A GOOD

C VARIABLE-ORDER-ADAMS METHOD WILL PROBABLY BE MORE EFFICIENT IF THE

C FUNCTION EVALUATIONS ARE VERY COSTLY. SUCH A METHOD WOULD ALSO BE

C MORE SUITABLE IF ONE WANTED TO OBTAIN A LARGE NUMBER OF INTERMEDIATE

C SOLUTION VALUES BY INTERPOLATION, AS MIGHT BE THE CASE FOR EXAMPLE

C WITH GRAPHICAL OUTPUT.

C

37

C HULL-ENRIGHT-JACKSON 1/10/76

C

C***

C

C USE - THE USER MUST SPECIFY EACH OF THE FOLLOWING

C

C N NUMBER OF EQUATIONS

C

C FCN NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS - THE SUBROUTINE

C ITSELF MUST ALSO BE PROVIDED BY THE USER - IT SHOULD BE OF

C THE FOLLOWING FORM

C SUBROUTINE FCN(N, X, Y, YPRIME)

C INTEGER N

C DOUBLE PRECISION X, Y(N), YPRIME(N)

C ** ETC *** *

C AND IT SHOULD EVALUATE YPRIME, GIVEN N, X AND Y

C

C X INDEPENDENT VARIABLE - INITIAL VALUE SUPPLIED BY USER

C

C Y DEPENDENT VARIABLE - INITIAL VALUES OF COMPONENTS Y(1), Y(2),

C ..., Y(N) SUPPLIED BY USER

C

C XEND VALUE OF X TO WHICH INTEGRATION IS TO BE CARRIED OUT - IT MAY

C BE LESS THAN THE INITIAL VALUE OF X

C

C TOL TOLERANCE - THE SUBROUTINE ATTEMPTS TO CONTROL A NORM OF THE

C LOCAL ERROR IN SUCH A WAY THAT THE GLOBAL ERROR IS

C PROPORTIONAL TO TOL. IN SOME PROBLEMS THERE WILL BE ENOUGH

C DAMPING OF ERRORS, AS WELL AS SOME CANCELLATION, SO THAT

C THE GLOBAL ERROR WILL BE LESS THAN TOL. ALTERNATIVELY, THE

C CONTROL CAN BE VIEWED AS ATTEMPTING TO PROVIDE A

C CALCULATED VALUE OF Y AT XEND WHICH IS THE EXACT SOLUTION

C TO THE PROBLEM Y’ = F(X,Y) + E(X) WHERE THE NORM OF E(X)

C IS PROPORTIONAL TO TOL. (THE NORM IS A MAX NORM WITH

C WEIGHTS THAT DEPEND ON THE ERROR CONTROL STRATEGY CHOSEN

C BY THE USER. THE DEFAULT WEIGHT FOR THE K-TH COMPONENT IS

C 1/MAX(1,ABS(Y(K))), WHICH THEREFORE PROVIDES A MIXTURE OF

C ABSOLUTE AND RELATIVE ERROR CONTROL.)

C

C IND INDICATOR - ON INITIAL ENTRY IND MUST BE SET EQUAL TO EITHER

C 1 OR 2. IF THE USER DOES NOT WISH TO USE ANY OPTIONS, HE

C SHOULD SET IND TO 1 - ALL THAT REMAINS FOR THE USER TO DO

C THEN IS TO DECLARE C AND W, AND TO SPECIFY NW. THE USER

C MAY ALSO SELECT VARIOUS OPTIONS ON INITIAL ENTRY BY

C SETTING IND = 2 AND INITIALIZING THE FIRST 9 COMPONENTS OF

38

C C AS DESCRIBED IN THE NEXT SECTION. HE MAY ALSO RE-ENTER

C THE SUBROUTINE WITH IND = 3 AS MENTIONED AGAIN BELOW. IN

C ANY EVENT, THE SUBROUTINE RETURNS WITH IND EQUAL TO

C 3 AFTER A NORMAL RETURN

C 4, 5, OR 6 AFTER AN INTERRUPT (SEE OPTIONS C(8), C(9))

C -1, -2, OR -3 AFTER AN ERROR CONDITION (SEE BELOW)

C

C C COMMUNICATIONS VECTOR - THE DIMENSION MUST BE GREATER THAN OR

C EQUAL TO 24, UNLESS OPTION C(1) = 4 OR 5 IS USED, IN WHICH

C CASE THE DIMENSION MUST BE GREATER THAN OR EQUAL TO N+30

C

C NW FIRST DIMENSION OF WORKSPACE W - MUST BE GREATER THAN OR

C EQUAL TO N

C

C W WORKSPACE MATRIX - FIRST DIMENSION MUST BE NW AND SECOND MUST

C BE GREATER THAN OR EQUAL TO 9

C

C THE SUBROUTINE WILL NORMALLY RETURN WITH IND = 3, HAVING

C REPLACED THE INITIAL VALUES OF X AND Y WITH, RESPECTIVELY, THE VALUE

C OF XEND AND AN APPROXIMATION TO Y AT XEND. THE SUBROUTINE CAN BE

C CALLED REPEATEDLY WITH NEW VALUES OF XEND WITHOUT HAVING TO CHANGE

C ANY OTHER ARGUMENT. HOWEVER, CHANGES IN TOL, OR ANY OF THE OPTIONS

C DESCRIBED BELOW, MAY ALSO BE MADE ON SUCH A RE-ENTRY IF DESIRED.

C

C THREE ERROR RETURNS ARE ALSO POSSIBLE, IN WHICH CASE X AND Y

C WILL BE THE MOST RECENTLY ACCEPTED VALUES -

C WITH IND = -3 THE SUBROUTINE WAS UNABLE TO SATISFY THE ERROR

C REQUIREMENT WITH A PARTICULAR STEP-SIZE THAT IS LESS THAN OR

C EQUAL TO HMIN, WHICH MAY MEAN THAT TOL IS TOO SMALL

C WITH IND = -2 THE VALUE OF HMIN IS GREATER THAN HMAX, WHICH

C PROBABLY MEANS THAT THE REQUESTED TOL (WHICH IS USED IN THE

C CALCULATION OF HMIN) IS TOO SMALL

C WITH IND = -1 THE ALLOWED MAXIMUM NUMBER OF FCN EVALUATIONS HAS

C BEEN EXCEEDED, BUT THIS CAN ONLY OCCUR IF OPTION C(7), AS

C DESCRIBED IN THE NEXT SECTION, HAS BEEN USED

C

C THERE ARE SEVERAL CIRCUMSTANCES THAT WILL CAUSE THE CALCULATIONS

C TO BE TERMINATED, ALONG WITH OUTPUT OF INFORMATION THAT WILL HELP

C THE USER DETERMINE THE CAUSE OF THE TROUBLE. THESE CIRCUMSTANCES

C INVOLVE ENTRY WITH ILLEGAL OR INCONSISTENT VALUES OF THE ARGUMENTS,

C SUCH AS ATTEMPTING A NORMAL RE-ENTRY WITHOUT FIRST CHANGING THE

C VALUE OF XEND, OR ATTEMPTING TO RE-ENTER WITH IND LESS THAN ZERO.

C

C***

C

39

C OPTIONS - IF THE SUBROUTINE IS ENTERED WITH IND = 1, THE FIRST 9

C COMPONENTS OF THE COMMUNICATIONS VECTOR ARE INITIALIZED TO ZERO, AND

C THE SUBROUTINE USES ONLY DEFAULT VALUES FOR EACH OPTION. IF THE

C SUBROUTINE IS ENTERED WITH IND = 2, THE USER MUST SPECIFY EACH OF

C THESE 9 COMPONENTS - NORMALLY HE WOULD FIRST SET THEM ALL TO ZERO,

C AND THEN MAKE NON-ZERO THOSE THAT CORRESPOND TO THE PARTICULAR

C OPTIONS HE WISHES TO SELECT. IN ANY EVENT, OPTIONS MAY BE CHANGED ON

C RE-ENTRY TO THE SUBROUTINE - BUT IF THE USER CHANGES ANY OF THE

C OPTIONS, OR TOL, IN THE COURSE OF A CALCULATION HE SHOULD BE CAREFUL

C ABOUT HOW SUCH CHANGES AFFECT THE SUBROUTINE - IT MAY BE BETTER TO

C RESTART WITH IND = 1 OR 2. (COMPONENTS 10 TO 24 OF C ARE USED BY THE

C PROGRAM - THE INFORMATION IS AVAILABLE TO THE USER, BUT SHOULD NOT

C NORMALLY BE CHANGED BY HIM.)

C

C C(1) ERROR CONTROL INDICATOR - THE NORM OF THE LOCAL ERROR IS THE

C MAX NORM OF THE WEIGHTED ERROR ESTIMATE VECTOR, THE

C WEIGHTS BEING DETERMINED ACCORDING TO THE VALUE OF C(1) -

C IF C(1)=1 THE WEIGHTS ARE 1 (ABSOLUTE ERROR CONTROL)

C IF C(1)=2 THE WEIGHTS ARE 1/ABS(Y(K)) (RELATIVE ERROR

C CONTROL)

C IF C(1)=3 THE WEIGHTS ARE 1/MAX(ABS(C(2)),ABS(Y(K)))

C (RELATIVE ERROR CONTROL, UNLESS ABS(Y(K)) IS LESS

C THAN THE FLOOR VALUE, ABS(C(2)))

C IF C(1)=4 THE WEIGHTS ARE 1/MAX(ABS(C(K+30)),ABS(Y(K)))

C (HERE INDIVIDUAL FLOOR VALUES ARE USED)

C IF C(1)=5 THE WEIGHTS ARE 1/ABS(C(K+30))

C FOR ALL OTHER VALUES OF C(1), INCLUDING C(1) = 0, THE

C DEFAULT VALUES OF THE WEIGHTS ARE TAKEN TO BE

C 1/MAX(1,ABS(Y(K))), AS MENTIONED EARLIER

C (IN THE TWO CASES C(1) = 4 OR 5 THE USER MUST DECLARE THE

C DIMENSION OF C TO BE AT LEAST N+30 AND MUST INITIALIZE THE

C COMPONENTS C(31), C(32), ..., C(N+30).)

C

C C(2) FLOOR VALUE - USED WHEN THE INDICATOR C(1) HAS THE VALUE 3

C

C C(3) HMIN SPECIFICATION - IF NOT ZERO, THE SUBROUTINE CHOOSES HMIN

C TO BE ABS(C(3)) - OTHERWISE IT USES THE DEFAULT VALUE

C 10*MAX(DWARF,RREB*MAX(WEIGHTED NORM Y/TOL,ABS(X))),

C WHERE DWARF IS A VERY SMALL POSITIVE MACHINE NUMBER AND

C RREB IS THE RELATIVE ROUNDOFF ERROR BOUND

C

C C(4) HSTART SPECIFICATION - IF NOT ZERO, THE SUBROUTINE WILL USE

C AN INITIAL HMAG EQUAL TO ABS(C(4)), EXCEPT OF COURSE FOR

C THE RESTRICTIONS IMPOSED BY HMIN AND HMAX - OTHERWISE IT

C USES THE DEFAULT VALUE OF HMAX*(TOL)**(1/6)

40

C

C C(5) SCALE SPECIFICATION - THIS IS INTENDED TO BE A MEASURE OF THE

C SCALE OF THE PROBLEM - LARGER VALUES OF SCALE TEND TO MAKE

C THE METHOD MORE RELIABLE, FIRST BY POSSIBLY RESTRICTING

C HMAX (AS DESCRIBED BELOW) AND SECOND, BY TIGHTENING THE

C ACCEPTANCE REQUIREMENT - IF C(5) IS ZERO, A DEFAULT VALUE

C OF 1 IS USED. FOR LINEAR HOMOGENEOUS PROBLEMS WITH

C CONSTANT COEFFICIENTS, AN APPROPRIATE VALUE FOR SCALE IS A

C NORM OF THE ASSOCIATED MATRIX. FOR OTHER PROBLEMS, AN

C APPROXIMATION TO AN AVERAGE VALUE OF A NORM OF THE

C JACOBIAN ALONG THE TRAJECTORY MAY BE APPROPRIATE

C

C C(6) HMAX SPECIFICATION - FOUR CASES ARE POSSIBLE

C IF C(6).NE.0 AND C(5).NE.0, HMAX IS TAKEN TO BE

C MIN(ABS(C(6)),2/ABS(C(5)))

C IF C(6).NE.0 AND C(5).EQ.0, HMAX IS TAKEN TO BE ABS(C(6))

C IF C(6).EQ.0 AND C(5).NE.0, HMAX IS TAKEN TO BE

C 2/ABS(C(5))

C IF C(6).EQ.0 AND C(5).EQ.0, HMAX IS GIVEN A DEFAULT VALUE

C OF 2

C

C C(7) MAXIMUM NUMBER OF FUNCTION EVALUATIONS - IF NOT ZERO, AN

C ERROR RETURN WITH IND = -1 WILL BE CAUSED WHEN THE NUMBER

C OF FUNCTION EVALUATIONS EXCEEDS ABS(C(7))

C

C C(8) INTERRUPT NUMBER 1 - IF NOT ZERO, THE SUBROUTINE WILL

C INTERRUPT THE CALCULATIONS AFTER IT HAS CHOSEN ITS

C PRELIMINARY VALUE OF HMAG, AND JUST BEFORE CHOOSING HTRIAL

C AND XTRIAL IN PREPARATION FOR TAKING A STEP (HTRIAL MAY

C DIFFER FROM HMAG IN SIGN, AND MAY REQUIRE ADJUSTMENT IF

C XEND IS NEAR) - THE SUBROUTINE RETURNS WITH IND = 4, AND

C WILL RESUME CALCULATION AT THE POINT OF INTERRUPTION IF

C RE-ENTERED WITH IND = 4

C

C C(9) INTERRUPT NUMBER 2 - IF NOT ZERO, THE SUBROUTINE WILL

C INTERRUPT THE CALCULATIONS IMMEDIATELY AFTER IT HAS

C DECIDED WHETHER OR NOT TO ACCEPT THE RESULT OF THE MOST

C RECENT TRIAL STEP, WITH IND = 5 IF IT PLANS TO ACCEPT, OR

C IND = 6 IF IT PLANS TO REJECT - Y(*) IS THE PREVIOUSLY

C ACCEPTED RESULT, WHILE W(*,9) IS THE NEWLY COMPUTED TRIAL

C VALUE, AND W(*,2) IS THE UNWEIGHTED ERROR ESTIMATE VECTOR.

C THE SUBROUTINE WILL RESUME CALCULATIONS AT THE POINT OF

C INTERRUPTION ON RE-ENTRY WITH IND = 5 OR 6. (THE USER MAY

C CHANGE IND IN THIS CASE IF HE WISHES, FOR EXAMPLE TO FORCE

C ACCEPTANCE OF A STEP THAT WOULD OTHERWISE BE REJECTED, OR

41

C VICE VERSA. HE CAN ALSO RESTART WITH IND = 1 OR 2.)

C

C***

C

C SUMMARY OF THE COMPONENTS OF THE COMMUNICATIONS VECTOR

C

C PRESCRIBED AT THE OPTION DETERMINED BY THE PROGRAM

C OF THE USER

C

C C(10) RREB(REL ROUNDOFF ERR BND)

C C(1) ERROR CONTROL INDICATOR C(11) DWARF (VERY SMALL MACH NO)

C C(2) FLOOR VALUE C(12) WEIGHTED NORM Y

C C(3) HMIN SPECIFICATION C(13) HMIN

C C(4) HSTART SPECIFICATION C(14) HMAG

C C(5) SCALE SPECIFICATION C(15) SCALE

C C(6) HMAX SPECIFICATION C(16) HMAX

C C(7) MAX NO OF FCN EVALS C(17) XTRIAL

C C(8) INTERRUPT NO 1 C(18) HTRIAL

C C(9) INTERRUPT NO 2 C(19) EST

C C(20) PREVIOUS XEND

C C(21) FLAG FOR XEND

C C(22) NO OF SUCCESSFUL STEPS

C C(23) NO OF SUCCESSIVE FAILURES

C C(24) NO OF FCN EVALS

C

C IF C(1) = 4 OR 5, C(31), C(32), ... C(N+30) ARE FLOOR VALUES

C

C RREB and DWARF are machine dependent constants currently set so

C that they should be appropriate for most machines. However, it may

C be appropriate to change them when this program is installed on a

C new machine. K.R.J. 3 Oct 1991.

C

42

Next we give an example of a typical Fortran driver to solve this predator-prey
problem using DVERK and the interupt option to compute the associated piecewise
polynomial, S(x).

C

C This is the FORTRAN driver to generate a discrete solution and

C a piecewise polynomial solution from DVERK for the predator-prey

C problem.

C

integer i, j, k, ind, n, ref, nw

double precision TT(200), SD(2,200), y(2), t, tend, c(30), tol,

+ W(2,30), TTF(2000), SDF(2, 2000), delta

external fcn

data c/30*0.d0/

tol = 1.d-2

n = 2

nw = 2

ref = 20

y(1) = 30.d0

y(2) = 20.d0

t = 0.d0

tend = 40.d0

TT(1) = t

TTF(1) = t

SD(1,1) = y(1)

SD(2,1) = y(2)

SDF(1,1) = SD(1,1)

SDF(2,1) = SD(2, 1)

print 110, 1, TTF(1), 1, SDF(1,1), SDF(2,1)

print 130, 1, TT(1), 1, SD(1,1), SD(2,1)

ind = 2

c(9) = 1

c(6) = 10.d0

i = 1

j = 1

100 call dverk(n, fcn, t, y, tend, tol, ind, c, nw, W)

if (ind .eq. 6) go to 100

if ((ind .eq. 3) .or. (ind .lt. 0)) go to 400

C

C The step is to be accepted (ind=5) so we store the discrete solution

C and compute (using intrp) the off-mesh interpolated solution on a fine

C grid of ’ref’ equally spaced points.

C

TT(i+1) = c(17)

SD(1, i+1) = W(1,13)

43

SD(2, i+1) = W(2,13)

delta = c(18)/dfloat(ref)

do 120 k = 1,ref

j = (i-1)*ref + k + 1

TTF(j) = t + delta*k

call intrp(n, t, y, TTF(j), SDF(1,j), c(18), nw, W)

print 110, j, TTF(j),j, SDF(1,j), SDF(2,j)

110 format(1x, ’TTF(’, i4, ’) = ’, E15.8, ’;’/,

+ 1x, ’SDF(1:2 ,’, i4, ’) = [’, 2E15.8, "]’;")

120 continue

i = i+1

print 130, i, TT(i), i, SD(1,i), SD(2,i)

130 format(1x, ’TT(’, i3, ’) = ’, E15.8, ’;’/,

+ 1x, ’SD(1:2,’, i3, ’) = [’, 2E15.8, "]’;")

go to 100

400 print 410, i, j

410 format(1x, ’II = ’, i4, ’;’ /1x, ’JJ = ’, i4, ’;’)

stop

end

subroutine fcn(n, t, y, yp)

double precision t, y(2), yp(2)

yp(1) = y(1) - .1d0*y(1)*y(2) + .02d0*t

yp(2) = -y(2) + .02d0*y(1)*y(2) + .008d0*t

return

end

44

Finally we present a MatLab script that uses a modified version of ode45 (ode45ex)
to solve this test problem and answer the question of interest. Note that with eropt =
1, ode45ex produces the same numerical solution as ode45.

global NTOT TOLD YOLD PPT GPPC GPPC2 WOLD GPPC23

global eropt

load ART1;

KK = 7;

for eropt = 1:3

for itol = 1:3

TOL = 10.0^-(2*itol);

TSPAN = [0.0 100.0];

NSAMPLE = 1001;

TSPAN2 = linspace(TSPAN(1), TSPAN(2), NSAMPLE);

Y0 = [30; 20];

n = length(Y0);

options1 = odeset(’abstol’, TOL, ’reltol’,TOL, ’stats’, ’on’);

[TT, YY] = ode45ex(@ppde, TSPAN2, Y0, options1);

%

% Generate explicitly the underlying piecewise polynomial associated

% with the approximate solution of this problem.

%

options2 = odeset(options1,’outputfcn’, @GenPP, ’refine’, 1, ’stats’, ’off’);

if eropt > 1

options2 = odeset(options2,’outputfcn’, @GenPP23);

end

[TC1, YC1] = ode45ex(@ppde, TSPAN, Y0, options2);

N = length(TC1);

%

% The global variables PPT and GPPC now represent the pp associated

% with the approximate solution of the original problem.

% We can now accurately determine the first 14 local maximum of the first

% component (the prey population) and investigate whether the distance

% between successive local maximum is almost constant. We can also

% investigate whether the magnitude of these local maximums approaches

% a constant value exponentially.

%

%

% To evaluate the piecewise polynomial, S(x) with an underlying

% mesh x_0, x_1, ... x_N, we represent S(x) by the 3-D array, GPPC(1:N, 1:n, 1:6).

% Note that, in this case, 6 is the degree of the local polynomial u_i(x)

% associated with the i^th interval, [x_i, x_{i+1}] and n is problem dimension.

45

%

% We first extract the representation of u_i(x), as LPPC(1:n, 1:6)

% (= GPPC(i, 1:n, 1:6)) and then ‘evaluate’ S(x) for x in [x_i, x_{i+1}] by

%

% tau = (x - x_i)/(x_{i+1} - x_i)

% v1 = tau .^ (0:5)

% y1 = LPPC * v1

%

% Similarly we can ‘evaluate’ the derivative of S(x), S’(x), by

%

% tau = (x - x_i)/(x_{i+1} - x_i)

% v2 = (0:5) .* [0 tau .^ (0:4)]

% y1p = LPPC * v2 /(x_{i+1} - x_i)

%

% For the 2 special cases, x = x_i and x = x_{i+1}, (ie., tau = 0, tau = 1)

% the jth component of u_i(x) (for j = 1,2 ... n) satisfies,

% y_i = u_i(x_i) = LPPC(j,1)

% y_{i+1} = u_i(x_{i+1}) = LPPC(j,1) + LPPC(j,2) ...+ lPPC(j,6)

% y_i’ = u_i’(x_i) = LPPC(j,2)/(x_{i+1} - x_i)

% y_{i+1}’ = u_i’(x_{i+1}) = [LPPC(j,2) + 2 LPPC(j,3) .. + 5 LPPC(j,6)]/(x_{i+1} - x_i)

%

% To convert from this representation of u_i(x) and u_i’(x) to the standard

% MATLAB representation we note,

%

% u_i(x) = c_1 x^5 + c_2 x^4 ... c_6

% u_i’(x) = (5 c_1) x^4 + (4 c_2) x^3 .. + (c_5)

% = d_1 x^4 + d_2 x^3 .. + d_4

%

% Therefore we have

% c(m) = L(j, 7-m) for m = 1 .. 6.

% and

% d(m) = (5-m)c_m for m = 1 ..5.

%

r = 1;

diff(1) = 0.e0;

ratio(1) = 1.e0;

for i = 1:(N-1)

LPPC = zeros(n,6);

if eropt == 1

for k = 1:n

for m = 1:5

LPPC(k, m) = GPPC(i,k, m);

end

LPPC(k, 6) = 0;

end

46

end

if eropt > 1

for k = 1:n

for m = 1:6

LPPC(k, m) = GPPC23(i, k, m);

end

end

end

%

% Check for a local maximum only on those intervals where

% y_i’ > 0 and y_{i+1}’ < 0.

%

h = PPT(i+1) - PPT(i);

if LPPC(1,2) > 0 & LPPC(1, :) * (0:5)’ < 0

% find the local maximum of the first component of u_i(x).

%

% First determine c(tau) and d(tau) the two local polynomials

% corresponding to the first component of u_i(x_i + tah h),

% and u_i’(x_i + tah h), respectively. Then, using the zeros

% of d(tau), determine the location and value of the maximum

% of u_i(x) in this interval.

%

for m = 1:5;

c(m) = LPPC(1,7-m);

d(m) = (6-m) * c(m);

end

c(6) = LPPC(1,1);

rr = roots(d);

xr = PPT(i) + h * rr;

% [i PPT(i) PPT(i+1) LPPC(1,1) xr’]

for m = 1:length(rr) ;

xt = xr(m);

if imag(xt) == 0

if (xt > PPT(i)) & (xt < PPT(i+1))

TM(r) = xt;

tau = (xt - PPT(i))/h;

YM(r) = polyval(c, tau);

LY(r) = log(YM(r) - 46.e0);

if r > 1

diff(r) = TM(r) - TM(r-1);

ratio(r) = (YM(r) - 46.e0)/ (YM(r-1) - 46.e0);

end

% [i, r]

% [PPT(i), PPT(i+1), TM(r), YM(r), diff(r), ratio(r)]

r = r +1;

47

end

end

end

end

end

%

% We now consider whether the numerical solution can be identified

% as being ’almost periodic’ from the computed results at this tolerance.

% Note that for sufficiently stringent tolerances, the numerical solution

% should be recognized as being ’almost periodic’ if the underlying

% true solution is.

%

%

[PP, SS] = polyfit(KK:15, TM(KK:15), 1)

%

[P1,S1] = polyfit(TM(2:12), LY(2:12), 1);

A1 = exp(P1(2));

B1 = P1(1);

YL = 46.e0 + A1 * exp(B1*TT);

%

% Visualize the approximate solution using standard x/y plot and

% a phase plane plot of the pp as well as that of the discrete solution.

%

figure(1);

plot(TT, YY(:,1), ’-’, TC1, YC1(:, 1), ’x’, TT, YL, ’--’, TM, YM, ’o’)

figure(2);

plot(YY(:,1), YY(:,2), ’-’, YC1(:,1), YC1(:,2), ’x’)

figure(3)

plot(TT, YY(:,1), ’-’,TM, YM, ’o’)

figure(4)

plot(TT, YL, ’--’, TM, YM, ’o’)

ErrTM = abs(TM - TMtrue) ./ TMtrue;

ErrYM = abs(YM - YMtrue) ./ YMtrue;

ErrA1 = abs(A1 - A1true)/abs(A1true);

ErrB1 = abs(B1 - B1true)/abs(B1true);

ErrY = abs(YY - Ytrue) ./ Ytrue ;

eropt

TOL

[ErrA1, ErrB1, max(ErrTM), max(ErrYM), max(ErrY)]

end

end

48

2.5 Multistep Methods:

1. A Historical Perspective:

1883 Bashforth and Adams proposed explicit formulas of the form,

yi+1 = yi + h
k∑

j=1

βjy
′

i+1−j

1900 Runge and Kutta developed 4th-order explicit RK formulas.

1914-1918 Moulton introduced implicit multistep formulas and the idea of a pre-
dictor/corrector scheme (in order to effectively solve ballistics equations).

1926 Milne introduced estimates of the local error based on the difference between
the predictor and corrector.

1956-59 Dahlquist developed the asymptotic (h → 0) stability theory and estab-
lished stability and convergence theorems for multistep formulas.

1963 Dahlquist introduced absolute stability and identified the difficulty of stiffness.

1968-1975 Efficient variable-stepsize, variable order multistep methods appear:
(Krogh, Sedgwick, Gear, Shampine).

2. A Linear Multistep Formula (LMF) has the form,

LMF: yi+1 =
k∑

j=1

αjyi+1−j + h
k∑

j=0

βjy
′
i+1−j .

This formula is implicit if β0 6= 0 and implicit formulas are usually preferred
because of their superior stability and accuracy properties. For implicit formulas
we have the RHS of this equation contains the term, β0y

′
i+1 = β0f(xi+1, yi+1), and

therefore a nonlinear system of equations must be solved on each step.

3. To solve the nonlinear systems of equations, a Predictor-Corrector (P-C) iteration
is usually used,

P: y0
i+1 =

k∑

j=1

ᾱjyi+1−j + h
k∑

j=1

β̄jy
′
i+1−j an explicit formula

Iterate or ‘Correct’ for r = 0, 1 · · ·M :

E: y
′(r)
i+1 = f(xi+1, y

r
i+1), ‘Evaluate’

C: yr+1
i+1 =

k∑

j=1

αjyi+1−j + h
k∑

j=1

βjy
′
i+1−j + hβ0y

′(r)
i+1, ‘Correct’

• This iteration is denoted P (EC)M or P (EC)ME.

49

• If the order of the predictor formula is at least as large as the order of the
corrector and ᾱj = αj, for j = 1, 2 · · ·k, then an appropriate multiple of their
difference can be used to estimate the local error (this idea is due to Milne).

• Convergence of this iteration is guaranteed provided ‖h ∂f
∂y
‖ < 1

|β0| . This

follows from subtracting the corrector formula (C) from the exact formula
(LMF) to obtain,

yi+1 − yr+1
i+1 = hβ0[f(xi+1, yi+1) − f(xi+1, y

r
i+1)]

= hβ0
∂f

∂y
|η(yi+1 − yr

i+1).

This condition is found to be ‘almost necessary’ in practice.

• M = 1 or M = 2 has been found to be optimal for most standard problems.
With this choice the error estimate can detect any lack of convergence of the
iteration (and reduce the stepsize to improve the chances for convergence).

4. Classical Results for uniform mesh (constant stepsize) Multistep Methods:

• A LMF is Stable (as h → 0) iff the associated characteristic polynomial,
α(z) = zk −∑k

j=1 αjz
k−j has all its roots inside or on the unit circle.

The necessity part of this result follows from considering y ′ = λy, fixed h,
and studying the behaviour of the resulting linear difference equation,

[1 − hλβ0]yi+1 =
k∑

j=1

[αj + hλβj]yi+1−j

The solution of this difference equation can be expressed in terms of the roots
of the corresponding characteristic polynomial,

ρ(z) = α(z) − (hλ)β(z), with β(z) =
k∑

j=0

βjz
k−j.

That is, the yi satisfy,

yi =
k∑

j=1

µjξ
i
j.

• A LMF is Consistent if α(1) = 0 and α′(1) = β(1).

• Key Theorem:– A LMF is Convergent iff it is Consistent and Stable.

• Order of Convegence for a LMF:

(a) Recall: The Local Truncation Error (LTE) for a LMF is defined, for
sufficiently differentiable y(x), to be,

LTE ≡ L(h, y(x)) ≡ y(xi+h)−
k∑

j=1

αjy(xi+(1−j)h)−h
k∑

j=0

βjy
′(xi+(1−j)h).

50

(b) Recall: A formula is of order p iff LE = O(hp+1).

(c) Key Result: Stability + LTE = O(hp+1) ⇔ LE = O(hp+1) ⇒
y(xi) − yi = O(hp).

• Connection between Local Error (LE) and LTE for LMF.

A stable order p LMF satisfies,

LE = chp+1 + O(hp+2)

LTE = ĉhp+1 + O(hp+2)

where

ĉ = (k −
k∑

j=1

(k − j)αj)c = α′(1)c = β(1)c,

(if the formula is consistent).

5. Derivation of high order LMFs:

• One can expand the LTE, L(h, y(x)), in a power series in h and choose the
coefficients α1, α2 · · ·αk, β0, β1 · · ·βk to satisfy LTE = O(hp+1), for as large a
p as possible, subject to the stability constraint.

To do this note,

y(xi + (1 − j)h) = y(xi+1 − jh) =
∑

r≥0

(−j)r

r!
y(r)(xi+1)h

r,

hy′(xi + (1 − j)h) = hy′(xi+1 − jh) =
∑

r≥1

(−j)r−1

(r − 1)!
y(r)(xi+1)h

r.

Now substituting these expressions into the above definition of LTE (for
LMF), we obtain,

L(h, y(x)) = D0y(xi+1) + D1y
′(xi+1)h + · · ·Dp+1y

(p+1)(xi+1)h
p+1 + O(hp+2).

where each Dr is linear in the unknowns (the α’s and the β’s). More precisely,
the expansion is:

L(h, y(x)) = y(xi+1) −
k∑

j=1

αj(
∑

r≥0

(−j)r

r!
y(r)(xi+1)h

r) −
k∑

j=0

βj(
∑

r≥1

(−j)r−1

(r − 1)!
y(r)(xi+1)h

r)

= (1 −
k∑

j=1

αj)y(xi+1) −
∑

r≥1

k∑

j=1

(−j)rαj

r!
−

k∑

j=0

(−j)r−1βj

(r − 1)!

 y(r)(xi+1)h

r.

and the coefficient Dr of y(r)(xi+1)h
r is therefore,

D0 = 1 −
k∑

j=1

αj = α(1),

51

Dr = −
k∑

j=1

αj
(−j)r

r!
−

k∑

j=0

βj
(−j)r−1

(r − 1)!
for r ≥ 1.

• Setting Dr = 0 for r = 0, 1 · · · for as many terms as possible results in a
linear system of equations. If each equation is linearly independent we should
be able to solve the set Dr = 0 for r = 0, 1 · · ·2k. That is, (2k + 1) linear
equations in the (2k + 1) unknowns.

• This system is always non-singular (for any k) and hence we can always find
a k-step LMF with LTE = O(h2k+1). Will such a formula be stable? Recall
that the stability condition is a nonlinear constraint on the α’s !

• One could always choose the α’s to guarantee stability and then choose the
remaining unknowns, β0, β1 · · ·βk to satisfy D1 = D2 · · · = Dk+1 = 0. (Note
that D0 = α(1) is independent of the β’s.) The candidates (for α(z)) are
then,

α(z) = (z − 1)
k−1∏

j=1

(z − ηj), where each |ηj| ≤ 1.

Such a system will always be nonsingular and we can derive formulas of order
k + 1 in this way. Can we do better?

• Dahlquist’s Key Result (1956):

(a) The maximum order of a k-step, stable LMF is k+1 if k is odd and k+2
if k is even. For even k, the order k + 2 formula will only be marginally
stable (all the roots of α(z) will be on the unit circle).

(b) The obvious choice of α(z) = zk − zk−1, leads to Adams Formulas.

6. Special Class of LMF: Adams Formulas.

Adams Moulton Corrector formula of order k + 1:

yi+1 = yi + h
k∑

j=0

βjy
′
i+1−j.

Adams Bashforth Predictor formula of order k + 1,

yi+1 = yi + h
k+1∑

j=1

β̄jy
′
i+1−j.

These are the most widely used LMFs for standard IVPs. The corresponding coef-
ficients, βj’s and the β̄j’s can be determined by solving the above linear equations.
(Recall that Adams Bashforth formulas are explicit and therefore β̄0 = 0.)

7. Extension of Adams LMFs to allow variable stepsize:

• One can write the local solution to an IVP evaluated at xi + h, zi(xi + h), as

zi(xi + h) = yi +
∫ xi+h

xi

f(s, zi(s))ds.

52

Adams formulas can be interpreted as being based on approximating the
integral on the RHS of this expression by the integral of a polynomial that
interpolates f(s, zi(s)) at xi+1− jh, (j = 0, 1 · · ·k) using yi+1−j ≈ zi(xi+1−j).
This interpretation yields a closed-form expression for the constant stepsize
coefficients, βr, β̄r for the k-step AM and AB formulas. It also suggests a
natural extension of these formulas to the case of variable stepsize.

• Let P̄i,k(s; y
′
i, y

′
i−1 · · · y′

i−k) be the unique polynomial (in s) of degree ≤ k
satisfying,

P̄i,k(xi+1−j ; y
′
i, y

′
i−1 · · · y′

i−k) = y′
i+1−j, = f(xi+1−j , yi+1−j); j = 1, 2 · · · (k + 1),

where the xi’s need not be equally spaced. Then, in Lagrange form we have,

P̄i,k(s; y
′
i, y

′
i−1 · · ·y′

i−k) =
k∑

j=0

l̄j(s)y
′
i−j,

where

l̄j(s) =

∏k
r=0, r 6=j(s − xi−r)

∏k
r=0, r 6=j(xi−j − xi−r)

.

Now, letting µ = (s − xi)/h we have ,

∫ xi+1

xi

l̄j(s)ds = h
∫ 1

0
l̄j(xi + µh)dµ,

and

l̄j(xi + µh) =

∏k
r=0, r 6=j(µh + xi − xi−r)
∏k

r=0, r 6=j(xi−j − xi−r)
,

which simplifies, if h is constant, to

l̄j(xi + µh) =
k∏

r=0, r 6=j

(
µ + r − 1

r − j

)
.

Now one can view the Adams Bashforth formula as,

yi+1 = yi +
∫ xi+1

xi

P̄i,k(s; y
′
i, y

′
i−1 · · ·y′

i−k)ds

= yi +
∫ xi+1

xi

k∑

j=0

l̄j(s)y
′
i−j

 ds

= yi +
k∑

j=0

(∫ xi+1

xi

l̄j(s)ds
)

y′
i−j

= yi + h
k∑

j=0

(∫ 1

0
l̄j(xi + µh)dµ

)

︸ ︷︷ ︸
β̄j+1

y′
i−j,

53

and, if h is constant,

β̄j+1 =
∫ 1

0

k∏

r=0, r 6=j

(
µ + r − 1

r − j

)
dµ,

which is independent of h and the xi’s.

Similarly, for the implicit Adams Moulton formula, let Pi,k(s; y
′
i+1, y

′
i · · · y′

i−k)
be the unique polynomial of degree ≤ k + 1 satisfying,

Pi,k(xi+1−j ; y
′
i+1, y

′
i · · · y′

i−k) = y′
i+1−j, j = 0, 1 · · · (k + 1).

Therefore,

yi+1 = yi +
∫ xi+h

xi

Pi,k(s; y
′
i+1, y

′
i · · · y′

i−k)ds;

= yi + h
k∑

j=0

(∫ 1

0
lj(xi + µh)dµ

)

︸ ︷︷ ︸
βj

y′
i+1−j,

where

lj(s) =
k+1∏

r=0, r 6=j

(
s − xi+1−r

xi+1−j − xi+1−r

)
,

and, if h is constant this simplifies to,

βj =
∫ 1

0

k+1∏

r=0, r 6=j

(
µ + r − 1)

r − j

)
dµ.

• An Efficient P (EC)M variable step Adams Formula can be implemented as:

P: y0
i+1 = yi +

∫ xi+h

xi

P̄i,k(s; y
′
i, y

′
i−1 · · · y′

i−k)ds;

For r = 0, 1 · · ·M :

E: y
′(r)
i+1 = f(xi+1, y

r
i+1),

C: yr+1
i+1 = yi +

∫ xi+h

xi

Pi,k(s; y
′(r)
i+1, y

′
i · · · y′

i−k)ds;

(a) This iteration will converge (r → ∞) if ‖h ∂f
∂y
‖ < 1

|β0| . (Note that this

stepsize restriction, h < 1

|β0| ‖ ∂f
∂y

‖ can be avoided if Newtons method or

some modification is used to solve the ‘Corrector’ equation.)

(b) A Newton basis or Lagrange basis can be used effectively for implemen-
tation.

54

(c) The difference between the predictor and corrector formulas satisfies,

yr+1
i+1 − y0

i+1 = hβ0(y
′(r)
i+1 − y

′(0)
i+1).

• For Adams methods a natural definition for an accurate piecewise polynomial,
S(x), valid for all x ∈ [a, b] is,

S(x) ≡ yi +
∫ x

xi

Pi,k(s; y
′
i+1, y

′
i · · · y′

i−k)ds for x ∈ [xi, xi+1].

• Error estimates and local extrapolation:

We have for M > 1,

zi(xi + h) − y0
i+1 = O(hk+1),

zi(xi + h) − yM
i+1 = O(hk+2).

Therefore yM
i+1 − y0

i+1 is a valid estimate for the local error of y0
i+1 and we can

can control the local error in yM
i+1 indirectly by keeping,

‖esti‖ = ‖yM
i+1 − y0

i+1‖ < TOL.

Virtually all variable step, variable order Adams methods are implemented
this way. Note that there are several such methods available and they can
differ on how they store and update the associated piecewise polynomials;
whether or not they end on a function evaluation (P (EC)M or P (EC)M E);
and how often they consider a change in the stepsize or order.

2.6 Available Software for Nonstiff Problems:

In this section we give some advice on factors to consider when selecting a method for
solving a non-stiff IVP. We also identify specific methods and software that are widely
available and either in the public domain or supported in Scientific Computing Libraries.

In choosing the particular method to be used on a specific class of problems, factors
to consider include:

• For efficiency over a wide range of accuracy requests (values of TOL), one should
use a variable order method such as those based on Adams formulas or a carefully
chosen fixed-order RK method.

• For a fixed accuracy RK methods will generally be the best choice if the derivatives
are relatively inexpensive to evaluate (say less than 25 flops per component). If the
derivatives are expensive to evaluate then a varialble order Adams method would
be more efficient. This observation is due to the fact that the overhead in taking a
step with a multistep method can be significantly greater than that for a one-step
method.

55

• If cost does not increase much as TOL becomes more severe, one should suspect
stiffness.

• If costs increase significantly as TOL becomes more severe, one should suspect
that the problem may not be smooth and discontinuities may be present.

Relevant numerical methods and their availability:

1. Netlib is a website that maintains a library of state-of the art software for Scientific
computing (www.netlib.org/index.html). The methods are in the public domain
and the source code (mostly FORTRAN) can be downloaded from this site. The
nonstiff IVP methods in this collection include:

RKSUITE A suite of codes for solving IVPs in ODEs. A choice of RK methods
is available. Includes an error assessment facility and a sophisticated stiff-
ness checker. Template programs and example results provided. Supersedes
RKF45, DDERKF, D02PAF.

DVERK by Jackson, Hull, and Enright for ordinary differential equation initial-
value problem solver with global error control. Alg: Verner’s fifth and sixth
order Runge-Kutta pair. Prec: double.

ODE by Shampine and Gordon for ordinary differential equation initial-value
problem solver. Alg: Adam’s methods. Prec: double. Rel: excellent.

RKF45 by Watts and Shampine for ordinary differential equation initial-value
problem solver. Alg: Runge-Kutta Fehlberg fourth-fifth order. Prec: double.
Rel: good.

VODE by Brown, Byrne and Hindmarsh for non-stiff or stiff ordinary differential
equation initial-value problem solver. Alg: backward differentiation formulae
(variable coefficient formulae). Prec: double updated version of epsode

2. Effective IVP methods are also available and supported in the numerical libraries
available from NAG, IMSL, HARWELL etc. These methods include:

IVPRK IMSL

DERKF SLATEC

DEABM SLATEC

IVPAG IMSL

3. A family of different order (up to order 8) Continuos Runge-Kutta methods (similar
in form and structure to DVERK) are available locally.

2.7 Stiff ODEs:

Mathematical simulations of systems that have different components evolving on differ-
ent time scales often lead to ODEs which exhibit numerical difficulties which require
special attention and special methods. The associated class of IVPs are called stiff

56

IVPs and we will present an overview of the cause of the difficulty and software that is
available for this class of problems.

1. When solving an IVP numerically there are three possible constraints on the step-
size:

(a) The stability of the formula. For example for y ′ = λy one must have hλ ∈ R,
the region of absolute stability of the underlying formula.

(b) The convergence of functional iteration (when an implicit formula is used).
For example for a multistep method, one must have h < 1

|β0| ‖ ∂f
∂y

‖ .

(c) Control of the local error or defect introduced on each step. This usually has
the form,

|c|hp+1 < TOL h.

Definition: AN ODE will be considered Stiff if the stepsize used during inte-
gration by conventional methods is determined by stability or convergence of an
iteration, rather than by control of the local error.

Note that by conventional methods we mean standard Adams multistep or stan-
dard explicit Runge-Kutta methods. This ‘definition’ implies that whether a prob-
lem is stiff or not will depend on TOL and the length of integration (b− a) and a
problem can be stiff for part of the integration.

• Consider the model scalar IVP:

y′ = λy, y(x0) = y0, λ ∈ <, λ << 0.

The solution is,

y(x) = eλ(x−x0)y0, on any interval [x0, xF],

and therefore |y(x)| = eλ(x−x0)|y0|.

Let x̂ = x0 + ln(TOL
|y0|)/λ (ie. |y(x̂)| = TOL). For this model problem we then

have,

57

(a) For x ∈ [x0, x̂], |y(x)| > TOL and we require and expect the numerical
solution to remain accurate.

(b) For x > x̂, |y(x)| < TOL, accuracy is no longer important as long as the
numerical solution remains stable (ie. |S(x)| < TOL).

(c) [x0, x̂] is the transient region and [x̂, xF] is the steady state (or ‘smooth’)
region.

• Consider applying Euler’s formula to this problem (simplest one-step for-
mula),

yi+1 = yi + hy′
i = (1 + hλ)yi,

When |λ| is large, hλ << −2, |1 + hλ| >> 1 and,

|yi+1| = |1 + hλ|i+1|y0|.

This leads to an unstable computation. To make this computation stable the
stepsize would have to be severely restricted (h < 2

|λ|) for all steps.

• Consider applying the Implicit Euler (Backward Euler) formula to this prob-
lem,

yi+1 = yi + hy′
i+1 =

1

(1 − hλ)
yi,

When |λ| is large, hλ << −2, | 1
(1−hλ)

| << 1 and,

|yi+1| = | 1

(1 − hλ)
|i+1|y0|.

This leads to a very stable computation as the |yi| → 0 rapidly. That is,
numerical stability is satisfied without imposing constraints on the stepsize.

58

2. Recall the Notion of Fixed h stability: Consider the model problem,

y′ = λy, y(x0) = y0, where λ ∈ C.

• A formula, when applied to this problem with constant stepsize h, is consid-
ered stable (for the particular values of h and λ) if |yi| remains bounded as
i → ∞ for any initial condition vector, y0.

(a) When an explicit, s-stage, Runge-Kutta formula is applied to this model
problem, the numerical solution can be shown to satisfy,

yi+1 = ps(hλ)yi = [ps(hλ)]i+1y0,

where ps(z) is a polynomial of degree ≤ s whose coefficients are deter-
mined by the parameters that define the Runge-Kutta formula. In this
case |yi| is bounded iff |ps(hλ)| ≤ 1.

(b) When a k-step LMF is applied to this model problem, the numerical
solution satisfies,

yi+1 =
k∑

j=1

cjξ
i+1
j ,

where the cj’s depend on the starting values,y0, y1 · · · yk−1 and the ξj’s
are the roots of the associated characteristic polynomial, α(z)− hλβ(z).
In this case |yi| is bounded iff |ξj| ≤ 1, j = 1, 2 · · ·k. (Note that α(z)
has all roots inside or on the unit circle and this implies as hλ → 0, the
formula will be stable.)

• Definition
The Region of absolute stability associated with a formula is

R ≡ {hλ : when applied to y′ = λy with constant h, |yi| → 0 for any y0}.

Therefore for an explicit Runge-Kutta formula we have,

R = {hλ : |ps(hλ)| ≤ 1},

and for a multistep formula we have,

R = {hλ : all roots of α(z) − (hλ)β(z) are inside the unit circle}.

3. An Example: Consider,

y′ =

[
−1 0
0 −100

]
y, y(0) =

[
1
1

]
,

The solution to this IVP is,

y(x) =

[
e−x

e−100x

]
.

59

• The second component is a transient, and is only significant in an initial
interval as it decays rapidly to zero. The accuracy of this component is only
of concern in this initial transient region after which only the stability of this
component and the accuracy of the first component is required.

• Conventional methods will require that |h100| remain small throughout the
integration (|hλ| < 1

|β0| or hλ ∈ R).

4. Lemma: In general, for a system of ODEs, y′ = Ay, numerical stability requires
that ∀λj ∈ ρ(A), hλj ∈ R.

Proof Consider the case A = SDS−1 where, D is a diagonal matrix and the
underlying numerical formula is a multistep formula,

yi+1 =
k∑

j=1

αjyi+1−j + h
k∑

j=0

βjy
′
i+1−j .

Let zi = Syi, then yi → 0 iff zi → 0. Multiplying the multistep formula by S we
obtain,

zi+1 =
k∑

j=1

αjzi+1−j + h
k∑

j=0

βjSA(S−1S)yi+1−j,

=
k∑

j=1

αjzi+1−j + h
k∑

j=0

βjDzi+1−j

Hence the rth component of zi+1 satisfies:

z
(r)
i+1 =

k∑

j=1

αjz
(r)
i+1−j + h

k∑

j=0

βjλrz
(r)
i+1−j ,

which is the approximation we would have obtained by applying the multistep
formula to the scalar problem,

z′ = λrz, z(0) = z
(r)
0 .

Now zi → 0 iff each z
(r)
i → 0 and this is true iff hλr ∈ R for r = 1, 2 · · ·n.

For more general A and when the underlying formula is a one-step formula the
proof is similar.

5. For the model problem, y′ = λy we know that |y(xi)| remains bounded iff Re(λ) ≤
0. Therefore an ideal stability situation would be to develop formulas whose regions
of absolute stability include the LHP.

• Definition (Dahlquist): A formula is A-Stable if its region of absolute stability,
R contains the LHP, {hλ : Re(hλ) < 0}. An example of an A-Stable formula
is the implicit Euler formula.

60

• Dahlquist’s Key Results: (A characterization of A-stability and a negative
result regarding the existence of such formulas.)

(a) Lemma: A k-step multistep formula is A-stable iff α(z)
β(z)

is analytic and

has nonegative real part for |z| > 1.
Proof :

i. To show α(z)
β(z)

analytic we need only show β(z) 6= 0 for |z| > 1.

– since the formula is A-stable we have that, for real µ, as µ → −∞,
the roots of α(z) − µβ(z) are bounded in magnitude by 1.

– But for each root zr of β(z), there is a root, zr(µ) of α(z)− µβ(z),
such that zr(µ) → zr as µ → −∞. [This follows since the roots
of α(z) − µβ(z) are the roots of β(z) − 1

µ
α(z) and the roots of a

polynomial depend continuously on the coefficients.]

– Therefore, since |zr(µ)| ≤ 1 for all µ < 0 we must have

lim
µ→−∞

zr(µ) = zr,

must satisfy |zr| ≤ 1 and α(z)
β(z)

is analytic in |z| > 1.

ii. Now assume A-stability and consider z̄ such that |z̄| > 1. Let µ =
α(z̄)
β(z̄)

. Then z̄ is a root of α(z)−µβ(z), and if µ ∈ LHP , then |z̄| must

be inside the unit circle. This is a contradiction (|z̄| > 1) and hence
µ /∈ LHP , (ie. Re(µ) ≥ 0).

iii. For the converse, assume α(z)
β(z)

is analytic for |z| > 1 and Re
(

α(z)
β(z)

)
≥ 0

for |z| > 1. We then have, if µ = α(z)
β(z)

, and Re(µ) < 0 then |z| ≤ 1.
This implies LHP ∈ R and the formula is A-stable.

(b) Theorem: An explicit k-step multistep formula cannot be A-stable.
Proof : Explicit ⇒ β(z) ∼ azk−m as |z| → ∞ for a 6= 0, m ≥ 1.

Now α(z) ∼ zk as |z| → ∞. Therefore α(z)
β(z)

∼ 1
a
zm as |z| → ∞.

But A-stability implies Re(α(z)
β(z)

) ≥ 0 for |z| > 1 and this contradicts the

observation that α(z)
β(z)

∼ 1
a
zm as |z| → ∞ since

i. m odd and µ real, µ → ∞ ⇒

Re(
1

a
µm) = −Re(

1

a
(−µ)m) 6= 0.

ii. For m even, consider ±µ i as µ → ∞.

(c) Examples of A-stable formulas: Consider the multistep formula defined
by,

α(z) = zk − 1,

β(z) =
1

2
k(zk + 1).

61

This formula is A-stable and convergent for any k ≥ 1. This follows
since α(1) = 0, and α′(1) = β(1) implies convergence and α(z)

β(z)
is clearly

analytic in |z| > 1 with,

Re

[
zk − 1

1
2
k(zk + 1)

]
= Re

[
(zk − 1)(z̄k + 1)

1
2
k(zk + 1)(z̄k + 1)

]

=
1

1
2
k|zk + 1|2 Re

[
(zk − 1)(z̄k + 1)

]

=
2

k|zk + 1|2 Re
[
|zk|2 − 1 + zk − z̄k

]

=
2

k|zk + 1|2 Re
[
|zk|2 − 1

]
> 0.

The special case k = 1 corresponds to the trapeziodal rule,

yi+1 = yi +
h

2
(y′

i + y′
i+1).

(d) Main Theorem: (Dahlquist – BIT 1963) The maximum order of an
A-stable Multistep formula cannot exceed 2. The smallest error con-
stant of all the A-stable formulas, is cp+1 = 1/12 and is obtained for the
trapezoidal rule.
The proof of this result is a nice example of the application of theoretical
results from Complex Variables.

• Is A-stability too strong a requirement of a formula? Consider the case where
an eigenvalue of the system y′ = Ay is large in magnitude and ‘near’ the
imaginary axis.

(a) For λ = µ + iω where µ < 0 and |ω| >> |µ|, we have eλ(x−x0) is slowly
damped and highly oscillatory.

(b) Intuitively we expect the stepsize to be be kept small to follow the oscil-
lations h|ω| small implies h|λ| also small.

(c) That is, when the eigenvalues are near the imaginary axis, the numerical
accuracy corresponding to these components will likely determine the
stepsize (and not the stability of these components).

• To derive multistep formulas of order higher than two that were suitable for
Stiff equations, Widlund and Gear relaxed the requirement of A-stability:

– Definition: (Widlund – 1967) A formula is A(α)-Stable if its stability
region contains the wedge-shaped region, S(α),

S(α) = {z : arg(−z) < α ≤ π/2}.

Clearly a formula is A-Stable iff it is A(π/2)-Stable.

62

Widlund derived 3rd and 4th order multistep formulas that are A(α)-
Stable for α < π/2. The coefficients of these formulas must become
unbounded as α approaches π/2. For α > 0 , a formula (multistep or
one-step) can be A(α)-Stable only if it is implicit.

– Definition: (Gear 1967) A formula is Stiffly-Stable if its region of abso-
lute stability contains a region of the form R1 ∪ R2 where,

R1 = {z : Re(z) ≤ D < 0} ,

R2 = {z : D < Re(z) < 0,−θ < Im(z) < θ} .

Gear proposed the backward differentiation multistep formulas (BDF)
for solving stiff problems as he showed they were stiffly stable for orders
up to six.

– An additional stability requirement that is desirable when solving stiff
problems. Consider λ real λ << 0 and x outside the transient region.
The corresponding numerical solution, yi satisfies |yi| < TOL and, with
the A-Stable Trapezoidal rule, we should be able to take large stepsizes.
Consider using |hλ| ≈ 100, then we have,

yi+1 =

(
1 + hλ/2

1 − hλ/2

)
yi ≈ −

(
49

50

)
yi.

This means that the numerical solution will be slowly damped and os-
cillatory. This will affect the error estimate and artificially restrict the
stepsize. The difficulty is that the trapezoidal rule exhibits little or no
damping for large |hλ|.
Definition: A formula will be L-Stable (or Stable at ∞) if there exists
W < 0 such that.

sup
hλ<W

|yi+1

yi
| = C < 1,

where yi is the sequence generated by solving y′ = λy with a constant
stepsize h.
Note that the trapezoidal rule is not L-stable but the backward Euler
formula is.

2.8 Suitable Methods for Stiff IVPs:

Multistep Methods – BDF formulas (Gear 1967)
Recall that for the k-step LMF,

yi+1 =
k∑

j=1

αjyi+1−j + h
k∑

j=0

βjy
′
i+1−j ,

we have,
R = {µ : α(z) − µβ(z) has all its roots inside UC }.

63

For a given LMF, let pµ(z) ≡ α(z) − µβ(z).

Note that:

• To be suitable for stiff equations, we must have µ ∈ R for |µ| large and
µ negative real. This implies β0 6= 0 (otherwise pµ(z) is monic for all µ
and, as the coefficients of pµ(z) are symmetric functions of the roots, at
least one root must be unbounded as µ → −∞).

• For µ̄ on the boundary of R one of the roots of pµ̄(z) is on the UC and
therefore,

µ̄ =
α(z̄)

β(z̄)
for z̄ = eiθ, for some 0 ≤ θ ≤ 2π.

Hence the mapping α(eiθ)
β(eiθ)

for θ ∈ [0, 2π] must trace out the boundary of
R.

• The LMF will be L-Stable (or stable at ∞) iff all the roots of β(z) are
strictly inside the UC.

1. Gear’s choice of coefficients for a class of multistep methods suitable for stiff
equations was based on setting β(z) = β0z

k, and then choosing the param-
eters, α1, α2 · · ·αk, β0 to obtain order k (and hoping that the resulting α(z)
was stable).

Note:

• For each value of k this k-step BDF formula is determined by solving a
linear sytem of equations.

• Gear showed that these formulas were convergent for k ≤ 6 and members
of a family of multistep formulas which had already been investigated and
analysed in earlier publications (although they had not been identified as
being suitable for stiff equations).

• For k > 6 these formulas are not stable (ie., α(z) has at least one root
outside the UC).

• The formulas are stiffly stable for k ≤ 6 (but for k = 6 the stability region
is very restrictive).

2. The BDF are then of the form,

yi+1 =
k∑

j=1

αjyi+1−j + hβ0y
′
i+1,

or equivalently,

y′
i+1 =

1

h

 1

β0

yi+1 −
k∑

j=1

(
αj

β0

)
yi+1−j

 .

That is, these multistep formulas can be interpreted as expressing an accurate
approximation to y′

i+1 in terms of ‘past’ values of y. It is this observation that
allows us to derive a variable stepsize implementation of the BDF formulas.

64

To generalize BDF to variable stepsize, consider the Lagrange form of the
polynomial interpolating y(x) at xi+1, xi · · ·xi+1−k,

Pi,k(x) =
k∑

j=0

`j(x)yi+1−j ,

where

`j(x) =

∏k
r=0,r 6=j(x − xi+1−r)

∏k
r=0,r 6=j(xi+1−j − xi+1−r)

.

Then the corresponding variable stepsize BDF is,

y′
i+1 = P ′

i,k(xi+1) =
k∑

j=0

`′j(xi+1)yi+1−j,

or equivalently,

yi+1 =
k∑

j=1

(−`′j(xi+1)

`′0(xi+1)

)
yi+1−j +

1

`′0(xi+1)
y′

i+1,

One can verify that, for fixed h,

`′0(xi+1) =
1

hβ0
and `′j(xi+1) =

(
−αj

hβ0

)
for j = 1, 2 · · ·k,

where β0, α1, α2 · · ·αk are the usual ‘constant h’ BDF coefficients derived by
solving the linear equations associated with the order k expansion of the LTE.

3. The Corrector iteration for BDF:

• Standard P − C iteration (or functional iteration):

P: predict y
(0)
i+1 = Pi−1,k(xi+1), y

′(0)
i+1 = P ′

i−1,k(xi+1),

E: evaluate y
′(l)
i+1 = f(xi+1, y

(l−1)
i+1),

C: correct y
(l)
i+1 = y

(l−1)
i+1 + 1

`′0(xi+1)
[y

′(l)
i+1 − y

′(l−1)
i+1]

for l = 1, 2 · · ·M .

Clearly this iteration converges if

1

|`′0(xi+1)|
‖∂f

∂y
‖ ≤ 1,

and this would be a severe stepsize restriction for problems with transients
such as y′ = Ay where we would like to have h‖A‖ >> 1 in the smooth
region.

• Newton corrector iteration:
let the nonlinear equation to be solved on each time step be,

F (yi+1) ≡ yi+1 −
1

`′0(xi+1)
f(xi+1, yi+1) −

k∑

j=1

αjyi+1−j.

65

To solve F (yi+1) = 0, we predict as before, y
(0)
i+1 = Pi−1,k(xi+1) and iterate

using Newton’s Method,

y
(l)
i+1 = y

(l−1)
i+1 −

[
F ′(y

(l−1)
i+1)

]−1
F (y

(l−1)
i+1) for l = 1, 2 · · ·M.

Or, if the ‘Newton Correction’ δ
(l)
i+1 ≡ y

(l)
i+1 − y

(l−1)
i+1 , then

Wiδ
(l)
i+1 = −F (y

(l−1)
i+1),

where

Wi = F ′(y
(l−1)
i+1) =

[
I − 1

`′0(xi+1)

∂f

∂y
|
y
(l−1)
i+1

]
.

In practice refactoring Wi on each iteration to solve this linear system is
too expensive and a modified Newton iteration is used. That is, a linear
system similar to Wiδi+1 = −F (y

(l−1)
i+1) is solved on each iteration except

that Wi is approximated by W̃i where,

W̃i ≈
[
I − 1

`′0(xi+1)

∂f

∂y
|
y
(l−1)
i+1

]
.

This can be interpreted as a preconditioning strategy to solve the se-
quence of linear systems associated with Newtons method. For example
one could use a Wi that is defined in terms of an outdated Jacobian,

W̃i =

[
I − 1

`′0(xi+1)

∂f

∂y
|yi−r

]
, for some r > 0.

In such cases W̃i is only recalculated (and refactored) when:

– The order changes (β0).

– The stepsize changes (hβ0 = 1
`′0(xi+1)

).

– The iteration is not converging rapidly enough (for example if the
magnitude of the Newton correction is not small after 3 iterations).

4. There are several numerical methods available based on the BDF formulas
that are widely used and supported in various libraries and programming en-
vironments. They often differ in how they implement and handle the solution
of the linear equations that arise in the modified newton iteration. This is of-
ten the most critical component of the implementation (in terms of computer
time and storage requirement).

Runge-Kutta methods suitable for stiff ODEs :

Recall an s-stage Runge-Kutta formula is characterized by,

66

α1 β11 β12 . . . β1s

α2 β21 β22 . . . β2s
...

...
...

...
αs βs1 βs2 . . . βss

ω1 ω2 . . . ωs

In this section we will denote the 2s + s2 parameters that define this tableau by
α, ω and A = (βi,j).

1. Lemma 1: All explicit Runge-Kutta formulas, when applied to y ′ = λy yield,

yi+1 = ps(hλ)yi,

where ps(z) is a polynomial of degree ≤ s.

Proof
(outline) First, it is straightforward to show by induction that kr = λqr−1(hλ)yi,
where qr−1(z) is a polynomial of degree ≤ r − 1.

We then have,

yi+1 = yi + h
s∑

j=1

ωjkj

= yi + hλ
s∑

j=1

ωjqj−1(hλ)yi

=

1 +

s∑

j=1

(hλ)ωjqj−1(hλ)

 yi

≡ ps(hλ)yi

2. The stability region for an explicit Runge-Kutta formula is then seen to be,

R = {hλ : |ps(hλ)| < 1}.

This cannot be suitable for stiff problems since it contains only a small
bounded subset of the LHP . Also note that if this formula is order p then
ps(hλ) − ehλ = O(hp+1) and this implies that the first p coefficients of ps(z)
are fixed.

3. Lemma 2: All implicit Runge-Kutta formulas, when applied to y ′ = λy,
yield,

yi+1 =

[
ps(hλ)

qs(hλ)

]
yi,

where ps(z) and qs(z) are polynomials of degree ≤ s.

67

Proof: On each step, the equations defining the stages, k1, k2 · · ·ks are,

kj = f(xi + αjh, yi + h
s∑

r=1

βj,rkr)

= λyi + (hλ)βj,1k1 + (hλ)βj,2k2 · · ·+ (hλ)βj,sks

This is a linear equation in the unkowns. In matrix form this system of s
equations in s unknowns becomes,

[
I − (hλ)A

]

k1

k2
...
ks

= λ

1
1
...
1

yi,

where I is the s× s identity matrix and A = (βi,j). Now to solve this system
by Cramers rule, we observe,

[I − (hλ)A]−1 =
adj(I − (hλ)A)

det(I − (hλ)A)
,

where the (i, j)th element of adj(B) is the (j, i)th cofactor of B (= det of the
(s − 1) × (s − 1) matrix obtained from B by deleting the ith column and jth

row.

But the elements of the matrix I − (hλ)A are linear in (hλ). Hence det(I −
(hλ)A) is a polynomial (in (hλ)) of degree ≤ s and the elements of adj(I −
(hλ)A) are polynomials (in (hλ)), of degree ≤ s − 1.

We then have,

k1

k2
...
ks

= λ [I − (hλ)A]−1

1
1
...
1

yi,

and therefore,

kj = λ

[
s∑

r=1

([I − (hλ)A]−1)j,r

]
yi

=
λ

det(I − (hλ)A)

[
s∑

r=1

[adj(I − (hλ)A]j,r

]
yi

=
λp̂j,s−1(hλ)

qs(hλ)
yi,

where p̂j,s−1(z) is a polynomial of degree ≤ s − 1 and qs(z) = det(I − zA) is
a polynomial of degree ≤ s.

68

We then have,

yi+1 = yi + h
s∑

j=1

ωjkj

= yi +
(hλ)

qs(hλ)

s∑

j=1

ωjp̂j,s−1(hλ)yi

=
1

qs(hλ)

qs(hλ) +

s∑

j=1

(hλ)ωjp̂j,s−1(hλ)

 yi

≡ ps(hλ)

qs(hλ)
yi.

Note that, using the above expression for the k′
js, an alternative expression

for yi+1 is,

yi+1 = yi + hωT k,

=
[
1 + (hλ)ωT [I − (hλ)A]−1e

]
yi,

where e = [1, 1 · · ·1]T . Hence we observe that the rational function that is
associated with the stability of a Runge-Kutta formula satisfies,

ps(z)

qs(z)
= [1 + zωT [I − zA]−1e].

4. What are the most suitable implicit Runge-Kutta formulas for stiff IVPs?
There are two standard approaches to provide insight and guidance in ad-
dressing this question/issue. One is based on maximizing the order of the
method (for a given value of s and associated stability constraint). The sec-
ond is based on first restricting the class of formulas to be considered (to
those that can be efficiently implemented) and then , within this restricted
class, maximizing the obtainable order.

5. Padé - approach (maximize the order)

(a) for y′ = λy we know zi(xi+1) = ehλyi. and therefore the local error
satisfies,

yi+1 − zi(xi+1) =

[
ps(hλ)

qs(hλ)
− ehλ

]
yi

and the formula will be of order p only if,
(

ps(z)

qs(z)
− ez

)
= O(zp+1) as z → 0

This observation leads to a topic in approximation theory and the subject
of Padé approximations.

69

(b) Consider the power series expansion,

f(z) =
∞∑

r=0

f (r)(0)
zr

r!
.

The degree k polynomial approximation to f(z) of maximum order (z →
0) is,

Pk(z) =
k∑

r=0

f (r)(0)
zr

r!
,

and for sufficiently differentiable f(z) we have

Pk(z) − f(z) = O(zk+1) as z → 0.

Given a class of rational functions,

Rn,m ≡
{ ∑n

r=0 arz
r

1 +
∑m

r=1 brzr
: (a0, a1 · · ·an, b1, · · · bm) ∈ Rn+m+1

}
,

then the Padé approximation, Pn,m(z) to f(z) is the rational function in
Rn,m of maximum order. That is, it is the unique rational function in
this class such that,

Pn,m(z) − f(z) = O(zn+m+1).

The coefficients (the a′
rs and the b′rs, defining Pn,m) can be determined

by replacing f(z) by its power series in this expression, multiplying both
sides by (1 +

∑m
r=1 brz

r), and equating powers of h to as high a power as
possible by solving the resulting nonsingular linear system of equations.

(c) Consider the following examples:

• A 1 stage, 2nd order IRK (the midpoint formula),

1/2 1/2
1

yi+1 = yi + hk1, k1 = f(xi +
h

2
, yi +

h

2
k1).

Applying this to the model problem y′ = λy,

yi+1 =

(
1 + (hλ

2
)

1 − (hλ
2

)

)
yi = P1,1(hλ)yi.

where P1,1(z) is the first ‘diagonal’ (m = n = 1) Padè approximation
to ez. (It is straightforward to verify that this formula is A-stable.)
Note that the rational function, P1,1(z), is the same as that associated
with the stability of the Trapezoidal formula,

70

0 0 0
1 1/2 1/2

1/2 1/2

• A 2 stage, 4th order IRK formula.
1
2
−

√
3

6
1
4

1
4
−

√
3

6
1
2

+
√

3
6

1
4

+
√

3
6

1
4

1
2

1
2

For y′ = λy this yields,

yi+1 =

1 + hλ

2
+ (hλ)2

12

1 − hλ
2

+ (hλ)2

12

 yi = P2,2(hλ)yi.

(d) Butcher (1964) has shown that in general there exists an s stage IRK
formula of maximum order 2s which, when applied to y′ = λy yields,

yi+1 = Ps,s(hλ)yi,

where Ps,s(z) is the s diagonal Padé approximation to ez. These formulas
are based on Gaussian quadrature and weights . They are known to be
A-stable (but not L-stable). This latter observation follows from the fact
that

lim
z→−∞

Ps,s(z) = (−1)s.

(e) To achieve high order and L-stability, consider an s stage, IRK formula
with ks = f(xi+1, yi+1), This implies αs = 1 and βj,s = ωj for j =
1, 2 · · ·s. Now recall that,

yi+1 =

[
ps(hλ)

qs(hλ)

]
yi,

and

ks = λ

[
p̂s,s−1(hλ)

qs(hλ)

]
yi = λ

[
ps(hλ)

qs(hλ)

]
yi.

This implies the degree of ps(z) ≤ s − 1 and therefore, if the degree of
qs(z) = s, then we have L-stability. Note that the degree of qs(z) is equal
to the degree of [det(I − zA)] = rank(A).
Ehle and Axelson have shown that there exist s stage implicit Runge-
Kutta formulas of this type, of order 2s− 1, that are A-stable and corre-
spond, when applied to y′ = λy, to

yi+1 = Ps−1,s(hλ)yi,

where Ps−1,s(z) is the s sub-diagonal Padè approximation to ez. These
formulas and weights are based on Radeau Quadrature formulas.

71

(f) A disadvantage of Padé IRK methods is that solving for the kr’s by a
modified Newton’s method (as is necessary for stiff problems) involves a
fully coupled nonlinear system which requires O(sn)3 operations on each
step,

[I − h(A ⊗ J)] (δk) = RHS (the residuals for the k′s).

or more precisely,

(I − hβ11J) −hβ12J · · · −hβ1sJ
−hβ21J (I − hβ22J) · · · −hβ2sJ

...
... · · · ...

−hβs1J −hβs2J · · · (I − hβssJ)

δk1

δk2
...

δks

= RHS,

It is also worth noting that with these formulas there is not a convenient
error estimate available and one usually must resort to a ‘step halving’
strategy.

6. Implementation-Oriented Approach: (Reducing the costs associated with
the nonlinear systems that must be solved)

(a) Consider a semi-implicit Runge-Kutta formula (βj,r = 0 for r > j) where
each

kj = f(xi + αjh, yi + h
j∑

r=1

βj,rkr),

is solved sequentially (j = 1, 2 · · ·s). If a modified Newton iteration is
used for each system, we must solve,

Wjδ
(l)
j = k

(l−1)
j − f(xi + αjh, yi + h

j−1∑

r=1

βj,rkr + hβj,jk
(l−1)
j),

where

Wj ≈ [I − hβj,j
∂f

∂y
].

Are there any semi-implicit formulas suitable for stiff equations and with
equal values of βj,j ? Note that, for these formulas we would have qs(z) =
det(I − zA) =

∏s
r=1(1 − zβj,j).

Norsett and Wolfbrandt have investigated rational approximations to ez,
where the denominator has only real roots and shown that the maximum
order is s + 1 and with the further restriction that the βj,j be equal we
can still obtain order s + 1 (in which case qs(z) = (1 − zβ)s).

These theoretical results are relevant to the approximation of ez by a
rational function and this allows us to infer an upper bound on the order
of a semi-implicit Runge-Kutta formula. We still may not be able to find
such formula which achieve this order.

72

(b) Alexander (SINUM 1978) has defined a diagonally implicit RK (DIRK)
formula to be a semi-implicit Runge-Kutta formula with constant diag-
onal (βj,j). Norsett, Alexander and Crouzeix have shown the following
results which are relevant to this potentially effective class of methods:

• Norsett showed that the maximum order for a DIRK formula is s+1
for s = 1, 2, 3, 5, 7, 9 and s for s = 4, 6, 8, 10.

• Crouziex (1975) derived a 2 stage, 3rd order, A-Stable DIRK and a 3
stage 4th order, A-Stable DIRK.

• Alexander has shown that demanding L-Stability costs an order. He
derived the following 2 stage, 2nd order, A-Stable formula that is also
L-stable for γ = 1 ±

√
2

2
,

γ γ
1 1 − γ γ

1 − γ γ

He also showed there are no 4th order 4 stage DIRKs that are both
A-stable and L-stable.

• DIRK formulas also suffer from the lack of a convenient local error
estimate.

(c) Butcher and Burrage have considered a more general class of singly im-
plicit Runge-Kutta (SIRK) formulas. These formulas are more expensive
to implement (as there is more work per step) but higher order is possible
for an s stage formula suitable for stiff equations.

• For a general implicit Runge-Kutta formula using a modified Newton
iteration, we have to solve on each step,

[I − h(A ⊗ J)] (δk) = RHS (the residuals for the k′s).

If we use a similarity transformation, T−1AT = D then we have
(using the properties of the Kronecker product),

[I − h(A ⊗ J)] =
[
I − h(T ⊗ I)(D ⊗ J)(T−1 ⊗ I)

]

= (T ⊗ I)[I − h(D ⊗ J)](T−1 ⊗ I).

Now if we use the transformed coordinate system ȳ = (T−1 ⊗ I)y,
for any vector y ∈ Rn, then the iteration in the tranformed space
becomes,

[I − h(D ⊗ J)] (δk̄) = RHS.

• Butcher and Burrage called such formulas singly-implicit and sug-
gested a particular one-parameter class of IRK formulas of this type
based on Laguerre polynomials (from approximation theory) for which

73

T is determined explicitly and,

T−1AT = D =

µ 0 · · · 0
−µ µ · · · 0
...

... · · · ...
0 0 · · · µ

(µ is the parameter).

Hence the linear system to be solved in the transformed coordinate
system will be block bi-diagonal and lower triangular with constant
diagonal blocks,

[I − h(D ⊗ J)] =

I − hµJ 0 · · · 0 0
hµJ I − hµJ · · · 0 0

...
... · · · ...

...
0 0 · · · hµJ I − hµJ

.

• Note that, for this class of formulas,

qs(z) = det(I − zA) = det(I − zD) = (1 − zµ)s.

By a careful choice of µ they derived :

i. An s stage implicit RK formula of order s + 1 for any s.

ii. An s stage, A-stable implicit RK formula of order s + 1 for s =
1, 2, 3, 5 (not 4 or 6).

iii. An s stage, A-stable, L-stable implicit RK formula of order s for
s = 1, 2, 3, 4, 5, 6, 8 (not 7).

• They were able to develop computeable estimates of the local error
for formulas in this class by showing how to embed the above one-
parameter, s stage formula in an (s + 1) stage formula pair of the
form,

α1 β11 β12 . . . β1s 0
α2 β21 β22 . . . β2s 0

...
...

...
...

...
αs βs1 βs2 . . . βss 0

αs+1 βs+1,1 βs+1,2 . . . βs+1,s µ
ω1 ω2 . . . ωs 0
ω̂1 ω̂2 . . . ω̂s ω̂s+1

In doing this they have identified choices for µ and the remaining pa-
rameters (βs+1,1, βs+1,2, · · ·βs+1,1, ω̂1, ω̂2, · · · ω̂s+1) to yield an s stage
order (s, s + 2) formula pair with the lower order formula A-stable
for s ≤ 6 and an s stage order (s, s + 1) formula pair with the lower
order formula A-stable and L-stable for s ≤ 6.
These formulas have been implemented by Butcher, Burrage and
Chipman in the method, STRIDE.

74

Other Methods and Approaches for Stiff problems:

1. Composite Multistep or Block methods (STINT).

2. Extrapolation methods (METAN1).

3. Second Derivative Multistep methods (SECDER) – uses y
′′

= fx + fyf which
is inexpensive and available for autonomous ODEs.

4. Rosenbrock Runge-Kutta methods.

5. Blended Multistep methods – uses (1 + ω)yi+1 = yA
i+1 + ωyBDF

i+1 .

Software for Stiff Problems:

From Netlib: EPSODE, VODE (VODEPK).

From Slatec: DEBDF.

From IMSL: IVPAG.

From Hairer and Wanner (1996) :
(http://www.unige.ch/math/folks/hairer/software.html), RADAU5, RADAU,
SDIRK, ROSE4, SODEX.

See also: (http://pitagora.dm.uniba.it/ testset/).

From other Sources: STRUT (Krogh and Stewart, 1982). STRIDE, SECDER.

From MATLAB: ode15s.

2.9 Quantifying the Sensitivity of the Solution

In many applications, one is not only interested in the accurate and reliable approxi-
mation of the solution, but also in investigating the sensitivity of the solution to small
changes in the problem specification. Consider an IVP that depends on a vector of fixed
parameters, λ ∈ Rm,

y′ = f(x, y, λ), y(a) = y0.

One may be interested in the “sensitivity” of the solution, y(x, λ) to perturbations in the
initial conditions or to perturbations of the parameters. To investigate the sensitivity
with respect to the initial conditions, let Y (x, λ) ≡ ∂

∂y0
(y(x, λ)). We then have that

Y (x, λ) is an n × n matrix-valued function which satisfies the ODE,

d

dt
Y (x, λ) =

d

dt

∂

∂y0
(y(x, λ))

=
∂

∂y0

d

dt
(y(x, λ))

=
∂

∂y0
f(x, y(x, λ), λ)

=
∂f

∂y

∂y(x, λ)

∂y0

=
∂f

∂y
Y (x, λ),

75

with associated initial conditions,

Y (a, λ) =
∂

∂y0
(y(a, λ)) =

∂

∂y0
(y0) = I.

(Note that we use ∂f
∂y

, without arguments, to stand for ∂f
∂y

(x, y(x, λ), λ).) Thus we have

that Y (x, λ) satisfies a linear homogeneous matrix IVP for x ∈ [a, b] and its solution can
be approximated by any initial value method.

Similarly to investigate the sensitivity of y(x, λ) to perturbations in λ let,

Y λ(x, λ) ≡ ∂

∂λ
(y(x, λ)).

Thus Y λ(x, λ) is an n × m matrix which satisfies the inhomogeneous linear ODE,

d

dt
(Y λ(x, λ)) =

d

dt
(
∂y(x, λ)

∂λ
)

=
∂

∂λ
(
dy(x, λ)

dt
)

=
∂

∂λ
(f(x, y(x, λ), λ))

=
∂f

∂y

∂y(x, λ)

∂λ
+

∂f

∂λ

=
∂f

∂y
Y λ(x, λ) +

∂f

∂λ
,

with initial conditions,

Y λ(a, λ) =
∂

∂λ
(y0) = 0.

One can therefore determine an approximation to these sensitivities by approximating
the solution of this matrix IVP by any reliable initial value method.

2.10 Differential/Algebraic Equations

In some applications ODEs arise where some of the defining equations have a small
parameter multiplying the highest derivative of the system components. For example
let y(x) = (z(x) u(x))T , with y′(x) defined by the ODE,

z′ = A11z + A12u + f1

εu′ = A21z + A22u + f2

where ε > 0 is a small parameter. Note that, for any positive value of ε the resulting
IVP is well-defined with a unique solution (under standard smoothness assumptions on

76

f1 and f2) for any initial condition, y(a) = y0. On the other hand, in the limiting case
of ε = 0 this system reduces to,

z′ = A11z + A12u + f1,

0 = A21z + A22u + f2.

For this problem, only the initial values of the components of y(x) corresponding to
z(x), (z(a) = z0), can be arbitrarily specified at x = a, while u(a) = u0 must satisfy
A22u0 = −A21z0 − f2. It should not therefore be surprising that, for small ε > 0,
numerical difficulties can arise for some initial conditions in the initial region (x close to
a). For ε nonzero this can lead to a special class of Stiff IVPs while the case ε = 0 leads
to a class of Singularly Perturbed ODEs. Note that, for ε nonzero we have,

u′ =
A22

ε
u +

A21

ε
z + f2/ε,

which for stable problems will be stiff.
One can view the singularly perturbed ODE as an ODE for the variable z(x) with

an associated set of algebraic constraints that together will determine the unknown
vector valued function, y(x) = (z(x) u(x))T . This is a particular instance of the class
of problems called Differential/Algebraic Equations (DAEs). We will consider a more
general form of this type of equation but the insights and difficulty we have investigated
for stiff IVPs will prove helpful and provide insight into understanding and handling
the numerical difficulties arising in singularly perturbed DAEs as well as more general
DAEs.

Consider the implicit IVP,

F (x, y, y′) = 0, y(x) ∈ <n, y(a) = y0, for x ∈ [a, b].

If ∂F
∂y′

is nonsingular in some neighbourhood of y(x) then, for a given value of x and y,

one can ‘solve’ F (x, y, y′) = 0 to determine y′(x) (Implicit Function Theorem).

• This is called an ‘index 0’ DAE and one can apply any standard IVP method.
Each evaluation of y′ requires the solution of a nonlinear system of equations.

• For some methods only one nonlinear system of equations need be solved on each
step, even when an implicit formula is involved. For this class of problems there
may be little advantage in using an IVP method based on an explicit formula.

A more interesting and challenging case arises when ∂F
∂y′

is of rank r < n. In this

section we will assume that r is constant for all x ∈ [a, b]. In this situation some
of the components of the system, F (x, y, y′) = 0 are independent of y′ (hence an
algebraic constraint).

77

As an example, consider the case where the algebraic constraints are explicitly iden-
tified as in,

F (x, z, z′, u) = 0,

G(x, u) = 0,

where,

1. z(x) is the vector of ‘differential variables’, z(x) ∈ <n1 ,

2. u(x) is the vector of ‘algebraic variables’, u(x) ∈ <n2,

3. F (x, z, z′, u) has n1 components.

4. The rank of ∂F
∂z′

is n1 (ie. it is of full rank).

5. G(x, u) has n2 linearly independent components.

Such a system is called an Semi-Explicit DAE.

Now consider a more general linear constant coefficient DAE,

Ay′ + By = f(x), y(x) ∈ <n.

If rank(A) = r < n then the problem is not index 0 and there exists a nonsingular matrix
P such that,

PAy′ + PBy = Pf(x) ≡ f̃(x),

where

PA =

[
A1 A2

0 0

]
, PB =

[
B1 B2

B3 B4

]
, [A1 A2] of rank r.

Note that one such P can be determined as the product of Householder reflections such
that PA is upper triangular. With this structure for (PA , PB) the DAE is equivalent
to,

A1z
′ + A2u

′ + B1z + B2u = f̃1(x), B3z + B4u = f̃2(x). (8)

Differentiating the ‘second equation’ of (8) we obtain,

B3z
′ + B4u

′ = f̃ ′
2(x).

Replacing the second equation of (8) by this equation we obtain the system:

[
A1 A2

B3 B4

]

︸ ︷︷ ︸
Ā

[
z′

u′

]
+

[
B1 B2

0 0

]

︸ ︷︷ ︸
B̄

[
z
u

]
=

[
f̃1(x)

f̃ ′
2(x)

]
.

If Ā is nonsingular we have that this transformed DAE is a standard IVP whose
solution is also a solution of the original DAE.

78

• f̃2(x) must be differentiable otherwise there is no solution to our original DAE.

• The initial conditions must satisfy the algebraic constraints, B3z0 + B4u0 = f̃2(x).

• If Ā is singular (of rank s, r ≤ s < n) then we can repeat this process until the
resulting Ā is nonsingular (the number of times the constraints have to differen-
tiated before the resulting Ā is nonsingular is defined to be, µ, the index of the
DAE).

In general the higher the index of a DAE, the more difficult the problem – mathe-
matically and numerically.

Index 0 Implicitly defined standard IVP. Standard theory and methods can be used.

Index 1 Usually well behaved and standard numerical methods can be applied with
some care and modification.

Index ≥ 2 These problems usually require special structure before a numerical solution
is possible. Several such problems arise in practical computation and we will
consider some specific examples of index 2 and index 3 problems.

For index 1 problems it is possible (as we will see) to adapt existing IVP methods so
they can be used to effectively solve DAEs. For higher index problems it is usually
necessary to differentiate the constraints to obtain an equivalent index 0 or index 1
problem. The main difficulty with this approach is that the algebraic constraints will
only be indirectly satisfied and the numerical solution will often ‘drift off’ the manifold
of constraints as the integration proceeds. On such problems, the numerical method
must monitor the ‘constraint residual’ and project the numerical solution back onto the
constraint manifold when such a drift is detected. Another complication of this approach
is the need to compute derivatives of the constraint functions.

• Solving index 1 problems with standard stiff methods:
Consider applying the BDF formula,

y′
i+1 =

1

hβ0

(yi+1 −
k∑

j=1

αjyi+1−j),

to an index 1 problem,
F (x, y, y′) = 0,

by determining yi+1 on each time step by solving (using Newton’s method) the
nonlinear system:

F (xi+1, yi+1,
1

hβ0
(yi+1 −

k∑

j=1

αjyi+1−j)) = 0.

79

This system of nonlinear equations (in the unknown, yi+1) is solved as G(yi+1) = 0
where,

G(yi+1) ≡ F (xi+1, yi+1,
1

hβ0

(yi+1 −
k∑

j=1

αjyi+1−j)).

We then have that
∂G

∂yi+1

=
∂F

∂y
+ (

1

hβ0

)
∂F

∂y′ ,

and therefore the associated Newton iteration is,

Wδl
i+1 = −(hβ0)G(yl

i+1),

where δl
i+1 = yl+1

i+1 − yl
i+1 and

W ≈ (hβ0)
∂F

∂y
+

∂F

∂y′ .

Note that when the index is greater than 0 (and therefore ∂F
∂y′

singular); as h →
0, W must eventually become ill-conditioned. For index 1 problems though, W is
usually not ill-conditioned for ‘reasonable’ h.

To apply a Runge-Kutta method to this index 1 problem, recall that for standard
ODEs, we have,

yi+1 = yi + h
s∑

j=1

wjkj,

kj = f(xi + αjh, yi + h
s∑

r=1

βjrkr), j = 1, 2 · · · s.

It is then natural to introduce, for an index 1 DAE, the nonlinear system associated
with each step, G(k) = 0, where k = (k1, k2 · · ·ks)

T , G(k) = (g1(k), g2(k) · · ·gs(k))T

and

gj(k) ≡ F (xi + αjh, yi + h
s∑

r=1

βjrkr, kj) = 0.

If one can solve this system on each time step then the Runge-Kutta method can
be applied directly to this DAE. Does this nonlinear system have a solution? To
investigate this issue consider

∂G

∂k
=

(∂F
∂y′

+ hβ11
∂F
∂y

) hβ12
∂F
∂y

· · · hβ1s
∂F
∂y

hβ21
∂F
∂y

(∂F
∂y′

+ hβ22
∂F
∂y

) · · · hβ2s
∂F
∂y

...
... · · · ...

hβs1
∂F
∂y

hβs2
∂F
∂y

· · · (∂F
∂y′

+ hβss
∂F
∂y

)

.

By observing the rank of the diagonal blocks of this matrix we see that the un-
derlying Runge-Kutta formula must be implicit with the rank of the coefficient
matrix, (βij) being full (ie = s). This follows since ∂F

∂y′
is singular and an explicit

formula would have βij = 0 for j ≥ i. Even with an implicit Runge-Kutta formula
we will have ill-conditioning of this matrix as h → 0 as with a BDF method

80

• Index 2 problems – Hessenberg, semi-explicit
This is a class of Index 2 problems that arise in fluid flow and circuit simulations
and have the very special structure,

z′ = f(x, z, u), g(z) = 0,

with gzfu of full rank. In this case we can differentiate the constraints once to
obtain the equivalent index 1 problem,

z′ = f(x, z, u), gzz
′ ≡ gzf = 0,

or we can differentiate twice to obtain the equivalent index 0 problem,

z′ = f(x, z, u), (gzfu)u
′ = −gzzf

2 − gzfx − gzfzf.

• Index 3 problems – Constrained Mechanical systems
These systems arise in areas such as robotics and vehicle simulators where one
models mechanical systems. Consider a mathematical model where q(x) represents
position, and u(x) represents velocity. The DAE is then generally of the form,

q′ = u,

M(q)u′ = f(q, u) − GT (q)λ,

0 = g(q),

where G(q) = ∂g
∂q

, GM−1GT has full rank and λ is a vector of ‘Lagrange multipliers’
– the algebraic variables. Note that the constraints are only on the ‘position’
variables and one can differentiate the constraints 3 times to obtain an equivalent
standard IVP (left as an exercise) of index 0.

More generally, differentiating the explictly identified constraints can be used to
reduce the index 3 problem,

y′ = f(x, y, z),

z′ = k(x, y, z, λ),

0 = g(y),

(with gyfzkλ of full rank) to a index 0 or index 1 DAE.

2.11 Delay Differential Equations (DDEs)

This topic is not addressed in the text. It is discussed at length in section II.15 of Hairer,
Norsett and Wanner and in Chapter 4 of Shampine, Gladwell and Thomson.

The basic problem, in its simplest form can be seen as:

y′ = f(x, y, y(x− σ)), on an interval [x0, xF],

where the initial conditions must be specified on an initial interval, y(x) = φ(x), for x ∈
[x−1, x0]. A more typical example would involve multiple delays.

81

• Such equations arise in mathematical modelling in population dynamics, the spread
of diseases, flight simulators etc.

• These problems can exhibit interesting dynamics with very few components.

• An interesting example (Hairer, Norsett and Wanner–p.295)
Consider simulating the spread of an infectious disease. Let y1 represent the suc-
ceptible portion of the population, y2 represent the infected portion of the popu-
lation and y3 represent the immunized portion of the population. Then, assuming
a ‘rate constant’ = 1, (quantifying how quickly an infection will spread), we have,

y′
1 = −y1y2,

y′
2 = y1y2 − y2,

y′
3 = y2.

The solutions to this standard ODE, after an infection is introduced, typically will
have the form shown in Fig.3.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
An infectious disease example.

time t

so
lu

tio
n

y

Figure 3: Typical solution of an ODE infectious disease model

Now assume that the immunized group becomes succeptible after 10 units of time
and that there is an incubation period of 1 unit. Our ODE then becomes,

y′
1 = −y1(x)y2(x − 1) + y2(x − 10),

y′
2 = y1(x)y2(x − 1) − y2(x),

y′
3 = y2(x) − y2(x − 10).

This model leads to very interesting periodic solutions and more accurately simu-
lates the spread of real infections. For example if we assume y1(x) = 5.0, y2(x) =
.1, y3(x) = 1.0 for x ≤ 0, then this DDE has the solution shown in Fig. 4.

82

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
An infectious disease example.

time t

so
lu

tio
n

y

Figure 4: Typical solution of a DDE infectious disease model

There are several special difficulties that can arise when approximating the solution of
DDEs. We will consider several such difficulties and how they can be resolved.

1. Discontinuities (Hairer, Norsett and Wanner– p. 286)
Consider the exact solution of the simple scalar problem with a constant delay,

y′ = −y(x − 1), for x ∈ [0, 3], y(x) ≡ 1 on [−1, 0].

(a) On [0, 1) y′ = −y(x − 1) = −1 ⇒ y(x) = −x + c1, and y(0) = 1 implies
c1 = 1 and therefore y(x) = 1 − x.

(b) On [1, 2) y′ = −y(x− 1) = −[1− (x− 1)] = x− 2 ⇒ y(x) = x2

2
− 2x + c2 and

y(1) = 0 implies c2 = 3
2

and therefore y(x) = x2

2
− 2x + 3

2
.

(c) On [2, 3] y′ = −y(x − 1) = −[(x−1)2

2
− 2(x − 1) + 3

2
] = −x2

2
+ 3x − 4 ⇒

y(x) = −x3

6
+ 3x2

2
− 4x + c3 and y(2) = − 1

2
implies c3 = 17

6
and therefore

y(x) = −x3

6
+ 3x2

2
− 4x + 17

6
.

The solution, y(x) (see Fig. 5), has a discontinuous first derivative at x = 0; a
discontinuous second derivative at x = 1; and a discontinuous third derivative at
x = 2.

In general a discontinuity in one of the low order derivatives of the exact solution
will be introduced whenever x − σ = x0 or x − σ coincides with another point
of discontinuity. The detection and location of these inherent discontinuities is
important if a numerical method is to be effective. The situation is complicated
if multiple delays are present (as in the first example) or if the delay is time-
dependent and/or state-dependent (ie., the delay term is x − σ(x, y)). In most
cases the solution will become smoother as it evolves since the order of these
propogated discontinuities will increase each time they are propogated.

2. Variable Delays
For any IVP method that determines a piecewise polynomial approximation, S(x) ≈

83

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2
A scalar example that is discontinuous

X

Y
(X

)
th

e
so

lu
tio

n

Figure 5: A Scalar Example with a Discontinuous Exact Solution

y(x), one can consider adapting the method to handle a DDE with variable delay,
y′ = f(x, y(x), y(x − σ(x, y))). We will consider, in particular, the application of
an explicit CRK method where S(x) is defined by ui(x), i = 0, 1 · · ·N − 1,

ui(x) = yi + hi+1

s̄∑

j=1

bj(
x − xi

hi+1

)kj,

bj(τ) is a polynomial of degree at most p, hi+1 = xi+1 − xi, and τ = x−xi

hi+1
. Let Yj

be defined by,

Yj = yi + hi+1

s̄∑

r=1

βrjkr for j = 1, 2 · · · s.

For a DDE it is natural to define the kj’s by the equations,

kj = f(xi + αjhi+1, Yj, S(xi + αjhi+1 − σ(xi + αjhi+1, Yj))).

Note that if hi+1 ≤ σ(x, y) then the ‘delayed’ solution value, S(xi + αjhi+1 −
σ(xi + αjhi+1, Yj)) (required in the definition of kj) are explicitly available using
S(x) defined for x ≤ xi by the local polynomials,

{ur(x)}i−1
r=0,

since xi + αjhi+1 − σ(xi + αjhi+1, Yj) ≤ xi. Note also that if xi + αjhi+1 − σ(xi +
αjhi+1, Yj) ≤ x0 then the initial function, φ(x), must be used. Variable delay prob-
lems can then be solved using a CRK method (or a multistep method) provided
h ≤ σ(x, y) is not a severe constraint and discontinuities are detected and carefully
handled. One way to handle the detected discontinuities is to modify the stepsize
selection strategy (of the CRK method) so that all potential points of discontinuity
be forced to be meshpoints.

3. Small or Vanishing Delays
When h ≤ σ(x, y) is a severe constraint (as can happen when σ(x, y) → 0), we

84

can avoid this stepsize constraint by introducing an alternative scheme to evaluate
S(x) when x ∈ [xi, xi+1]. The obvious choice is to use, ui(x), and this would make
some or all of the equations defining the kj’s implicit,

kj = f(xi + αjhi+1, Yj, yi + hi+1

s̄∑

r=1

br(τ
∗
j)kr),

where τ ∗
j = xi + αjhi+1 − σ(xi + αjhi+1, Yj) and a predictor/corrector or modified

Newton iteration must be used.

4. Derivative Delays – Neutral DDEs
When a ‘delayed’ derivative appears in the DDE, the analysis as well as the nu-
merics is more difficult. Consider the scalar problem,

y′ = f(x, y, y′(x − σ(x, y))),

where y′(x) = φ′(x) is specified on [x−1, x0] and we are interested in the solution
on [x0, xF]. For these problems discontinuities propogate and persist at the same
order (if there is a discontinuity of y′ at the initial point, it is propogated as a
discontinuity in y′ at all future points as well). The accuracy of S(x) is more
critical for these problems as is the careful handling of discontinuities.

Software is available for DDEs that can cope with multiple delays, neutral delays and
vanishing delays (see, for example, DDVERK from Netlib, or RADAR5 from,
‘http://www.unige.ch/math/folks/hairer’).

An ’improved Fortran-90 implementation of DDVERK, DDVERK90, developed as
part of his MSc thesis by H. ZivariPiran as well as a DDE PSE, DDEM, also developed
by H. ZivariPiran, in C as part of his PhD thesis, are both available from the link:
http://www.cs.utoronto.ca/~hzp/index_files/software.html.

For a restricted class of constant delay problems the MATLAB routine, dde23 can
be used.

2.12 An example of software and its use:

Any general-purpose numerical method for DDEs that can be used for multiple delays,
and both retarded and neutral problems must have a complex calling sequence just to
specify the ‘mathematical’ problem,

y′ = f(x, y(x), y(x − σ1) · · ·y(x − σk), y
′(x − σk+1),

· · · y′(x − σk+`), for x0 ≤ x ≤ xF ,

where
y(x) = φ(x), y′(x) = φ′(x), for x ≤ x0,

85

and
σi ≡ σi(x, y(x)) ≥ 0 for i = 1, 2 · · ·k + `.

Note that when ` = 0 the problem is consdered to be a ‘Retarded’ DE (RDE) and when
` > 0 it is a Neutral DE (NDE).

As we have seen an effective numerical method for this class of problems will de-
termine a piecewise approximation, S(x), defined for x ∈ [x0, xF] with and associated
defect, δ(x),

δ(x) = f(x, S(x), S(x − σ1), · · ·S(x − σk), S
′(x − σk+1), · · ·S ′(x − σk+`)).

We will investigate the use of the method ddverk, based on an underlying CRK formula,
which when be applied to a DDE of the above form with a prescribed accuracy, TOL
will attempt to produce a piecewise polynomial, S(x) whose defect is bounded in norm
by TOL in the interval of interest.

Consider the scalar NDE,

y′ = cos(x)(1 + y(xy2(x))) + 0.1y(x)y′(xy2(x)) +

.9sin(x)cos(xsin2(x)) − sin(x + xsin2(x)),

with
x0 = 0, xF = π, φ(x) = 0, and φ′(x) = 1 for x ≤ 0.

The true solution to this problem is y(x) = sin(x) and it has vanishing delays at x =
0, π/2, π.

The next few pages illustrate the calling sequence of ddverk, a sample driver to solve
this test problem, and the output from a typical run.

86

SUBROUTINE DDVERK(N,NW,MU,OMEGA,IND,LOLD,T,TEND,Y,TOL,TOLD,KOLD

+ ,W,C,FCN,SIGMA,YINIT,DYINIT)

C**

C *

C Description of DDVERK

C *

C This routine calls the delay and discontinuity routines.

C Its purpose is to determine a numerical solution of a

C delay differential equation (DDE). The numerical solution

C that is generated is a piecewise polynomial, S(t), that

C approximates the solution on the interval of interest.

C This routine first initializes parameters and then calls the DVERK

C IVP method, RDMETH. After each step of the integration,

C RDMETH returns to this routine and this routine then checks if a

C discontinuity exists in the step. If the existence of a *

C discontinuity is suspected, this routine calls DSLOC and *

C DSLOC detects the discontinuity point. Finally, if the step is *

C accepted, DDVERK calls STORE or STORED to store information *

C necessary to evaluate the piecewise polynomial, S(t).

C *

C**

C *

C Calling sequence *

C *

C CALL DDVERK(N,NW,MU,OMEGA,IND,LOLD,T,TEND,Y,TOL,TOLD,KOLD,W,C, *

C + FCN,SIGMA,YINIT,DYINIT) *

C *

C INTEGER N,NW,IND,LOLD,MU,OMEGA *

C DOUBLE PRECISION T,TEND,Y(N),TOL,TOLD(LOLD),KOLD(NW,7,LOLD) *

C DOUBLE PRECISION W(NW,20+MU+OMEGA), C(*) *

C EXTERNAL FCN,SIGMA,YINIT,DYINIT *

C *

C**

C *

C Arguments for DDVERK *

C These arguments are consistent (in most cases identical to) those

C of the DVERK family of methods for standard IVPs.

C *

C N Number of equations *

C NW First dimension of workspace W and queue KOLD *

C NW must be at least MAX(N,MU+OMEGA) *

C Note that KOLD is used to store the history of stage

C vectors associated with each time step. It can then

C be used to define the local polynomials introduced

87

C on each time step to define the global interpolant, S(t).

C MU The number of solution delay terms *

C OMEGA The number of derivative delay terms *

C IND Indicator --- same as for DVERK except for IND = 7:

C ON INITIAL ENTRY IND MUST BE SET EQUAL TO EITHER

C 1 OR 2. IF THE USER DOES NOT WISH TO USE ANY OPTIONS, HE *

C SHOULD SET IND TO 1 - ALL THAT REMAINS FOR THE USER TO DO *

C THEN IS TO DECLARE WORKSPACE AND SPECIFY THE PROBLEM

C PARAMETERS. THE USER

C MAY ALSO SELECT VARIOUS OPTIONS ON INITIAL ENTRY BY *

C SETTING IND = 2 AND INITIALIZING THE FIRST 9 COMPONENTS OF *

C C AS DESCRIBED IN THE NEXT SECTION. HE MAY ALSO RE-ENTER *

C THE SUBROUTINE WITH IND = 3 AS MENTIONED AGAIN BELOW. IN *

C ANY EVENT, THE SUBROUTINE RETURNS WITH IND EQUAL TO *

C 3 AFTER A NORMAL RETURN *

C 4,5,6 OR 7 AFTER AN INTERRUPT (SEE OPTIONS C(8), C(9)) *

C -1, -2, OR -3 AFTER AN ERROR CONDITION (SEE BELOW) *

C *

C LOLD Length of queue (used for the efficient storage of S(t))

C T Independent variable

C TEND Value of T to which integration is to be carried out *

C Y Solution vector at T *

C TOL Error Tolerance

C TOLD Queue of discrete values t associated with

C with the piecewise polynomial, S(t)

C KOLD Queue of solution approximations and stage vectors

C associated with each time step (used to define S(t))

C The first dimension of KOLD must be NW *

C The second dimension of KOLD must be at least 7 *

C The third dimension of KOLD must be LOLD *

C W Workspace array *

C The first dimension of W must be NW *

C The second dimension of W must be at least 20 + ND *

C where ND is the total number of delay terms (= MU + OMEGA)

C C Communication vector - The dimension must be greater than *

C or equal to 33. C(1) to C(24) have the same interpretation

C as in DVERK (see below).

C FCN Name of subroutine for computing the derivative

C (must be supplied by the user)

C SIGMA Name of subroutine for computing the delay argument(s)

C (must be supplied by the user)

C YINIT Name of subroutine for computing initial values on the *

C initial interval. (must be supplied by the user)

C DYINIT Name of subroutine for computing derivative of initial *

C values on the initial interval. (must be supplied by *

88

C the user)

C *

C**

C *

C Communication vector *

C *

C C(1) - C(24) are interpreted as they are for any IVP

C method in the DVERK family:

C

C***

C *

C OPTIONS - IF THE SUBROUTINE IS ENTERED WITH IND = 1,

C THE SUBROUTINE USES ONLY DEFAULT VALUES FOR EACH OPTION. IF THE *

C SUBROUTINE IS ENTERED WITH IND = 2, THE USER MUST SPECIFY EACH OF *

C THE FIRST 33 COMPONENTS - NORMALLY HE WOULD FIRST SET THEM ALL TO 0,

C AND THEN MAKE NON-ZERO THOSE THAT CORRESPOND TO THE PARTICULAR *

C OPTIONS HE WISHES TO SELECT. IN ANY EVENT, OPTIONS MAY BE CHANGED ON *

C RE-ENTRY TO THE SUBROUTINE - BUT IF THE USER CHANGES ANY OF THE *

C OPTIONS, OR TOL, IN THE COURSE OF A CALCULATION HE SHOULD BE CAREFUL *

C ABOUT HOW SUCH CHANGES AFFECT THE SUBROUTINE - IT MAY BE BETTER TO *

C RESTART WITH IND = 1 OR 2. (COMPONENTS 10 TO 24 OF C ARE USED BY THE *

C PROGRAM - THE INFORMATION IS AVAILABLE TO THE USER, BUT SHOULD NOT *

C NORMALLY BE CHANGED BY HIM.) *

C *

C C(1) ERROR CONTROL INDICATOR - THE NORM OF THE LOCAL ERROR IS THE *

C MAX NORM OF THE WEIGHTED ERROR ESTIMATE VECTOR, THE *

C WEIGHTS BEING DETERMINED ACCORDING TO THE VALUE OF C(1) - *

C IF C(1)=1 THE WEIGHTS ARE 1 (ABSOLUTE ERROR CONTROL) *

C IF C(1)=2 THE WEIGHTS ARE 1/ABS(Y(K)) (RELATIVE ERROR *

C CONTROL) *

C IF C(1)=3 THE WEIGHTS ARE 1/MAX(ABS(C(2)),ABS(Y(K))) *

C (RELATIVE ERROR CONTROL, UNLESS ABS(Y(K)) IS LESS *

C THAN THE FLOOR VALUE, ABS(C(2))) *

C IF C(1)=4 THE WEIGHTS ARE 1/MAX(ABS(C(K+30)),ABS(Y(K))) *

C (HERE INDIVIDUAL FLOOR VALUES ARE USED) *

C IF C(1)=5 THE WEIGHTS ARE 1/ABS(C(K+30)) *

C FOR ALL OTHER VALUES OF C(1), INCLUDING C(1) = 0, THE *

C DEFAULT VALUES OF THE WEIGHTS ARE TAKEN TO BE *

C 1/MAX(1,ABS(Y(K))), AS MENTIONED EARLIER *

C (IN THE TWO CASES C(1) = 4 OR 5 THE USER MUST DECLARE THE

C DIMENSION OF C TO BE AT LEAST N+30 AND MUST INITIALIZE THE

C COMPONENTS C(31), C(32), ..., C(N+30).) *

C *

C C(2) FLOOR VALUE - USED WHEN THE INDICATOR C(1) HAS THE VALUE 3 *

C C(3) HMIN SPECIFICATION - IF NOT ZERO, THE SUBROUTINE CHOOSES HMIN *

89

C TO BE ABS(C(3)) - OTHERWISE IT USES THE DEFAULT VALUE *

C 10*MAX(DWARF,RREB*MAX(WEIGHTED NORM Y/TOL,ABS(X))), *

C WHERE DWARF IS A VERY SMALL POSITIVE MACHINE NUMBER AND *

C RREB IS THE RELATIVE ROUNDOFF ERROR BOUND *

C C(4) HSTART SPECIFICATION - IF NOT ZERO, THE SUBROUTINE WILL USE *

C AN INITIAL HMAG EQUAL TO ABS(C(4)), EXCEPT OF COURSE FOR *

C THE RESTRICTIONS IMPOSED BY HMIN AND HMAX - OTHERWISE IT *

C USES THE DEFAULT VALUE OF HMAX*(TOL)**(1/6) *

C C(5) SCALE SPECIFICATION - THIS IS INTENDED TO BE A MEASURE OF THE *

C SCALE OF THE PROBLEM - LARGER VALUES OF SCALE TEND TO MAKE *

C THE METHOD MORE RELIABLE, FIRST BY POSSIBLY RESTRICTING *

C HMAX (AS DESCRIBED BELOW) AND SECOND, BY TIGHTENING THE *

C ACCEPTANCE REQUIREMENT - IF C(5) IS ZERO, A DEFAULT VALUE *

C OF 1 IS USED. FOR LINEAR HOMOGENEOUS PROBLEMS WITH *

C CONSTANT COEFFICIENTS, AN APPROPRIATE VALUE FOR SCALE IS A *

C NORM OF THE ASSOCIATED MATRIX. FOR OTHER PROBLEMS, AN *

C APPROXIMATION TO AN AVERAGE VALUE OF A NORM OF THE *

C JACOBIAN ALONG THE TRAJECTORY MAY BE APPROPRIATE *

C *

C C(6) HMAX SPECIFICATION - FOUR CASES ARE POSSIBLE *

C IF C(6).NE.0 AND C(5).NE.0, HMAX IS TAKEN TO BE *

C MIN(ABS(C(6)),2/ABS(C(5))) *

C IF C(6).NE.0 AND C(5).EQ.0, HMAX IS TAKEN TO BE ABS(C(6)) *

C IF C(6).EQ.0 AND C(5).NE.0, HMAX IS TAKEN TO BE *

C 2/ABS(C(5)) *

C IF C(6).EQ.0 AND C(5).EQ.0, HMAX IS GIVEN A DEFAULT VALUE *

C OF 2 *

C *

C C(7) MAXIMUM NUMBER OF FUNCTION EVALUATIONS - IF NOT ZERO, AN *

C ERROR RETURN WITH IND = -1 WILL BE CAUSED WHEN THE NUMBER *

C OF FUNCTION EVALUATIONS EXCEEDS ABS(C(7)) *

C *

C C(8) INTERRUPT NUMBER 1 - IF NOT ZERO, THE SUBROUTINE WILL *

C INTERRUPT THE CALCULATIONS AFTER IT HAS CHOSEN ITS *

C PRELIMINARY VALUE OF HMAG, AND JUST BEFORE CHOOSING HTRIAL *

C AND XTRIAL IN PREPARATION FOR TAKING A STEP (HTRIAL MAY *

C DIFFER FROM HMAG IN SIGN, AND MAY REQUIRE ADJUSTMENT IF *

C XEND IS NEAR) - THE SUBROUTINE RETURNS WITH IND = 4, AND *

C WILL RESUME CALCULATION AT THE POINT OF INTERRUPTION IF *

C RE-ENTERED WITH IND = 4 *

C *

C C(9) INTERRUPT NUMBER 2 - IF NOT ZERO, THE SUBROUTINE WILL *

C INTERRUPT THE CALCULATIONS IMMEDIATELY AFTER IT HAS *

C DECIDED WHETHER OR NOT TO ACCEPT THE RESULT OF THE MOST *

C RECENT TRIAL STEP, WITH IND = 5 IF IT PLANS TO ACCEPT, OR *

90

C IND = 6 IF IT PLANS TO REJECT - Y(*) IS THE PREVIOUSLY *

C ACCEPTED RESULT, WHILE W(*,9) IS THE NEWLY COMPUTED TRIAL *

C VALUE, AND W(*,2) IS THE UNWEIGHTED ERROR ESTIMATE VECTOR. *

C THE SUBROUTINE WILL RESUME CALCULATIONS AT THE POINT OF *

C INTERRUPTION ON RE-ENTRY WITH IND = 5 OR 6. (THE USER MAY *

C CHANGE IND IN THIS CASE IF HE WISHES, FOR EXAMPLE TO FORCE *

C ACCEPTANCE OF A STEP THAT WOULD OTHERWISE BE REJECTED, OR *

C VICE VERSA. HE CAN ALSO RESTART WITH IND = 1 OR 2.) *

C *

C***

C *

C SUMMARY OF THE COMPONENTS OF THE COMMUNICATIONS VECTOR *

C *

C PRESCRIBED AT THE OPTION DETERMINED BY THE PROGRAM *

C OF THE USER *

C *

C C(10) RREB(REL ROUNDOFF ERR BND) *

C C(1) ERROR CONTROL INDICATOR C(11) DWARF (VERY SMALL MACH NO) *

C C(2) FLOOR VALUE C(12) WEIGHTED NORM Y *

C C(3) HMIN SPECIFICATION C(13) HMIN *

C C(4) HSTART SPECIFICATION C(14) HMAG *

C C(5) SCALE SPECIFICATION C(15) SCALE *

C C(6) HMAX SPECIFICATION C(16) HMAX *

C C(7) MAX NO OF FCN EVALS C(17) XTRIAL *

C C(8) INTERRUPT NO 1 C(18) HTRIAL *

C C(9) INTERRUPT NO 2 C(19) EST *

C C(20) PREVIOUS XEND *

C C(21) FLAG FOR XEND *

C C(22) NO OF SUCCESSFUL STEPS *

C C(23) NO OF SUCCESSIVE FAILURES *

C C(24) NO OF FCN EVALS *

C IF C(1) = 4 OR 5, C(31), C(32), ... C(N+30) ARE FLOOR VALUES *

C

C RREB and DWARF are machine dependent constants currently set so *

C that they should be appropriate for most machines. However, it may *

C be appropriate to change them when this program is installed on a *

C new machine. K.R.J. 3 Oct 1991. *

C *

C***

C

C Additional components of C are required for handling delay problems

C

C

C C(25) Initial time *

C C(26) The first index of queue *

91

C C(27) The last index of queue *

C C(28) Flag indicating whether the first stage vector,

C K1 needs to be computed on the next

C step: if C(28) = 0.0 then we need to compute K1 on the next *

C step *

C C(29) Flag indicating which of the extrapolation or the special *

C interpolant is to be used: if C(29) = 0.0 then we use

C extrapolation (used when iteration must be employed for

C small delays and an initial starting guess is required)

C C(30) TL values used in discontinuity locating routine DSLOC. *

C C(31) TH - TL used in DSLOC *

C C(32) Flag indicating which of the defect estimates is to be used:

C 1: 1pt, 2: 2pt, 3: asymptotically valid *

C The default value is 1. *

C C(33) TS value (location of of a discontinuous point)

C used in ddverk

C *

C *

C**

C *

C Work array *

C *

C W(*, 1:11) K1 to K11 of CRK formula *

C W(*, 12) Solution at the right end point of the *

C step *

C W(*, 13) Work space *

C W(*, 14) Estimate of Defect *

C W(*, 15) Delay argument *

C W(*, 16) Work space *

C W(*, 17) Work space *

C W(*, 18) Work space *

C W(*, 21:20+ND) Delay values *

C *

C**

92

C ... Sample program to solve Problem H2 by DDVERK

C ... Declaration of variables

C .. Parameter integers ..

INTEGER LOLD,N,NC,NW,MU,OMEGA

C LOLD: the size of history queue

C N: the number of equations

C NC: the size of communication array (must be greater than 33)

C NW: the leading dimension of work array (must be greater than

C max(N,MU+OMEGA))

C MU: The number of solution delay terms

C OMEGA: The number of derivative delay terms

C .. Parameters ..

PARAMETER(LOLD=100,N=1,NC=33,NW=2,MU=1,OMEGA=1,NSAMPLE=1001)

C .. Scalar integers ..

INTEGER I,IND

C I: index for DO LOOP

C IND: indicator

C .. Scalar doubles ..

DOUBLE PRECISION T,TEND,TOL,DM1,DELFM

C T: independent variable

C TEND: end time of integration

C TOL: tolerance

C .. Array doubles ..

DOUBLE PRECISION Y(N),C(NC),W(NW,30)

DOUBLE PRECISION TOLD(LOLD),KOLD(NW,7,LOLD)

C

C TT and YY correspond to the discrete solution computed by the

C underlying discrete RK formula and TTFM and YYFM correspond

C to the CRK formula, S(x), evaluated at the set of NSAMPLE

C sample points equally space in [T_0, TEND].

C

DOUBLE PRECISION TT(100), YY(N, 100), YYP(N, 100)

DOUBLE PRECISION TTFM(NSAMPLE), YYFM(N, NSAMPLE)

C Y: solution

C C: communication vector

C W: work array (the second dimension of W should be at least

C 20 + MU + OMEGA)

C TOLD: vector for storing T values

93

C KOLD: array for storing solutions and derivatives

C (the second dimension must be 7)

C .. External subroutines ..

EXTERNAL SIGMA,FCN,YINIT,DYINIT

C ... Solve the problem over different tolerances from 10^(-2) to 10^(-10)

DO 10 I = -2, -10, -2

IND = 2

DO 3 k = 1,33

C(k) = 0.e0

3 CONTINUE

C(32) =1.e0

TOL = 10.D0**I

PRINT ’("*************************************")’

PRINT ’("TOL = ", 1PD9.2)’, TOL

PRINT ’("ERROPT = ", F10.0)’, C(32)

C ... Initialization

T = 0.D0

Y(1) = 0.D0

TEND = 4.D0 * DATAN(1.D0)

TTFM(1) = T

DELFM = (TEND - T)/ DFLOAT(NSAMPLE - 1)

DO 5 k = 2, (NSAMPLE - 1)

TTFM(k) = T + (k-1)*DELFM

5 CONTINUE

TTFM(NSAMPLE) = TEND

C ... Loop

30 CALL DDVERK(N,NW,MU,OMEGA,IND,LOLD,T,TEND,Y,TOL,TOLD,KOLD,

+ W,C,FCN,SIGMA,YINIT,DYINIT)

IF (T .LT. TEND) GOTO 30

C ... End loop

C ... Print out the statistics

PRINT ’(/"IND = ", I3)’, IND

PRINT ’("T = ", F12.5)’, T

PRINT ’("Y = ", D26.15)’, Y

PRINT ’("FCN = ", F10.0)’, C(24)

PRINT ’("STEP = ", F10.0)’, C(22)

PRINT ’("Global Error at T = ", D16.5)’,

+ DABS(Y(1) - DSIN(T))

94

C

C

C At this point the global derivative and interpolant routines,

C DERIVG and INTERPG, can be used to evaluate the piecewise polynomial,

C S(x) for any x in [T_0, TEND].

C

Ksteps = C(22)

DO 40 k = 1, Ksteps

C

C Determine the values of y_k and y_{k-1} for k = 1, 2 .. Ksteps.

C

TT(k) = TOLD(k)

YY(1, k) = KOLD(1, 3, k)

C YY(2, k) = KOLD(2, 3, k)

YYP(1, k) = KOLD(1, 4, k)

C YYP(2, k) = KOLD(2, 4, k)

C PRINT ’("Tdiscrete = ", E12.5)’, TT(k)

C PRINT ’("Ydiscrete = ", E12.5)’, YY(1,k)

40 CONTINUE

TT(Ksteps + 1) = TOLD(Ksteps +1)

YY(1, Ksteps+1) = KOLD(1, 3, Ksteps+1)

C YY(2, Ksteps+1) = KOLD(2, 1, Ksteps+1)

YYP(1, Ksteps+1) = KOLD(1, 4, Ksteps+1)

C YYP(2, Ksteps+1) = KOLD(2, 2, Ksteps+1)

C PRINT ’("Tdiscrete = ", F12.5)’, TT(Ksteps+1)

C PRINT ’("Ydiscrete = ", F12.5)’, YY(1, Ksteps+1)

DM1 = 0.e0

DO 42 kk = 1,Ksteps

DM1 = DMAX1(DM1, DABS((YY(1,kk) - DSIN(TT(kk)))))

42 CONTINUE

PRINT ’("Maximum Discrete Global error = ", D16.5)’, DM1

C

C Now determine the fine mesh solution using S(x) evaluated

C on the fine mesh of NSAMPLE equally spaced points, TFM(NSAMPLE).

C

MM = 2

DO 45 k = 1, (NSAMPLE-1)

CALL INTRPG(N,NW,MM,TOLD(MM-1),TTFM(k),YYFM(1,k),

+ TOLD(MM)-TOLD(MM-1),KOLD)

C PRINT ’("Tcont= ", E12.5)’, TTFM(k)

C PRINT ’("Ycont= ", E12.5)’, YYFM(1,k)

C PRINT ’("Global error = ", D16.5)’,

C + DABS(YYFM(1,k)-DSIN(TTFM(k)))

95

IF (TTFM(k+1) .GE. TOLD(MM)) THEN

C LOOP

41 CONTINUE

MM = MM+1

IF (TTFM(k+1) .LE. TOLD(MM)) GO TO 43

GO TO 41

43 CONTINUE

END IF

45 CONTINUE

YYFM(1, NSAMPLE) = KOLD(1, 3, Ksteps + 1)

DM1 = 0.e0

DO 47 kk = 1, NSAMPLE

DM1 = DMAX1(DM1, DABS((YYFM(1, kk) - DSIN(TTFM(kk)))))

47 CONTINUE

PRINT ’("Maximum Continuous Global error = ", D16.5)’, DM1

10 CONTINUE

END

SUBROUTINE FCN(N,ND,NW,T,Y,YDEL,DY)

C ... This subroutine computes derivative

C ... Scalar arguments

INTEGER N,NW,ND

DOUBLE PRECISION T

C N: the number of equations (input)

C NW: the leading dimension of work array W (input)

C ND: the number of different delay arguments (input)

C T: independent variable (input)

C .. Array arguments

DOUBLE PRECISION Y(N),YDEL(NW,ND),DY(N)

C Y: solution at T (input)

C YDEL: i, j element contain i-th component of delay

C value at j-th delay argument (input)

C DY: derivative value at T (output)

dy(1) = dcos(t) * (1.d0 + ydel(1,1)) + 0.1d0 * y(1) * ydel(1,2)

& + 0.9d0 * dsin(t) * dcos(t*dsin(t)**2)

& - dsin(t + t * dsin(t)**2)

RETURN

96

END

SUBROUTINE SIGMA(N,ND,T,Y,DELARG)

C ... This subroutine computes delay arguments

C .. Scalar arguments ..

INTEGER N,ND

DOUBLE PRECISION T

C N: the number of equations (input)

C ND: the number of different delay argument (input)

C T: independent variable (input)

C .. Array arguments ..

DOUBLE PRECISION Y(N),DELARG(ND)

C Y: solution at T (input)

C DELARG: delay argument (output)

DELARG(1) = T * Y(1)**2

DELARG(2) = T * Y(1)**2

RETURN

END

SUBROUTINE YINIT(N,T,Y)

C ... This subroutine computes solutions at T on initial interval

C .. Scalar arguments ..

INTEGER N

DOUBLE PRECISION T

C N: the number of equations (input)

C T: independent variable (input)

C .. Array arguments ..

DOUBLE PRECISION , Y(N)

C Y: initial value at T (output)

Y(1) = 0.D0

RETURN

97

END

SUBROUTINE DYINIT(N,T,DY)

C ... This subroutine computes derivatives at T on initial interval

C .. Scalar arguments ..

INTEGER N

DOUBLE PRECISION T

C N: the number of equations (input)

C T: independent variable (input)

C .. Array arguments ..

DOUBLE PRECISION DY(N)

C Y: initial derivative value at T (output)

DY(1) = 1.D0

RETURN

END

98

This is the outut from this sample program run on the above test problem.

TOL = 1.00D-02

ERROPT = 3.

IND = 3

T = 3.14159

Y = -0.248414800863683D-03

FCN = 132.

STEP = 7.

Global Error at T = 0.24841D-03

Maximum Discrete Global error = 0.62497D-03

Maximum Continuous Global error = 0.62644D-03

TOL = 1.00D-04

ERROPT = 3.

IND = 3

T = 3.14159

Y = -0.207498170218257D-05

FCN = 254.

STEP = 10.

Global Error at T = 0.20750D-05

Maximum Discrete Global error = 0.92995D-05

Maximum Continuous Global error = 0.11190D-04

TOL = 1.00D-06

ERROPT = 3.

IND = 3

T = 3.14159

Y = -0.244358529799538D-07

FCN = 333.

STEP = 15.

Global Error at T = 0.24436D-07

Maximum Discrete Global error = 0.95730D-07

Maximum Continuous Global error = 0.97124D-07

TOL = 1.00D-08

ERROPT = 3.

IND = 3

T = 3.14159

Y = 0.751636530793576D-10

99

FCN = 581.

STEP = 29.

Global Error at T = 0.75164D-10

Maximum Discrete Global error = 0.85113D-09

Maximum Continuous Global error = 0.95214D-09

TOL = 1.00D-10

ERROPT = 3.

IND = 3

T = 3.14159

Y = 0.627817242637718D-12

FCN = 1062.

STEP = 59.

Global Error at T = 0.62769D-12

Maximum Discrete Global error = 0.10295D-10

Maximum Continuous Global error = 0.10736D-10

100

3 Numerical methods for BVPs

3.1 Superposition (for Linear Problems)

This section is based on a sequence of Technical Reports and publications by M. Scott,
H.A. Watts and colleagues who implemented a family of Two-point BV Codes at SAN-
DIA Laboratories in the period 1978 - 1980. Extensions of the basic method, SUPORT,
described in this section to handle nonlinear problems (SUPORQ) and eigenvalue prob-
lems (SUPORE) are also available.

1. Consider the Linear BVP,
y′ = F (x)y + g(x),

with separated boundary conditions,

Ay(a) = ya, By(b) = yb,

where y, g ∈ <n, F is an n× n matrix, A is an (n− k)× n matrix of rank n− k,
B is a k × n matrix of rank k, ya ∈ <n−k and yb ∈ <k.

2. The Principle of Superposition (Mathematical Justification)

• let u1(x), u2(x) · · ·uk(x) be linearly independent solutions of,

u′ = F (x)u,

with initial conditions chosen so that

Aui(a) = 0, for i = 1, 2 · · ·k.

(That is, the ui(a)’s span the null space of A.) Furthermore, let v(x) satisfy,

v′ = F (x)v + g(x), Av(a) = ya.

• Now if,
U(x) =

[
u1(x) u2(x) · · · uk(x)

]
n×k

,

we have,

y(x) = v(x) + c1u1(x) + c2u2(x) · · ·+ ckuk(x) = v(x) + U(x)c,

satisfies the differential equation (y′ = F (x)y + g(x)) as well the ‘left’
boundary condition, Ay(a) = ya for any choice of c.

• If, in addition, c is chosen to satisfy,

By(b) = Bv(b) + BU(b)c = yb,

(or [BU(b)]c = yb − Bv(b)), a system of k linear equations in k unknowns,
then the differential equations and all the boundary conditions will be satis-
fied.

101

3. The Superposition Algorithm is then:

Choose orthonormal vectors, u1, u2 · · ·uk, that span the null space of A, and v0,
such that Av0 = ya.

Solve simultaneously the matrix IVP,

U ′ = F (x)U, U(a) = [u1u2 · · ·uk];

and
v′ = F (x)v + g(x), v(a) = v0.

Set y(x) = v(x) + U(x)c, where c is the solution of the linear equation,

BU(b)c = yb − Bv(b).

4. Difficulties:

• The columns of U(x) often tend to become linearly dependent (as x increases).

• It is often the case that ‖y(x)‖ may be small while the ‖ui(x)‖ are large.
This implies a ‘loss of significance’ in determining y(x), even if the ci’s are
accurate.

To overcome these difficulties, Reorthonormalization is performed at a set of points:
(P subintervals)

a = x0 < x1 · · · < xP = b.

Note that orthogonality will ensure that linear independence is retained while the
normalization will ensure that the size of the ‖ui‖ does not become large. Over
each sub-interval, (xm, xm+1) we solve a matrix IVP,

U ′
m = F (x)Um, Um(x(m)) = U0

m;

and the particular IVP,

v′
m = F (x)vm + g(x), vm(xm) = v0

m.

The initial values are chosen as follows:

(a) For m = 0, choose U 0
m and v0

m as for standard superposition (Av0
0 =

ya, AU0
0 = 0).

(b) For subsequent subintervals, m > 0, we first decompose the matrix Um−1(xm)
as,

Um−1(xm) = QmRm,

where Qm is an n×k matrix with orthonormal columns and Rm is a k×k upper
triangular matrix. This is a standard linear algebra decomposition and can

102

be accomplished using modified Gram Schmidt or Householder Reflections.
We then set the initial conditions for the IVPs on interval m by,

U0
m = Qm, v0

m = vm−1(xm) − Qmwm,

where wm ∈ <k is chosen to make v0
m orthogonal to the columns of U 0

m. That
is,

QT
mv0

m = 0 ⇒ QT
mvm−1(xm) − wm = 0,

and therefore
wm = QT

mvm−1(xm)

and, from the definition of v0
m,

v0
m = [I − QmQT

m]vm−1(xm).

Now we can introduce the unknown vectors, cm ∈ <k and let

y(x) = ym(x) for x ∈ (xm, xm+1),

where,
ym(x) ≡ vm(x) + Um(x)cm.

(Note that with this definition, ym(x) satisfies the ODE for any cm.) Continuity
at xm will require ym−1(xm) = ym(xm) or,

vm−1(xm) + Um−1(xm)cm−1 = vm(xm) + Um(xm)cm.

From the definitions of the initial conditions, U 0
m, v0

m we then have,

vm−1(xm) + Um−1(xm)cm−1 = v0
m + U0

mcm = vm−1(xm) − Qmwm + Qmcm.

Therefore we have,
Um−1(xm)cm−1 = Qm[cm − wm],

or, since Um−1(xm) = QmRm,

QmRmcm−1 = Qm[cm − wm],

which, after multiplying on the left by QT
m, becomes,

Rmcm−1 = [cm − wm].

This triangular system of linear equations must be satisfied on each subinterval,
m = 1, 2 · · · (p − 1) and the boundary condition at x = b requires,

BUp−1(b)cp−1 = yb − Bvp−1(b).

103

5. Overview of Superposition Procedure: Given a = x0 < x1 · · · < xP = b,

• Determine the intial values for the first interval, x0 = a, U0
0 , v0

0.

• For each interval, m = 1, 2 · · · (P − 1),

– Use an IV Solver to determine Um−1(xm), vm−1(xm).

– Decompose Um−1(xm) = QmRm.

– Set U0
m = Qm, wm = QT

mvm−1(xm), v0
m = vm−1(xm) − Qmwm.

• End For

• Use an IV Solver to determine UP−1(b), vP−1(b).

• Solve BUP−1(b)cP−1 = yb − BvP−1(b).

• For m = (P − 1), (P − 2) · · ·1,

– Solve the triangular system, Rmcm−1 = (cm − wm).

• End For

With this procedure we can obtain output of the approximate solution, ym(x), at
a set of output points, tr, in two ways,

(a) Locate the interval (xm, xm+1) containing tr and then, using the stored values
of cm, v0

m, and U0
m, determine the initial values z0

m = v0
m + U0

mcm and use an
IV solver to determine zm(x) by approximating the solution of the IVP,

z′ = f(x)z + g(x), for x ∈ [xm, xm+1].

(b) Save U(tr), v(tr) at all output points during the solution step and then, after
the back substitution step for interval m, determine ym(tr) using cm.

6. Some Implementation Considerations:

• Choosing the initial conditions, U0(a), so that AU0(a) = 0. This is done using
a QR factorization of AT . With such a Q we set,

U0 ≡ Q

0 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0

Ik

.

• Choosing the initial conditions, v0(a) so that Av0(a) = ya. This is done using
standard LLSQ software to fine the min norm solution of the underdetermined
LLSQ problem Az = ya.

• The current package allows a choice of IV methods to solve the required IVPs.
The methods available are: RKF45, DE/STEP and LSODE.

• The package chooses the orthonormalization points by factoring Um(x) = QR
on each step and inserting a new point when a loss of independence is detected
(when small magnitude diagonal elements are observed in R).

104

3.2 Initial-Value based BVP Methods (for Nonlinear Prob-
lems)

In this section we present an overview of Shooting methods for BVPs using, as an
example code, the general purpose Multiple Shooting code developed at JPL by F.
Krogh and colleagues. It is a state-of-the-art code that can handle efficiently many non-
standard extensions of the basic TPBVP. Another code implementing Multiple Shooting
with fewer extensions is discussed in detail in the text.

The basic idea behind a shooting method is to view the nonlinear TPBVP as a
general nonlinear equation,

G(z) = 0

(where the ‘unknown’ vector z includes, as a subset of its components, the initial value
vector, y(a)) and solve this equation using Newton’s Method – That is, apply the
iteration: ‘predict’ z0, then ‘iterate”:

∂G

∂z
|zl−1(∆zl) = −G(zl−1), zl = zl−1 + (∆zl),

for l = 1, 2 · · ·.
Consider the TPBVP,

y′ = f(x, y, λ), x ∈ [a, b],

with separated boundary conditions,

Ay(a) = ya, By(b) = yb,

where y ∈ <n, λ ∈ <m m ≥ 0, f : [a, b] × <n × <m → <n, A is an (n − k) × n matrix
of rank n − k, and B is a (k + m) × n matrix of rank (k + m).

1. Assume we have a partition, a = x0 < x1 · · · < xP = b, (the breakpoints), and let
yi(x, λ) be the solution of the local IVP,

y′ = f(x, y, λ), yi(xi, λ) = si, x ∈ [xi, xi+1].

(Note that in this equation, λ, si are assumed fixed.)

Multiple Shooting involves replacing the original TPBVP with the equivalent
(larger but better conditioned) multipoint BVP:

g0 = As0 − ya = 0,

gi = yi−1(xi, λ) − si for i = 1, 2 · · · (P − 1),

gP = ByP−1(b, λ) − yb.

or G(s0, s1 · · · sP−1, λ) = 0. This is a system of nP + m nonlinear equations in the
nP + m unknowns,

z ≡ (s0, s1 · · · sP−1, λ)T .

105

2. A Newton-type iteration to solve this problem requires (for the computation of ∂G
∂z

),
∂gi

∂si

= −I and
∂gi

∂si−1

=
∂yi−1(xi, λ)

∂si−1

≡ Yi−1.

Let Yi−1(x, λ) = ∂
∂si−1

(yi−1(x, λ)). We then have that Yi−1(x, λ) satisfies the matrix

ODE,

d

dt
Yi−1(x, λ) =

d

dt

∂

∂si−1

(yi−1(x, λ))

=
∂

∂si−1

d

dt
(yi−1(x, λ))

=
∂

∂si−1

f(x, yi−1(x, λ), λ)

=
∂f

∂y

∂yi−1(x, λ)

∂si−1

=
∂f

∂y
Yi−1(x, λ).

with associated initial conditions,

Yi−1(xi−1, λ) =
∂

∂si−1

(yi−1(xi−1, λ)) =
∂

∂si−1

(si−1) = I.

Thus we have that Yi−1(x, λ) satisfies a linear homogeneous matrix IVP for x ∈
[xi−1, xi] and the required partial derivative, ∂gi

∂si−1
is equal to Yi−1(xi, λ).

3. Similarly, to compute ∂gi

∂λ
, we have,

∂gi

∂λ
=

0 for i = 0,
∂yi−1(xi,λ)

∂λ
for i = 1, 2 · · · (P − 1),

B ∂yP−1(xP ,λ)
∂λ

for i = P,

and if we define,

Y λ
i−1(x, λ) ≡ ∂

∂λ
(yi−1(x, λ),

then Y λ
i−1(x, λ) satisfies the inhomogeneous linear ODE,

d

dt
(Y λ

i−1) =
d

dt
(
∂yi−1(x, λ)

∂λ
,

=
∂

∂λ
(
dyi−1(x, λ)

dt
,

=
∂

∂λ
(f(x, yi−1(x, λ), λ)),

=
∂f

∂y

∂yi−1

∂λ
+

∂f

∂λ
,

=
∂f

∂y
Y λ

i−1 +
∂f

∂λ
,

106

with initial conditions,

Y λ
i−1(xi−1, λ) =

∂

∂λ
(yi−1(xi−1, λ)) =

∂

∂λ
(si−1) = 0.

4. Newton’s iteration for solving our system of nonlinear equations becomes,

• Predict s0
i for i = 0, 1 · · · (P − 1) and λ0 (that is, determine z0).

• For each iteration, l = 1, 2 · · ·; determine the correction vectors, (∆si)
l and

(∆λ)l by solving the linear system:

5.

A 0 0 · · · 0 0
Y0(x1, λ) −I 0 · · · 0 Y λ

0 (x1, λ)
0 Y1(x2, λ) −I · · · 0 Y λ

1 (x2, λ)
...

...
... · · · ...

...
0 0 0 · · · BYP−1(xP , λ) BY λ

P−1(xP , λ)

∆s0

∆s1
...

∆sP−1

∆λ

= −

g
0

g
1

g
2
...

g
P

Note that the matrix of coefficients and the RHS vector (the Newton Residual) can
be computed in groups of n rows by solving three sets of IVPs between adjacent
breakpoints, (xi−1, xi).

• Simple Shooting refers to the case P = 1 which results in a dense linear
system of equations.

• For large values of P system has sparse block structure with the three sets of
IVPs being of size n, n2, and mn.

• It is straightforward to extend this derivation to acount for nonseparated
boundary conditions or nonlinear boundary conditions.

6. Nonlinear Interior Constraints:
Consider a standard TPBVP with additional constraints specified as,

hr(y(tr, λ), λ) = 0, for r = 1, 2 · · · s,

where tr ∈ [xir , xir+1].

Note that with this type of constraint:

• One can specify multipoint problems or nonlinear endpoint conditions.

107

• Each constraint adds an extra row to the linear system but the block structure
is preserved,

∂hr

∂sir

=
∂hr

∂y

∂yir

∂sir

=
∂hr

∂y
|tr ,yir (tr ,λ)Yir(tr, λ),

∂hr

∂λ
=

∂hr

∂y

∂yir

∂λ
+

∂hr

∂λ
=

∂hr

∂y
|tr ,yir (tr ,λ)Y

λ
ir (tr, λ) +

∂hr

∂λ
.

Therefore the user must provide subroutines to compute hr,
∂hr

∂y
, ∂hr

∂λ
as well

as f, ∂f
∂y

, ∂f
∂λ

.

• If the total number of constraints is greater than the number of unknowns,
n + k, the system is treated as an overdetermined nonlinear least squares
problem.

7. Quadrature Constraints:
Eigenvalue problems often require orthogonality constraints to ensure the problem
is well-posed. As an example consider the ODE, y′′ = −λ2y. The solution can
be normalized by requiring:

(a)
∫ 1
0 y2

i ds = 1, where yi is the ith eigenfunction and

(b)
∫ 1
0 yiyjds = 0, for i 6= j.

These constraints can be handled by the multiple shooting code by specifying
additional differential equations with appropriate boundary conditions,

(a) v′
i = y2

i (t), v(0) = 0, v(1) = 1.

(b) w′
i j = yi(t)yj(t), wi j(0) = 0, wi j(1) = 0.

These ‘extra’ differential equations are special since for all other components, fr,
of the system we have,

∂fr

∂vi
=

∂fr

∂wi j
≡ 0.

That is, the corresponding columns of ∂f
∂y

are 0.

8. Other Implementation Considerations:

• The placement (or adjustment) of the ‘breakpoints’ is determined by moni-
toring the growth of the variational equations; Yi, Y

λ
i . and the conditioning

of the Yi, (‖Yi‖‖Y −1
i ‖). The user can specify the initial locations.

• Convergence of the modified Newton iteration can be very sensitive to the
initial guess (s0

0, s
0
1 · · · s0

P−1). A guess for s0
0 is required with the default guess

for s0
i , i > 0 being s0

i = s0
0, if no value is supplied by the user.

• A block banded matrix technique is used to solve the linear system of equa-
tions associated with each Newton iteration.

108

• Marquardt stabilization is used to improve the chances for convergence (this
is particularly useful when only a crude initial guess is available and the initial
Newton residual quite large).

• The JPL code allows grouping of the variational equations and quadratures
(Yi, Y λ

i , vi, wi j) and a different tolerance can be specified for each group.
Higher order ODEs can be handled directly without conversion to first order
systems and the initial value method used is a variable order Adams method.

• The NAG and IMSL (Visual Numerics) multiple shooting codes use a ERK
code based on an efficient formula pair for the IVPs that must be solved.

9. Obtaining accurate Initial Predictions– Continuation.
In solving nonlinear BVPs with any method, codes inevitably use an iteration to
solve a nonlinear system of equations and an initial ‘guess’ of the solution over the
interval of interest is expected. While a crude approximation, such as y(x) ≡ y0

may work, a more accurate initial approximation will generally result in more
rapid convergence. Continuation is one technique that is often used to enable BVP
methods to efficiently solve difficult nonlinear problems. We will first describe the
generic approach (that can be used by any BV solver) and then consider how
multiple shooting methods are able to adopt this technique in an automatic way.

• Continuation – The Generic Approach: For many nonlinear problems it is
difficult to obtain an approximate solution because insufficient information
is known to enable one to choose an appropriate non-uniform mesh and/or
a sufficiently accurate initial guess, As a result the modified Newton itera-
tion (associated with the BV method) to solve a discrete problem will not
converge. The motivation for continuation is that by solving sequentially a
set of related ‘nearby’ problems we can, for each problem, hope to provide
an appropriate initial mesh and initial guess for the solution. This approach
can apply to any method that permits a user to specify an initial mesh (or
selection of breakpoints for multiple shooting) together with an initial guess
for the solution on this mesh. Although the procedure can be automated to
some extent it is likely some user interaction or intervention will be required.

To use this approach, the user must first introduce a scalar parameter, α, so
that the differential equation becomes,

y′ = f(x, y, α),

with standard boundary conditions (which may also depend on α). This
parameterization should be chosen so that α = 1 corresonds to the original
problem and α = 0 corresponds to a problem which can be solved on a known
mesh x0 < x1 · · · < xN . (For example, the value α = 0 may correspond to a
linear problem.)

109

An overview of this approach is presented below.

-set α0 = 0 and initial mesh x0
0 < x0

1 · · ·x0
N0

;
-invoke the BV solver to determine the discrete solution on this mesh,

(y0
0, y

0
1 · · · y0

N0
);

-set j = 0 ;
-Repeat until (αj = 1 or all attempts fail);

-choose the next value, αj+1;
-choose the initial mesh for the next problem,xj+1

0 , xj+1
1 · · ·xj+1

Nj+1
;

(Usually this mesh will be equal to or a refinement of xj
0, x

j
1 · · ·xj

Nj
)

-choose an initial guess for the solution at xj+1
0 , xj+1

1 · · ·xj+1
Nj+1

;

This will involve referring to yj
0, y

j
1 · · · yj

Nj
.

-invoke BV solver on problem determined by αj+1 with initial
mesh and corresponding initial guess yj+1

0 , yj+1
1 · · · yj+1

Nj+1
;

-if (BV solver was successfull) then
-set j = j + 1;

-else
-consider reducing αj+1 for the next attempted step;

-end Repeat

• Automatic parameter Continuation in Multiple Shooting:
Consider applying a multiple shooting method to the problem,

y′ = f(x, y, λ, α),

where we want to solve the problems corresponding to α0 and αj = αj−1 +
∆αj, j = 1, 2 · · ·k (where the ∆αj are known). After solving the jth problem,
(s0,j , s1,j · · · sP−1,j, λj), the method generates accurate starting values for the
(j + 1)st problem. Let s0

i,j+1 = si,j + ∆si,j, and λ0
j+1 = λj + ∆λ, then we

want to solve G(αj+1, zj+1) = 0 given that G(αj, zj) = 0 and αj+1 = αj +∆α.
That is, find zj+1 = zj + ∆z the solution of G(αj+1, zj+1) = 0. There are two
alternatives: The first is to set z0

j+1 = zj and iterate using Newtons method.

The second alternative is based on an expansion of G(α, z) as a Taylor series
in two variables.

G(αj+1, zj+1) = G(αj + (∆α), zj + ∆z)

= G(αj, zj) +
∂G

∂α
(∆α) +

∂G

∂z
(∆z)

Therefore (∆z) is determined from the solution of,

∂G

∂z
(∆z) = −(∆α)

∂G

∂α
,

110

and the initial guess is z0
j+1 = zj+(∆z). To compute ∂G

∂α
|αj

we add yet another
initial value sytem which need only be approximated on the last iteration of
the jth problem. This extra vector IVP has the form,

w′ =
∂f

∂y
w +

∂f

∂α
, w(a) = 0.

This follows since,

∂gi

∂α
=

0 for i = 0
∂yi−1

∂α
|x=xi

for i = 1, 2 · · · (P − 1)

B ∂yP−1

∂α
|x=xP

for i = P

Letting ui(x) ≡ ∂
∂α

yi−1(x, λ, α) we note that ui satifies the IVP:

u′
i =

∂f

∂y
ui +

∂f

∂α
, ui(xi−1) =

∂

∂α
si−1 = 0.

Therefore we have the desired (∆z) satisfies,

∂G

∂z
|zj

(∆z) = −(∆αj)[0, u1(x1), u2(x2) · · ·uP−1(xP−1), BuP (xP)]T .

The JPL shooting method implements this form of automatic parameter con-
tinuation. Note that the code has already solved a system of linear equations
of this form (with a different RHS) in the last Newton iteration of the j th

problem.

3.3 Collocation based BVP Methods

Collocation methods are a particular instance of a broader class of Expansion Methods
which have their roots in approximation theory and have been used extensively in de-
veloping numerical methods for PDEs. These methods are often considered inefficient
and/or unstable for ODEs, but collocation for BVPs is an exception.

1. The key idea for any expansion method:–Choose a basis set of known, well-behaved,
hi(x), and approximate the solution, y(x), by a linear combination of the hi(x),

y(x) ≈ v(x) ≡
K∑

k=1

akhk(x),

where the ai’s are chosen so that v(x) will satisfy the boundary conditions and
‘almost satisfy’ the Differential Equation for all x ∈ [a, b].

Note if y(x) ∈ <n an expansion will be associated with each component and K
may be different for different components. That is, for r = 1, 2 · · ·n,

yr(x) ≈ vr(x) ≡
Kr∑

i=1

ar,ihi(x).

111

2. For Collocation the unknown coefficients, {ar,i}, r = 1, 2 · · ·n : i = 1, 2 · · ·Kr,
are defined by two sets of constraints (assume for simplicity that Kr = K for
r = 1, 2 · · ·n).

• Boundary conditions – n constraints.

• Collocation conditions – the defect of the ODE is zero at a prescribed set of
K −1 ‘collocation’ points, {xj}K−1

j=1 . That is, each component of v(x) satisfies
the ODE exactly at K − 1 points,

v′(xj) =

v′
1(xj)

v′
2(xj)

...
v′

n(xj)

=

f1(xj, v(xj))
f2(xj, v(xj))

...
fn(xj, v(xj))

, for j = 1, 2 · · ·K − 1.

This results in (K − 1)n equations in the Kn unknowns.

• If we are not unlucky these equations will have a unique solution, defining
v(x), and as K → ∞ the corresponding v(x) → y(x) for all x ∈ [a, b]. Such
convergence results will rely on theorems from approximation theory and will
make assumptions on the choice of hi(x) and the smoothness of y(x). (Jackson
Theorems)

• Collocation can cope with multipoint boundary conditions without additional
difficulties.

• Collocation can handle higher order equations,

y(m) = f(x, y, y′ · · · y(m−1))

directly provided:

(a) v(x) is constrained to be in Cm−1[a, b].

(b) The appropriate number of boundary conditions are specified to deter-
mine a unique solution.

3. COLSYS/COLNEW – A collocation code:
We will now consider implementation details and the class of BVP problems that
can be effectively handled by this approach using the COLSYS/COLNEW software
package as an example. This package was introduced in a sequence of three papers
by Ascher, Christiansen and Russell (ACM TOMS 7,2,(1981), pp. 209-229: Math.
Comp, 33, (1979), pp. 659-679: and Springer Lecture Notes in Comp. Sc., 76,
(1979)). The text also discusses the code at length and presents the method in
detail in the appendix. We will adopt the notation of the text in this section (it is
not the same as the notation used in the first few chapters of these notes although
the transition should not be distracting).

Consider a mixed-order system of d differential equations of orders m1 ≤ m2 · · · ≤
md,

y
(mj)
j = Fj(x, z(y)), for j = 1, 2 · · ·d,

112

where y(x) = (y1(x), y2(x) · · · yd(x))T is the solution and

z(y) = (y1, y
′
1 · · · y

(m1−1)
1 , y2, y

′
2 · · ·y

(m2−1)
2 · · · yd, y

′
d · · ·y

(md−1)
d)T

is the vector of unknowns that would result after converting this mixed-order sys-
tem into an equivalent first-order system. To be well-posed this problem requires
m∗ =

∑d
j=1 mj multipoint boundary conditions. We will assume these are sepa-

rated and given in the form:

gj(tj, z(y(tj))) = 0 for j = 1, 2 · · ·m∗.

Note z(y) ∈ <m∗

and therefore gj : < × <m∗ → <.

Let a = x0 < x1 · · · < xN = b define a mesh, Π, on [a, b]. In COLSYS the hi(x)
define a basis for the space of piecewise polynomials. Let

Pl,Π = {S(x) | S is a piecewise polynomial of degree less than l on Π}.
The approximation determined by COLSYS is a vector valued function, v =
(v1, v2 · · · vd)

T such that

vj ∈ Pk+mj ,Π ∩ C(mj−1)[a, b] for j = 1, 2 · · ·d,

with k ≥ md being the number of collocation points per subinterval, (xi−1, xi). The
collocation points are xi−1 + αr(xi − xi−1), r = 1, 2 · · ·k, where the αr’s are the
Gauss points defined as the zeros of the appropriate Gauss-Legendre polynomial.

Now the vj’s are determined by requiring,

Collocation: Nkd constraints,

v
(mj)
j (xi−1+αr(xi−xi−1)) = Fj(xi−1+αr(xi−xi−1), z(v(xi−1+αr(xi−xi−1)))),

for i = 1, 2 · · ·N ; r = 1, 2 · · ·k; j = 1, 2 · · ·d.

Continuity: (N − 1)m∗ constraints (linear),

vj ∈ C(mj−1)[a, b], for j = 1, 2 · · ·d.

Boundary Conditions: m∗ constraints,

gj(tj, z(v(tj))) = 0, for j = 1, 2 · · ·m∗.

This gives a total of Nm∗ + Nkd constraints, while the number of unknowns
= N

∑d
j=1(k + mj) = N(kd + m∗). (Note if the original system had been reduced

to the equivalent first order system, z ∈ <m∗, the number of unknowns would be
N(km∗+m∗) as a separate polynomial for each derivative term would be required.)

Key Theoretical Result: One can show, using results from approximation the-
ory, the following two properties which guarantee the convergence and accuracy
of a Collocation BVP method that uses Gauss points as collocation points (and
COLSYS in particular).

113

• If the underlying mathematical problem has a sufficiently smooth isolated
solution, then for given Π and k ≥ md, v, the solution to the above nonlin-
ear system of equations, exists and Newtons Method converges quadratically
provided the initial guess is ‘close enough’ to y(x) and Π is fine enough.

• If h = maxi=1,2···N(xi − xi−1) then we have,

|y(l)
j (x) − v

(l)
j (x)| = O(hk+mj−l) for l = 1, 2 · · ·mj; j = 1, 2 · · ·d,

for any x ∈ [a, b] and at the xi’s we observe superconvergence,

|y(l)
j (xi) − v

(l)
j (xi)| = O(h2k) for l = 0, 1 · · · (mj − 1).

4. COLSYS/COLNEW – implementation considerations:

There are several strategies that are critical to the performance (efficiency and
reliability) of a collocation method. We will consider five of these strategies and
discuss how they have been implemented in COLSYS/COLNEW. These strategies
are,

• The choice of the Basis functions for the space, Pk+mj ,Π, (the hi(x)). COL-
SYS uses a B-spline basis as robust packages existed and could be directly
adopted. The more recent version, COLNEW, uses a monomial basis (for
x ∈ (xj−1, xj), hi(x) = (x − xj−1)

i−1
+).

• The Linear System Solver to be used to solve the linear system associated with
each iteration of the modified Newton method. It must exploit the special
structure that arises because of the choice of basis set and the special form
of the constraints.

• The use of a reliable error estimate, estl
j(x) ≈ el

j(x), where

el
j(x) = yl

j(x) − vl
j(x) = O(hk+mj−l).

• The Mesh Selection strategy whose goal is to equidistribute the error.

• The Modified Newton Iteration to be used.

Note that each strategy is critical but we will focus on the latter four which can
be somewhat messy to analyse and justify.

(a) The Linear System Solver:
Each constraint involves at most the unknowns associated with the poly-
nomials on adjacent sub-intervals, (xi−1, xi) and (xi, xi+1) (ie., 2(dk + m∗)
unknowns). If these constraints are ordered carefully the resulting Newton
Iteration Matrix of partial derivatives will be almost block-diagonal (for the
monomial or B-spline basis) with,

i. The number of unknowns = N(dk + m∗).

114

ii. The size of the blocks = dk + m∗,

iii. The routine SOLVEBLOCK , a standard B-spline code, is used directly.

iv. If the problem were to be converted to a first order equivalent system, the
vector z would have m∗ components and the degree of each polynomial
would be at most k. Therefore the number of unknowns would be (k +
1)m∗N and the size of the blocks would be (k + 1)m∗.

(b) Error Estimates:

An error estimate is required for mesh selection and accuracy control. When
k > md one can show that for x ∈ [xi−1, xi),

e
(l)
j (x) ≡ y

(l)
j (x)−v

(l)
j (x) =

y(k+mj)(xi−1)

2k+mj−l
ρ

(k−mj+l)
k (

2

hi
(x−xi−1/2))h

k+mj−l
i +O(hk+mj+1−l),

for l = 0, 1 · · · (mj − 1); j = 1, 2 · · ·d, where hi = (xi − xi−1); h = maxN
i=1 hi;

and

ρk(w) =
(w2 − 1)k

(2k)!
.

Note that y(k+mj)(xi−1) can be approximated by v(k+mj)(xi−1). This may not
be very accurate but may suffice for mesh selection. Also note the local nature
of the dominant error term as hi → 0.

Mesh halving is used to provide a more reliable estimate of el
j(x). Let

the two meshes be {xi}N
i=0, {x̂i}2N

i=0 with x̂2i = xi, and the corresponding
two numerical approximations: v(x) = [v1(x), v2(x) · · · vd(x)]T and v̂(x) =
[v̂1(x), v̂2(x) · · · v̂d(x)]T . The more reliable error estimate is based on two
‘representative’ (or sampled) values of v̂(x) − v(x) per subinterval. If we
let ∆1 and ∆2 represent the magnitude of the different components of these
representative values, we have for fixed values of j, l and i, in the range
1 ≤ j ≤ d; 0 ≤ l ≤ (mj − 1); 1 ≤ i ≤ N ,

∆1 ≡ |v(l)
j (xi+1/6) − v̂

(l)
j (xi+1/6)|,

and
∆2 ≡ |v(l)

j (xi+1/3) − v̂
(l)
j (xi+1/3)|,

Then, from the above expression for the error term, one can precompute
weights wk,r k = 1, 2 · · ·7; r = 0, 1 · · · (k − 1) such that

max
x∈[xi,xi+1]

|y(l)
j (x) − v

(l)
j (x)| ≈ wk,k+l−mj

(∆1 + ∆2).

In COLSYS the wk,r are defined by,

wk,r =
‖ρ(r)

k ‖
|22k−rρ

(r)
k (−2/3) − ρ

(r)
k (−1/3)| + |22k−rρ

(r)
k (−1/3) − ρ

(r)
k (1/3)|

,

115

where ‖ρ(k)
(r)‖ is a bound on ρ

(k)
(r)(u) for u ∈ [−1, 1]. These values are indepen-

dent of the problem and the hi . This estimate is quite reliable even when the
mesh is non-uniform (in which case the O(hk+mj+1−l) term may be dominant).

With this reliable error estimate, a component-wise error control strategy is
used. The user specifies error tolerances for some (or all) of the components
of z(v) and the method attempts to ensure that,

|z(y(x))νr − z(v(x))νr | ≤ Tolr + |z(v(x))νr |Tolr.

(a mixed absolute/relative control). The user must specify NTOL, {Tolr}NTOL
r=1 ,

and the vector {νr}NTOL
r=1 . The solution v̂(x) is accepted if for each subinterval,

i = 1, 2 · · ·N , we have,

estνr = wk,k+l−mj
(∆1+∆2) < Tolr+|z(v̂(xi))νr |Tolr, for r = 1, 2 · · ·NTOL.

(c) Mesh Selection:
The goal of mesh selection is twofold:

• Distribute the error equally – so that on each interval, i = 1, 2 · · ·N we
have comparable values for,

maxNTOL
r=1

estνr,i

(Tolr(1 + |vl
j(xi)|))

.

• Minimize the work required to generate an acceptable solution. That is,
find the smallest N ∗ such that for the mesh a = x0 < x1 · · · < xN∗ = b,
the error estimate is acceptable on each interval.

To accomplish this we recall,

|el
j| ≈ ck,k−mj+l|yk+mj

j (xi−1)|hk+mj−l
i , for i = 1, 2 · · ·N,

where the ck,k−mj+l are computable constants stored in COLSYS, and the
error criteria is equivalent to,

|estνr,i|
(Tolr(1 + |vl

j(xi)|))
≤ 1, for i = 1, 2 · · ·N.

Furthermore, if the error is equally distributed and N is close to optimal then,

maxNTOL
r=1

{
|estνr,i|

(Tolr(1 + |vl
j(xi)|))

}
≈ 1 for i = 1, 2 · · ·N.

Now let
sr(x) =

ck,k−mj+l

(Tolr(1 + |vl
j(xi)|))

|yk+mj

j (x)|,

116

and we then have:

maxNTOL
r=1

{
|estνr,i|

(Tolr(1 + |vl
j(xi)|))

}
≈ 1 ⇔ maxNTOL

r=1

{
sr(xi−1)h

k+mj−l
i

}
≈ 1

⇔ maxNTOL
r=1

{
[sr(xi−1)]

1/(k+mj−l)hi

}
≈ 1.

Therefore if we define,

s(x) ≡ maxNTOL
r=1

{
[sr(xi−1)]

1/(k+mj−l)
}

,

the mesh {x∗
i }N∗

i=0 will be close to optimal if

s(x∗
i)h

∗
i ≈ 1 for i = 1, 2 · · ·N ∗.

After solving for z(v) on a given mesh, COLSYS will consider redistribition
of the mesh on the next iteration by approximating s(x) with a piecewise
constant function, ŝ(x), defined for x ∈ [xi−1, xi) by:

ŝ(x) = maxNTOL
r=1

[
ck.k−mj+l

(Tolr(1 + |vl
j(xi)|))

v̂
(k+mj)
j

]1/(k+mj−l)

 ,

where

v̂
(k+mj)
j =

v̂
(k+mj−1)
j (xi+1+1/2) − v̂

(k+mj−1)
j (xi+1/2)

1
2
(xi+2 − xi)

≈ v̂
k+mj

j (xi+1).

The new mesh is chosen by first determining N ∗ and then determining the
{x∗

i }N∗

i=0 (in order) by satisfying,

∫ x∗

i

x∗

i−1

ŝ(x)dx =
1

N∗

N∑

m=1

ŝ(xm)hm, for i = 1, 2 · · · (N ∗ − 1).

Note that this last equation follows since ŝ(x) is piecewise constant and

∫ b

a
ŝ(x)dx =

N∑

m=1

ŝ(xm)hm.

117

An overview of the Mesh Selection Scheme for COLSYS/COLNEW is pre-
sented below:

-Repeat until (stopping criteria satisfied or N ≥ N̄);
-attempt to solve the problem on the current mesh;
-if (iteration scheme converged) then

-if (mesh obtained by halving and both converged then
-check stopping criteria and exit if OK;

-endif
-Consider Mesh refinement as Follows:

-set r1 = maxN
i=1{hiŝ(xi)};

-set r2 =
∑N

i=1 hiŝ(xi);
-set r3 = r2

N
;

-if (r1 < 2r2) then
-halve the current mesh (N ∗ = 2N) as the

error distribution is OK;
-else

-set N∗ = min{N̄/2, N, max(N, r2)/2};
-determine {x∗

i }N∗

i=1 using
∫ x∗

i
x∗

i−1
ŝ(x)dx = 1

N∗

∑N
m=1 ŝ(xm)hm,

-set N = N∗ and current mesh = {x∗
i };

-endif;
-else

-halve the current mesh (N = 2N);
-endif;

-endRepeat;

(d) The Modified Newton Iteration:
The solution of the nonlinear equations is based on a modified Newton iter-
ation with quasilinearization. Recall the original problem,

y
(mj)
j = Fj(x, z(y)), for j = 1, 2 · · ·d,

with boundary conditions,

gs(ts, z(y(ts))) = 0, s = 1, 2 · · ·m∗.

The corresponding Linearized BVP is given by:

w
(mj)
j =

m∗∑

r=1

∂Fj(x, z(v))

∂zr
z(w) + [Fj(x, z(v)) − vmj],

with boundary conditions,

βsw = βs(v)w =
m∗∑

r=1

∂gs(ts, z(v(ts)))

∂zr
z(w(ts)),

118

where v(x) is the current approximation to the solution of our nonlinear
problem (ie., the current Newton iterate). On each Newton iteration the
Newton correction, wL is determined by solving this linearized problem with
v(x) = vL−1(x), and the next iterate is defined by,

vL(x) = vL−1(x) + λLwL,

where the ‘damping factor’, λL, satisfies .01 ≤ λ ≤ 1, and is chosen dynam-
ically to improve convergence (a line search strategy). This is a ’Damped
Newton’ strategy combined with quasilinearization.

3.4 Finite Difference BVP Methods

Basic Idea: Replace any derivative in the ODE by a finite difference approximation of
the appropriate order and then solve the resulting (usually large) nonlinear difference
equation. For example, consider the second order system,

y′′ = f(x, y, y′), for x ∈ [a, b],

with non-separated boundary conditions,

g((y(a), y(b)) = 0, g : <n × <n → <2n.

If we introduce a uniform mesh h = b−a
N

, xi = a+ih, for i = 0, 1 · · ·N , then using central
differences to replace (ie, approximate) derivatives, we obtain the following difference
equation:

(yi+1 − 2yi + yi−1)

h2
= f(xi, yi,

yi+1 − yi−1

2h
), 1 ≤ i ≤ N − 1,

g1(y0, yN) = g2(y0, yN) = 0.

This discrete nonlinear system of equations to determine, y0, y1 · · · yN ∈ <(N+1)n, can
be solved by a modified Newton iteration to compute the approximations yi ≈ y(xi).

3.4.1 Background and Notation for Differences:

• Divided Differences (nonuniform mesh):

y[x0] ≡ y(x0),

y[x0x1 · · ·xk] ≡ y[x1x2 · · ·xk] − y[x0x1 · · ·xk−1]

xk − x0

.

One can show:

y[x0x1 · · ·xk] =
y(k)(η)

k!
,

for some η in the closed interval containing x0, x1 · · ·xk.

119

• Differences (uniform mesh):

Forward differences:

∆1f(x) ≡ f(x + h) − f(x),

∆r+1f(x) ≡ ∆rf(x + h) − ∆rf(x).

for r ≥ 1. Note that ∆rf(xk) = r!hrf [xkxk+1 · · ·xk+r].

Backward differences:

∇1f(x) ≡ f(x) − f(x − h),

∇r+1f(x) ≡ ∇rf(x) −∇rf(x − h),

for r ≥ 1, and one can show,∇rf(xk) = r!hrf [xkxk−1 · · ·xk−r].

Central differences:

δ1f(x) ≡ f(x + h/2) − f(x − h/2),

δr+1f(x) ≡ δrf(x + h/2) − δrf(x − h/2).

For m ≥ 1 we have

δ2m+1f(xk + h/2) = h2m+1(2m + 1)!f [xk−mxk−m+1 · · ·xk+m+1],

δ2m+1f(xk − h/2) = h2m+1(2m + 1)!f [xk−m−1xk−m · · ·xk+m],

δ2mf(xk) = h2m(2m)!f [xk−mxk−m+1 · · ·xk+m].

3.4.2 Convergence Results for Finite Difference Methods

Consider the first order system,

y′ = f(x, y), on [a, b],

with boundary conditions,
g(y(a), y(b)) = 0,

where y(x) ∈ <n; g : <n × <n → <n.

• Keller has studied the following difference scheme applied to this BVP,

1

hi
∇yi − f(xi−1/2,

yi + yi−1

2
), for i = 1, 2 · · ·N,

g(y0, yN) = 0,

where ∇yi ≡ yi − yi−1.

As for IVPs, the Local Truncation Error (LTE) associated with this scheme for
the ith interval, di, is:

di =
1

hi
∇y(xi) − f(xi−1/2,

y(xi) + y(xi−1)

2
).

120

• In addition to LTE, other concepts from the analysis of methods for IVPs are
used to investigate the convergence and efficiency of Finite Difference methods for
BVPs:

1. A difference scheme is of order p if the corresponding LTE di = O(hp+1
i) for

i = 1, 2 · · ·N .

2. A difference scheme is consistent if it is of order p, where p ≥ 1 (p ≥ m for
an mth order ODE).

3. A difference scheme is stable if for all y = {yi}N
i=0 and z = {zi}N

i=0 and for
some norm, |‖y‖| = maxN

i=0‖yi‖, there exists K > 0 such that for sufficiently
small h,

|‖y − z‖| ≤ K|‖d(y) − d(z)‖|,
where,

d(y) =

g(y0, yN)
d1

d2
...

dN

.

• Key Result:
A finite difference scheme will converge to the solution of this BVP (as h → 0) if
the ODE is Lipschitz continuous and the difference scheme is stable and consis-
tent. Furthermore Newtons method will converge when applied to the nonlinear
equations associated with the difference scheme provided h is small enough and
the initial guess is sufficiently accurate.

• Extrapolation:
Extrapolation can be used to increase the order of a finite difference method. If
one can show that the LTE satisfies an expansion:

d(y(x0), y(x1) · · ·y(xN)) ≡

g(y(x0), y(xN))
d1(y(x0), y(x1) · · · y(xN))
d2(y(x0), y(x1) · · · y(xN))

...
dN(y(x0), y(x1) · · ·y(xN))

,

where ,

di(y(x0), y(x1) · · ·y(xN)) =
k∑

r=1

hmrTr[y(xi)] + O(hmk+1),

for 1 ≤ i ≤ N , then on a uniform mesh the global error will satisfy,

yi − y(xi) =
k∑

r=1

hmrer(xi) + O(hmk+1),

121

where the er(x) are solutions of linear BVPs whose coefficients depend on y(x).
Examples of schemes with such an error expansion are the ‘Box Scheme’ and the
Trapezoidal rule. In these cases mr = 2r, r = 1, 2 · · · (k + 1).

Fom this expansion of the global error we see that extrapolation is justified. That
is, after computing a sequence of approximations with successively refined meshes
one can determine a suitable linear combination of these approximations that has
higher order.

• Deferred Correction:
An alternative (to extrapolation) which is based on the same expansion of the LTE,
but can be implemented in a more effective way, is the approach of deferred correc-
tion. The basic idea of this approach is to first approximate the coefficient of hm1

in the expansion of the LTE, T1[y(xi)], by some ‘difference operator’, T1,i[y0 · · · yN]
satisfying,

hm1‖T1[y(xi)] − T1,i[y0 · · ·yN]‖ ≤ M1h
m2 .

And then solve for the ‘corrected’ approximation, y1
i , of order m2 by solving the

nearby difference equation,

d0(y
1
0, y

1
N) = 0,

di(y
1
0, y

1
1 · · · y1

N) = hm1T1,i[y0 · · · yN] for i = 1, 2 · · ·N.

Note that we then have,

di(y0, y1 · · · yN) = 0,

di(y
1
0, y

1
1 · · · y1

N) = hm1T1,i[y0, y1 · · · yN],

and
di(y(x0), y(x1) · · · y(xN)) = hm1T1(xi) + O(hm2),

which implies,

di(y(x0), y(x1) · · ·y(xN)) = hm1T1,i[y0, y1 · · · yN] + O(hm2),

for i = 1, 2 · · ·N .

From the definition of stability this implies,

y(xi) − y1
i = O(hm2).

One can show that y1
i satisfy a similar error expansion to that for yi and therefore

the same process can be repeated to obtain y2
i (two steps of deferred correction)

which is accurate to O(hm3).

Note also,

122

1. This approach can be extended to nonuniform meshes.

2. Care must be taken when computing T1,i for i near 0 or i near N (otherwise
‘centered’ formulas can be used).

3. Often one can hold ∂d
∂y

fixed (ie., W l) at the value used to obtain convergence

to the original discrete problem with the solution {yi}N
i=0, or at most do one

additional Newton iterate with the residual redefined

3.4.3 Other Implementation Issues:

Consider the first order system,

y′ = f(x, y), for x ∈ [a, b],

with boundary conditions, g(y(a), y(b)) = 0. Recall, to approximate y(x) on a given
mesh, {xi}N

i=0, by a finite difference method we first introduce,

d(y) =

d0(y0, y1 · · · yN ; h)
d1(y0, y1 · · · yN ; h)

...
dN(y0, y1 · · · yN ; h)

,

and solve for y = (y0, y1 · · · yN)T such that d(y) = 0, where d0(y) = g(y0, yN), and di(y)
for i = 1, 2 · · ·N is a difference approximation to the ODE associated with [xi−1, xi].

Examples:

1. The Box scheme (also called the Midpoint or centered Euler scheme) is a second
order scheme defined by,

di+1(y) =
yi+1 − yi

h
− f(xi+1/2,

yi + yi+1

2
) ≈ [y′ − f(x, y)]|x=xi+1/2

.

2. The Trapezoidal rule is a second order scheme defined by

di+1(y) =
yi+1 − yi

h
− 1

2
[f(xi, yi) + f(xi+1, yi+1)].

Note that, in solving for the discrete approximations using Newtons’s method, the iter-
ation matrix, ∂d

∂y
, will be block bi-diagonal for the above schemes since ∂di+1

∂yj
= 0 except

for j = i + 1, and j = i, for i = 0, 1 · · · (N − 1). That is, the iteration matrix, W , used
in solving for the Newton step,

Wδ(l) = −d(y(l)),

is,

W =

A 0 0 · · · 0 B
C1 D1 0 · · · 0 0
0 C2 D2 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · CN DN

,

123

where A = ∂g
∂y0

, B = ∂g
∂yN

and,

Ci =
∂di

∂yi−1

=

− 1
h
I − 1

2
∂f
∂y
|(xi−1/2,yi−1/2), for the Box Scheme

− 1
h
I − 1

2
∂f
∂y
|(xi−1,yi−1), for the Trapezoidal rule

and

Di =
∂di

∂yi

=

1
h
I − 1

2
∂f
∂y
|(xi−1/2,yi−1/2), for the Box Scheme

1
h
I − 1

2
∂f
∂y
|(xi,yi), for the Trapezoidal rule

for i = 1, 2 · · ·N .

• In general we have, with a low order difference method, the bandwidth will be small
for the block matrix ∂d

∂y
but a small h will be necessary to obtain the specified

accuracy. This leads to large linear systems which are sparse and banded. On
the other hand, high order difference methods result in larger bandwidth systems
(width ≈ p, for pth order) but larger h is possible. That is, we have smaller linear
sytems with less sructure.

• For the solution of the nonlinear system, the iteration matrix, W is always block
banded with n × n blocks and the total size of the system (N + 1)n × (N + 1)n.

• The block banded structure may be disturbed because differences for intervals
near the beginning or near the end may require special approximations. This is
especially true if higher order differences are used or if nonuniform meshes used.

• An Overview of the Newton Iteration:
-Given an initial approximation {y(0)

i }N
i=0;

for l = 0, 1 · · · until convergence or trouble do:
-Compute the residual,

d(y(l)) =

d0(y
(l)
0 y

(l)
1 · · · y(l)

N)

d1(y
(l)
0 y

(l)
1 · · · y(l)

N)
...

dN(y
(l)
0 y

(l)
1 · · ·y(l)

N)

;

-Determine the Correction δ(l+1) by solving:

W lδ(l+1) = −d(y(l),

where W l ≈ ∂d
∂y
|y(l) ;

-Set y(l+1) = y(l) + δ(l+1);
end

124

• Note that with such an implementation:

1. Quadratic convergence is observed if W l is recomputed and factored on each
iteration.

2. In practice a difference method will often hold W l constant as long as the
residuals are decreasing in norm rapidly enough (linear convergence at best).

3. The cost of evaluating W l and its L−U decomposition is ≈ [Npn3 + Npn2]
flops plus N evaluations of the Jacobian matrix, ∂f

∂y
.

4. After the basic finite difference solution is obtained, one can apply one or two
steps of deferred correction to increase the accuracy on the same coarse mesh.

5. There is no obvious piecewise polynomial to provide an approximation at
off-mesh points.

3.5 Runge-Kutta Methods for BVPs

3.5.1 The Basic Approach

Consider the BVP,

y′ = f(x, y), with separated boundary conditions,

g1(y(a)) = 0, g2(y(b)) = 0.

For a given partitioning, a = x0 < x1 · · · < xN = b consider, on each subinterval
(xi−1, xi), introducing the residual Φi(yi−1, yi) defined in terms of how well yi satisfies a
particular Runge-Kutta formula assiciated with yi−1 and (xi−1, xi). That is, for a given
RK formula applied to this ODE we have,

ŷi = yi−1 + h
s∑

j=1

wjkj = zi(xi) + O(hp+1),

and the associated RK residual is defined by,

Φi ≡ yi − ŷi = yi − yi−1 − (xi − xi−1)
s∑

j=1

wjkj.

• At convergence, Φi = 0 for i = 1, 2 · · ·N , we will have yi = ŷi for all i. (That
is, the discrete solution {xi, yi}N

i=1 is a Runge-Kutta solution of the corresponding
IVP with initial value, y0.)

• The corresponding nonlinear set of equations is:

G(z) = 0, where z = (y0, y1 · · ·yN)T ,

125

and

G(z) =

g1(y0)
Φ1(y0, y1)
Φ2(y1, y2)

...
ΦN (yN−1, yN)

g2(yN)

.

The corresponding Newton iteration matrix is:

∂G

∂z
=

B0 0 0 · · · 0 0
L1 R1 0 · · · 0 0
0 L2 R2 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · LN RN

0 0 0 · · · 0 B1

,

where B0, B1 are associated with the boundary conditions and Li = ∂Φi

∂yi−1
, Ri =

∂Φi

∂yi
= I are each n × n matrices.

1. Note that,

Li =
∂Φi

∂yi−1
= −I − hi

s∑

j=1

wj
∂kj

∂yi−1
,

and since kj = f(xi−1+αjhi, yi−1+hi
∑s

r=1 βjrkr), the
∂kj

∂yi−1
satisfy the ‘matrix

equation’,

∂kj

∂yi−1
=

∂f

∂y

[
I + hi

s∑

r=1

βjr
∂kr

∂yi−1

]
, for j = 1, 2 · · · s.

2. In practice we can hold ∂f
∂y

, in this equation fixed; solve for the resulting

matrices,
∂kj

∂yi−1
; and then determine Li from (1). (A true Newton iteration

would require that ∂f
∂y

be evaluated at (xi−1 + αjhi, Y
l
j) for j = 1, 2 · · · s; l =

0, 1 · · ·.)
3. Considerable simplification of this approach is possible if the RK formula is

explicit (although such formulas are known to have poor stability properties).

• The structure and size of the Newton iteration matrix is independent of the order
(unlike finite difference and collocation methods). As the order p increases the Li

become more expensive to compute (what about the conditioning?).

• The stability can be good (suitable) if the RK formula is implicit (particularly for
problems with boundary layers – as we will see).

• Note that collocation formulas can be considered equivalent to a specific choice of
an IRK formula and therefore this interpretation leads to a different implementa-
tion for collocation.

126

3.5.2 Mono-Implicit RK Formulas

• Consider the class of IRK formulas that are ‘implicit’ only in ŷi,

ŷi = yi−1 + hi

s∑

j=1

wjkj,

where the corresponding RK tableau has αs = 1, βsj = wj for j = 1, 2 · · · s and
satisfies,

0 0 0 . . . 0 0
α2 β21 0 . . . 0 β2s

...
...

... . . .
...

...
αs−1 βs−11 βs−12 . . . 0 βs−1s

1 w1 w2 . . . ws−1 ws

w1 w2 . . . ws−1 ws

(that is, the tableau is strictly lower triangular except for the last row and col-
umn). Note that with this structure, ks = f(xi, ŷi) and the corresponding residual
becomes (after replacing ks by its ‘converged’ value, f(xi, yi)),

Φi = yi − yi−1 − hi

s−1∑

j=1

wjkj − hiwsf(xi, yi),

kj = f(xi−1 + αjhi, yi−1 + hi

j−1∑

r=1

βjrkr + hiβjsf(xi, yi)).

• With these formulas the Li and Ri can be determined as explicit calculations (low
order polynomials in ∂f

∂y
) although Ri is no longer = I.

• With this degree of implicitness one can derive formulas with good stability prop-
erties. For example A-Stable formulas which are symmetric. That is, when applied
to y′ = λy yield,

yi = R(hλ)yi−1 =
Ps(hλ)

Ps(−hλ)
yi−1,

and are of order s + 1.

• One can also consider the derivation of the extended class of formulas:

kj = f(xi−1 + αjhi, (1 − νj)yi−1 + νjyi + hi

j−1∑

r=1

βjrkr),

with the Continuous Extension,

u(x) = u(xi−1 + τhi) = yi−1 + hi

s̄∑

j=1

bj(τ)kj.

127

• One BV method based on these formulas of order 4− 8 is MIRKDC, developed at
Toronto and available from NETLIB.

• A Numerical Example
Consider the test problem, ‘swirling flow III’,

εf ′′′′ + ff ′′′ + gg′ = 0,

εg′′ + fg′ − f ′g = 0,

with f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = 1, g(1) = −1 and parameter values
ε = 1.0, .1, .05, .01, .005, .001, .0005.

To report the performance of a method on this problem we tabulate (in the fol-
lowing tables), for TOL = 10−6 and TOL = 10−8, the statistics,

Time (in seconds)

Error (maximum observed, sampling u(x) over 10 samples per step)

Defect (maximum magnitude of the defect, sampled over each step)

Number of Nonlinear Equations (reported as a sequence, [(N1q1), (N2q2) · · · (Nkqk)]
T ,

where k is the number of mesh refinements and (Nrqr) indicates that on mesh
refinement ‘r’ there were Nr meshpoints and qr iterations).

��� ��� � ��� � ��� �
	 ��� �
� ��� ���
	 ��� ���
� ��� �����
	

���������� � 	
����� � 	������ � 	����
� � 	������ � 	������ � 	������ � �! ����"��� � 	������ � ���!�������

� ��������� � ��������� � ��������� � �!����	�� � �!���# $� � �!����%
� � �
�!���"��� � �!������� � ���!���#���
� ��������� � ��������� � �!������� � �!������� � �!������� � �!������� �"&�& ���#���

�'& ������� �'& ������� �"& ������� � �!������� � �!������� �'& �����!�
�
�'(������� �"(������� �"& ������� � �!������� �"& �������

� 	 (����� �"(������� �"& ������� �"& �������
� ���! ������ ��) ������� �"& ������� �"(�������

� � & �
����� �"(������� � �� ��������
*�+-,.���"/��10 � ��� �)!(��� �
��� ��� & 	 ��� & ��	 ��� �%) ��� %� �� �� (�%

2����3�!� (� �546�!��798:�
� �;4��!��798< �� �=4��!��7?> ��� =4��!��798 ��� (4@�!��798 ��� �=4��!��798 ��� & 41����7?>
A;��B"�101C �
� �546�!� 7?D �
� �=4��!� 7?D �
� 	=4��!� 7?D %�� & 4��!� 7?D ��� �54@�!� 7?E ��� %;4��!� 7?E ��� �=41��� 7?E

Table 1: COLNEW on Problem 1: 4th order, tol = 10−6

128

��� ��� � ��� � ��� �	� ��� �	� ��� �
��� ��� ���	� ��� �
�
�	�

���� � ����������� ����������� ����������� ��������� � !"��������� #���������� !����������

$&%('�)�*,+ - ��./�
0 - �	.��
0 - �	.��
0 - �	.��
0 - ��./1
0 - ��./1
0 - ��./�
0
- ����.���0 - ����./�
0 - ����./�
0 - ����.2�
0 - ����.2�
0 - ����.3#�0 - ����.�1�0

- �
��.���0 - ��4�./�
0 - #	��./�
0 - ����.2�
0 - #���.2�
0 - #
��.�1�0 - #
��.���0

����.��
0 - �
�
�	.3�
0 - ���
#�.3��0 - �
��.3#�0 - ���
��.��
0

- �
�
�	.3��0 - �
��!�.3��0 - !	��!�.��
0
- �
5
�	.3��0 - !	5�!�.��
0

- ��4	�	.3��0
687 9:+
-<;�+�= 0 ��� ����4 ��� ��5�� ��� ���
4 ��� !	��� ��� #
��� ��� #��
� ��� ���	5

>&%?%@'�% !�� 5������ ��� 4�� �A�B��� �&� 5	� �A�B��� ��� 5	� ������� ��� ��� 4"����� ��� ��� #"����� ��� ��� ������� ���
C"+(DE+�=�F !�� ������� ��� #�� !A�B��� � � �	� �G�B��� ��� !�� �"����� ��� #�� ������� ��� 4�� 5������ ��� ��� ������� ���

Table 2: MIRKDC on Problem 1: 4th order, error = 10−6

H�I J�K L L�K J L�K L	M L�K L	J L�K L
L	M L�K L
L	J L�K L
L
L	M

N&O(P�Q�R,S T M	U�V
W T M	U3X	W T M	U3X	W T M�U�Y
W T M�U�Y
W T M�U/Y
W T X�V�L�U2J
W T M�U�Y
W T X	V�L�U3J�W

T J�L�U/J
W T J�L�U/J
W T J�L�U2J
W T J�L�U2Z	W T J�L�U/[
W T J�L�UE\	W T Z
]
L�U3J�W T J�L�U/Y
W T Z
]
L�UEJ�W
T V�L�U/J
W T V�L�U/J
W T V�L�U2J
W T V�L�U/J
W T J�L�U/J
W T J�L�U2V
W T X	V
M	U3J�W T V�L�U/Y
W

T]
L�U/J
W T]
L�U/J
W T]
L�U2J
W T]
L�U/J
W T V�L�U/J
W T V�L�U2V
W T Z	M�L�U3J�W T]�L�U�J�L�W

TE^ L�U/J
W TE^ L�U2J
W TE^ L�U/J
W T]
L�U/J
W T V�L�U2J
W T]
L�U/V
W
T J�Z�L�U2J
W T J�Z�L�U2J
W TE^ L�U/J
W TE^ L�U/J
W T]
L�U2J
W T]
L�U/V
W

T J�Z�L�U2J
W TE^ L�U/J
W T]
L�U2J
W TE^ L�U/V
W
T X	V�L�U2J
W T J�Z
L�U�J�W TE^ L�U2J
W T J�Z
L�U2J
W

T X	V�L�U2J
W T X�V�L�U�J�W T J�Z
L�U2J
W T J�Z
L�U2J
W
_8` a:S
TEb?S�c W L�K V ^ J�K J�X J�K J
M X�K L
L X�K J�X \�K [�X \�K V�Z

d&O�O@P�O V	K Mfe�J�L�g�h ^ K Z"e�J�L�g�i?j]�K J�e�J�L�g�h V�K V�e�J�L�g�h Z�K X�e�J�L�g�h J�K L"e�J�L�g�h M�K]"e�J�L�g�h
k"S(lES�c�m J	K ^ e�J�L g�n X�K]"e�J�L g�n J�K \"e�J�L g�o]�K Z"e�J�L g�o J�K ^ e�J�L g�p V�K X"e�J�L g�p Z�K ^ e�J�L g�p

Table 3: COLNEW on Problem 1: 4th order, tol = 10−8

3.5.3 A Runge-Kutta BV method for a PSE

In the Problem Solving Environment (PSE) provided by MATLAB a built-in numer-
ical BVP method, bvp4c, is provided. It is based on the same Runge-Kutta formula

129

��� ��� � ��� � ��� �	� ��� �	� ��� �
��� ��� ���	� ��� �
�
�	�

���� � ����������� ����������� ����������� ��������� � ����������� ����������� �����������

!#"%$�&�')(* ��+,�
- * �	+��
- * �	+��
- * �	+.�	- * ��+,�
- * ��+,/
- * ��+,�
-
*10 ��+���- *10 ��+,�
- *10 ��+,�
- *.0 ��+ 0 - * ����+ 0 - * ����+.2�- *10 ��+�/�-

* � 0 +���- * �
��+,�
- * �
��+,�
- * ����+1�
- * 2���+1�
- * 2
��+�/�- * 2
��+���-
*43	0 +,�
- * ��5
��+1�
- *10 ��5�+.�
- * ��5
��+.��- * �
��+.2�- * ��5
��+��
-

* � 0 ��+.�
- * �
2	�	+.��- * � 0 ��+.��- * 5
2
��+��
-
* � 3 �	+.��- * ���
5�+.��- * ���	�
��+1�
-

* � 3 �	+.��- * �����
5�+1�
-
687 9:(
*<;�(�= - ��� ���
5 ��� 0 � 3 ��� � 3 � ��� �
�
� ��� � 3 � 0 � � 0 � 2�� ��� 0

>#"?"@$�" ��� ������� ��� 3 � �A�B��� � � �	� �C�B��� ��� 3 � 3 ����� ��� 3 � ������� ��� 3 � ������� ��� 3 � �D����� ���
E�(%F4(�=�G 3 � ������� ��� �	� �C�B��� � � �	� �C�B��� ��� 0 � ������� ��� 0 � 2������ ��� 0 � ������� ��� ��� 2������ ���

Table 4: MIRKDC on Problem 1: 4th order, error = 10−8

H�I J�K L L�K J L�K L	M L�K L	J L�K L
L	M L�K L
L	J L�K L
L
L	M

N#O%P�Q�R)S T M�U,V
W T M	U.X	W T M	U.X	W T M	U�Y
W T M	U�Y
W T M�U�Y
W T M�U@Y
W

T J�L�U�J�W T J�L�U1J
W T J�L�U,J
W T J�L�U,M
W T J�L�U,M
W T J�L�U1Z	W T J�L�U,J
J
W
T V�L�U,J
W T V�L�U,J
W T V�L�U,J
W T J�L�U,J
W T J�L�U1J
W

T4[L�U,J
W T4[L�U,J
W T V�L�U,J
W T V�L�U1J
W
T4\ L�U,J
W T V�L�U,J
W T V�L�U1J
W

T4[L�U,J
W T4[L�U1J
W

T4\ L�U,J
W T4\ L�U1J
W
]�^`_:S
T4a�S�b W L�K J�c \ L�K J \ X L�K [J�L J�K L	M�X J�K \ c
M V�K M
M
c V�K d [d

e#O�O@P�O V	K VAfBJ�L�gih�j Z�K d�f�J�L�g�k J�K J�f�J�L�g�k X�K d�f�J�L�g�k M�K L�f�J�L�g�l V�K X�f�J�L�g�k J�K X�f�J�L�gim
n�S%o4S�b�p [K X�f�J�L�g�k J�K X�f�J�L�g�qrd�K [f�J�L�g�s Z�K [f�J�L�g�q X�K \ f�J�L�g�q [K J�f�J�L�g�t V�K c�f�J�L�g�u

Table 5: COLNEW on Problem 1: 6th order, tol = 10−6

as MIRKDC except that the error control and continuous extension are different. The
issues arising in implementing a BVP solver in a PSE are different than those that are
traditionally considered in a general purpose scientific computing environment (where
efficiency and accuracy are the major concerns). We will present a discussion and justi-
fication of these issues and how they influenced the design and implementation of bvp4c.

130

��� ��� � ��� � ��� �	� ��� �	� ��� �
��� ��� ���	� ��� �
�
�	�

���� � ����������� ����������� ����������� ����������� ���������� ���������� !���������

"$#&%�'�(*) + ��,-�
. + �	,��
. + �	,��
. + �	,�/
. + ��,10	. + ��,���2�. + ��,��
��.

+ ����,-�
. + �
/�,-�
. + /���,1�
. + /���,13
. + /���,�3�. + /���,�3�.
+ �
/�,-�
. + �
��,-�
. + 0�4�,1�
. + 2���,50	. + 2
��,62�. + 2
��,���.

+ 2�/�,1�
. + 2���,1�
. + !�2�,���. + 4	/�,���.
+ ��0�,1�
. + 4	/�,���. + �
��,���.

+ �
��,���.
798 :;)
+=<�)�> . ��� ���
� ��� ��!�2 ��� ���
� ��� 0	��� ��� �
0�0 ��� /�0	/ ��� ����4

?$#@#A%�# ��� ������� �CB !	� �D�E��� �$B ��� �F�E��� �CB �	� !������ �CB ��� ������� �CB 2�� ������� �CB ��� 2������ �CB
G�)&H5)�>�I 2�� ������� �� �	� �F�E��� ��� /	� �D�E��� ��� /	� ������� �� ��� 4������ ��� 0�� !������ �� 4�� �J����� ��

Table 6: MIRKDC on Problem 1: 6th order, error = 10−6

K�L M�N O O�N M O�N O	P O�N O	M O�N O
O	P O�N O
O	M O�N O�O
O	P

Q$RAS�T�UWV X P�Y-Z
[X P�Y1\	[X P�Y1\	[X P	Y�]
[X P	Y�]
[X P�Y�]�[X P�Y-]
[

X M�O�Y1M
[X M�O�Y�M
[X M�O�Y�M
[X M�O�Y5^	[X M�O�Y1^	[X M�O�Y�M�O	[X M�O�Y-M
M
[
X Z�O�Y�M
[X Z�O�Y�M
[X Z�O�Y1M
[X Z�O�Y-M
[X M�O�Y�M
[X M�O�Y�]
[

X=_ O�Y�M
[X=_ O�Y1M
[X5_ O�Y-M
[X Z�O�Y�M
[X Z�O�Y6\	[
X=` O�Y1M
[X5` O�Y-M
[X Z�O�Y�M
[X Z�O�Y�M
[

X M�^
O�Y6M
[X M�^�O�Y1M
[X=_ O�Y�M
[X=_ O�Y�M
[

X=` O�Y�M
[X=` O�Y�M
[
X M�^
O�Y-M
[X M�^
O�Y-M
[

a�bdc;V
X5e@V�f [O�N M�^
g O�N \ _�` O�N h
h ` M�N g	P
P \�N P ` g _ N Z
M
Z _ N h�O�Z
i$R�R&S�R Z�N Z�j�M�O�kCl@m M�N _ j�M�O�k�noM�N ^Dj�M�O�kCl@m P	N O�j�M�O�kCl�m ` N h�j�M�O�kCl&l P�N Z�j�M�O�kCl@m Z�N PJjpM�O�k�n

qDV&r5V�f�s _ N \�j�M�O�k�t _ N ` jEM�O�kCu Z�N \DjEM�O�kCu \�N P�j�M�O�k�v M�N \�j�M�O�k�v M�N P�jEM�O�k�w M�N O�jpM�O�k�x

Table 7: COLNEW on Problem 1: 6th order, tol = 10−8

[For a detailed discussion and justification of the implementation issues see J. Kierzenka
and L. Shampine, ‘A BVP Solver based on residual control and the MATLAB PSE’,
ACM TOMS, 2001.]

• Special features/considerations relevant to a PSE:

131

��� ��� � ��� � ��� �	� ��� �	� ��� �
��� ��� ���	� ��� �
�
�	�

���� � ����������� ����������� ����������� ����������� ����������� ���������! ���������!

"�#%$�&�')(* ��+,�
- * �	+��
- * �	+��
- * �	+/.	- * ��+0.	- * ��+���1�- * ��+��
��-
*32 +,�
- * ����+,�
- *04 ��+,�
- */4 ��+0�
- */4 ��+05
- *04 ��+�5�- *04 ��+�5�-

*04 .�+,�
- * . 4 +,�
- * � 4 +0�
- * 1���+6.	- * 1
��+/1�- * 1
��+���-
* ����+0�
- *32�4 +0�
- * ��.	�	+/��- * �
����+��
-

* ���
1�+/��- * ��� 4 +/��- * ���
.�+��
-
* �
����+/��- *04 �	�	+��
-

798 :;(
*3<�(�= - ��� ��. 2 ��� � 4 � ��� ���	� ��� ��1	� ��� �
��� ��� ���
� 4 � ���
�
>�#?#@$�# ��� 2 ����� �!A �	� 4 �B��� �CA ��� �D�B��� �!A ��� ������� �!A ��� ������� �!A ��� ������� �!A ��� ������� �!A
E�(%F6(�=�G ��� 1��������! 4 � �H�B������� 4 � 2 �B������� .�� ���������! I.�� ���������! 4 � ���������! .�� ���������!

Table 8: MIRKDC on Problem 1: 6th order, error = 10−8

1. The focus is on visualizing the approximate solution and will usually require
the graphical presentation of the results. For example standard x/y plots
or phase plane plots are typically used to present or display functions that
depend on only one variable (such as the solutions of BVPs).

2. Stringent accuracy is not likely required, although off-mesh accuracy may well
be required.

3. The overhead of working in a PSE may be expensive.

4. The interface/documentaion must be simple if the software is ever to be used.
(In particular the method should hide unecessary information.)

5. Users working in a PSE often have a class of problems to be solved, where
the the ‘class of problems’ are characterized by a parameter (or vector of
parameters) which define the mathematical model.

6. Defaults should be available for all the options (of the method) which require
some knowledge of the problem or method.

7. The focus is not on efficiency but it is on ‘ease of use’ and ‘robustness’.

8. The user is not expected to define the workspace but the code will fail when all
available workspace is used and convergence to acceptable numerical solution
has not been acheived.

9. The solution is returned as an abstract data structure and can be used directly
in continuation. The numerical solution is a piecewise polynomial and the
representaion is in terms of the Runge-Kutta stages associated with each step.

• The Class of Problems Considered:

y′ = f(x, y, p), x ∈ [a, b],

132

with boundary conditions,
g(y(a), y(b), p) = 0,

y(x) ∈ <n, p ∈ <k. If there are no parameters p can be ignored (hidden).

• The underlying RK formula is given by the tableau,

0 0 0 0
1/2 5/24 1/3 -1/24

1 1/6 2/3 1/6
1/6 2/3 1/6

The continuous extension, S(x), delivered by bvp4c, is defined for x ∈ [xi−1, xi] to
be the Hermite interpolant, ui(x), that satisfies the equations,

ui(xi−1) = yi−1,

u′
i(xi−1) = y′

i−1 (= k1),

u′
i(xi) = y′

i (= k3 = f(xi, yi) at convergence),

u′
i(xi−1 + hi/2) = k2.

This method is equivalent to a collocation method with the collocation points
corresponding to τ = 0, 1/2, 1.

• The error control and mesh selection strategies are based on direct control of the
size of the defect associated with each subinterval. S(x) satisfies,

δ(x) ≡ (S ′(x) − f(x, S(x))

= S ′(x) − y′(x) + O(h4)

(the error in the approximation of y′(x) by S ′(x)).

Shampine and Kiezenka show that, with this definition of S(x) we have,

‖δ(x)‖i = C1h
3
i ‖y(4)(xi−1/2)‖ + O(h4),

where h = maxN
j=1 hj. Note that the size of this defect is dominated by the ‘local’

term and that it depends only on the solution (and not the differential equation).
C1 depends on (x−xi−1)/hi only and has its maximum value at θ = (3±

√
3)/6. One

sampled defect value is therefore used to give an asymptotically correct estimate
of the maximumum magnitude defect on each subinterval. This value is used both
for mesh redistribution and error control.

Note that in MIRKDC a different (more expensive) interpolant is used for the
same 4th order formula. The corresponding defect is O(h4

i) and is also used for

133

mesh selection and error control. This is possible since one can easily show that if
ûi(x) = zi(x)+O(h5

i) then the corresponding piecewise polynomial, Ŝ(x), satisfies,

δ̂(x) ≡ (Ŝ ′(x) − f(x, Ŝ(x))

= Ŝ ′(x) − z′i(x) + O(h4
i),

and the Ŝ(x) implemented in MIRKDC satisfies this condition. With this more
accurate interpolant one has the potential of using fewer mesh intervals (for the
same accuracy) but it is more difficult to derive an inexpensive bound on the
magnitude of the defect associated with each subinterval.

3.6 Special difficulties

3.6.1 Convergence for nonlinear problems

Convergence difficulties often arise on nonlinear problems, particularly when the initial
mesh is coarse and/or not adapted to the behaviour of the solution. Different methods
attempt to address this difficulty by adopting (or adapting) ideas from the literature on
nonlinear equations,

Accurate initial guesses Multigrid ideas can be used to start the iteration on a ‘re-
fined’ mesh and continuation can be used for the initial mesh.

Stabilization of the iteration Marquardt stabilization, Damped Newton or the use
of ‘trust regions’ can improve the chances of convergence from an initial guess that
has a large associated residual.

Efficiency of the iteration In solving the linear system that arises on each iteration,
W lδl = −G(yl−1), one can use an approximation to W l to reduce the overall cost.
W l can be held constant or a rank one update used. If the latter approach is
adopted, W l+1 is computed as a rank one correction to W l such that,

W l+1(yl − yl−1) = W l+1δl = G(yl) − G(yl−1).

3.6.2 Singular Perturbation Problems

This class of problems has been widely studied in the literature and arise in applications
where there are different time scales associated with the underlying mathematical model.
The numerical difficulty is related to stiff IVPs but it is more subtle and the ‘remedy’
is not as straightforward. We will first consider a simple linear example. Let ε > 0 be a
small parameter and the BVP be defined by,

εy′ = A11y + A12z + f1,

z′ = A21y + A22z + f2,

134

for 0 ≤ x ≤ 1, with boundary conditions,

B0

[
y(0)
z(0)

]
+ B1

[
y(1)
z(1)

]
= β,

where y(x) ∈ <n, z(x) ∈ <m, and A11, A12, A21, A22, B0 and B1 are constant matrices of
the appropriate dimensions.

Note that, when written as a standard linear first order system of ODEs, with u =
(y(x) z(x))T , we have,

u′ =

[
A11

ε
A12

ε

A21 A22

]
u + f̄ ≡ Au + f̄ , where f̄ =

[
f1

ε

f2

]
,

and as ε → 0 some eigenvalues of A must approach the eigenvalues of A11

ε
. (This follows

from the ‘block’ extension of Gershgoran’s therorem.)

Let these eigenvalues be λ1/ε, λ2/ε · · ·λn/ε. We then have that some of the compo-
nents of the homogeneous ODE, u′ = Au, must grow (or decay) like e(xλr)/ε. In this
case, for small values of ε, superposition will fail as it must represent a complete basis
for the space of homogeneous solutions. Similarly multiple shooting will have difficulty
since the variational equation, Y ′ = AY ; Y (0) = I will have rapidly increasing and/or
decaying components, and the columns of Y (x) (which are of the form

∑n
r=1 αre

(xλr)/ε)
will either overflow (if Re(λr) > 0) or become numerically linearily dependent and result
in a singular matrix.

Note that, for this model problem to be mathematically well-posed, the boundary
conditions must be such that,

1. For Re(λr) < 0, the corresponding decaying component, e(xλr)/ε , is determined by
a boundary condition at x = 0.

2. For Re(λr) > 0, the corresponding increasing component, e(xλr)/ε, is determined
by a boundary condition at x = 1.

One consequence of this observation is that if A11 has r eigenvalues in the left half
plane and s eigenvalues in the right half plane, then rank(B0) ≥ r, rank(B1) ≥ s for a
well-posed problem.

To gain more insight and an understanding of this difficulty, consider the scalar IVP,

εy′ = λy + q(x), for 0 ≤ x ≤ 1,

y(0) = y0.

If q(x) = q(x, ε) has an expansion in ε,

q(x, ε) =
∞∑

ν=0

ενqν(x) (= q0(x) + O(ε)),

135

then the exact solution is,

y(x) = y0e
λx
ε +

1

ε

∫ x

0
e

λ(x−s)
ε q(s)ds

= [y0 +
1

λ
q0(x)]e

λx
ε − 1

λ
q0(x) + O(ε).

Therefore if Re(λ) < 0 the solution, for small ε, is composed of a smooth component,

yR(x) = −1

λ
q0(x)

(yR(x) is the solution to this scalar problem obtained by setting ε = 0) and a fast component,
yF (x) which ‘connects’ the initial value y0 to yR(x) in a small boundary layer (or tran-
sition layer), near x = 0,

yF (x) = [y0 +
1

λ
q0(x)]e

λx
ε .

Note that there will be no boundary layer if y0 = − 1
λ
q0(0) (= yR(0)). We know that

for any ε > 0 and any choice of y0, this IVP has a unique stable solution but when ε = 0
there is only one solution, yR(x) (with the only consistent initial value, y0 = yR(0)).
Numerical difficulties that arise as ε approaches zero should not be surprising.

If Re(λ) > 0 then y(x) is unstable (as a function of y0) since, from the above

expression for the exact solution we see that one component of y(x) behaves like y0e
λx
ε .

On the other hand, we can express y(x) as a function of y(1),

y(x) = y(1)e
−λ(1−x)

ε +
1

ε

∫ 1

x
e

−λ(x−s)
ε q(s)ds

= yR(x) + [y(1) +
1

λ
q0(x)]e

−λ(1−x)
ε + O(ε).

This implies stability (as a function of y(1)) with a boundary layer near x = 1. Similarly
Re(λ) < 0 and y(1) specified will result in an ill-posed problem.

Now consider our system of equations u′ = Au + f̄ and recall that for small ε, some
of the eigenvalues of A must converge to λ1/ε, λ2/ε · · ·λn/ε where λ1, λ2 · · ·λn are the
eigenvalues of A11. For Re(λi) < 0 we have components of u = (y z)T behaving like,

µi(x) = [µi0 +
1

λi
qi0(x)]e

λix

ε

︸ ︷︷ ︸
Fast

− 1

λi
qi0(x)

︸ ︷︷ ︸
Slow

+O(ε).

Similarly for Re(λi) > 0, we have components of u = (y z)T behaving like,

νi(x) = [νi(1) +
1

λi

qi0(x)]e
−λi(1−x)

ε

︸ ︷︷ ︸
Fast

− 1

λi

qi0(x)
︸ ︷︷ ︸

Slow

+O(ε).

We then see that this problem will be well-posed only if,

136

1. The number of eigenvalues of A11 in the left half plane equals the number of ‘Fast’
components in the boundary layer near x = 0 and this must be ≤ rank(B0).

2. The number of eigenvalues of A11 in the right half plane equals the number of
‘Fast’ components in the boundary layer near x = 1 and this must be ≤ rank(B1).

This analysis gives some insight into the mesh selection strategy that must be used in
a numerical method that is able to effectively solve this class of problems. In particular in

the boundary layer(s), where e
λx
ε (or e

−λ(1−x)
ε) is significant, the method must accurately

track the fast components and therefore |hλ
ε
|must be small. In addition outside the

boundary layer(s), where both e
λx
ε and e

−λ(1−x)
ε are insignificant, the mesh size (the hj’s)

should be determined by the behaviour of the smooth components, yR(x).

Consider a collocation or Runge-Kutta method. Components of the form e
xλ
ε are

represented by powers of R(hλ
ε

) where

R(z) = P (z)/Q(z),

is the stability function of the RK or collocation formula. Outside the boundary layer,
for Re(λ) ≤ 0, the method will remain stable for all h > 0 if |R(hλ

ε
)| ≤ 1. Also

components of the form e
−λ(1−x)

ε are represented by powers of R−1(−hλ
ε

) and therefore
outside the boundary layer, for Re(λ) > 0, the method will remain stable for all h > 0
if |R−1(−hλ

ε
)| ≤ 1.

There are two approaches that are used to accomplish this:

Kreiss/Ringhoffer Choose a strongly stable RK or collocation formula with degree
P < degree Q and a second complementary method with degree degree P >
degree Q. Uncouple the ODE on each step and apply the first method to those
components with the corresponding eigenvalues in the left half plane and the second
method to those components whose eigenvalues are in the right half plane.

Ascher/Weiss Choose a symmetric method (with P (z) = Q(−z)) with all the zeros
of P (z) in the left half plane (hence the zeros of Q(−z) are all in the right half
plane). In this case |R(z)| = 1 on the imaginary axis and this implies A-stability
of the underlying formula with |R(z)| ≤ 1 for z ∈ LHP and |R−1(−z)| ≤ 1 for
z ∈ RHP . This method can then be used for all λi. Of course h must be small in
the boundary layer(s) to accurately resolve the fast components.

137

