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Assignment 3

March 4, 2014 University of Toronto Due: April 1, 2014

From ’Solving Ordinary Differential Equations II’, E. Hairer and G. Wanner,
Springer 1991, p. 163.

You are to investigate, by numerical experiments using a method suitable
for stiff systems, the ”circular nerve model” defined by the system of ODEs
developed below. You are to use a stiff solver such as ode15s (from matlab)
or the Fortran code RADAU (available from a link on the course webpage).
In particular you are to show that this system loses its limit cycle when the
diffusion coefficient D becomes either too large or too small. This system of
ODEs models a combination of a threshold-nerve-impulse mechanism, a cusp
catastrophe

εy
′

= −(y3 + ay + b),

(with a ”smooth return” – see Zeeman, 1972 reference of HW), and a Van der
Pol oscillator to keep the solution away from the origin. The unknown functions
y, a and b are each functions of time and space, where y(t, x) is the value of the
nerve impulse at time t ≥ 0 at location x associated with a one-dimensional
nerve (0 ≤ x ≤ 1).

∂y

∂t
= −1

ε
(y3 + ay + b) + σ

∂2y

∂x2

∂a

∂t
= b+ 0.07v + σ

∂2a

∂x2

∂b

∂t
= (1− a2)b− a− 0.4y + .035v + σ

∂2b

∂x2

where
v =

u

u+ 0.1
, u = (y − 0.7)(y − 1.3).

We consider discretizing the space dimension using a uniform mesh, (0 =
x0 < x1 · · ·xN = 1), with xi = i ∗ ∆x. When the partial derivatives with

respect to x are replaced by finite differences (for example, ∂2y
∂x2 |xi

is replaced

by yi+1−2yi+yi−1

(∆x)2 ) this model becomes a system of ODEs in time (with yi(t)

being an approximation to the one dimensional function y(t, xi) ). We let the
”nerve” be closed like a torus so that the nerve impulse goes around without
stopping. (That is, for any t ≥ 0 we assume y(t, 1) = y(t, 0), a(t, 1) = a(t, 0)
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and b(t, 1) = b(t, 0). ) The Jacobian of the resulting system is then sparse,
although not banded. Stiffness in this problem has two sources: firstly the
parameter ε becoming small, secondly the diffusion term D becoming large for
small discretization intervals ∆x.

For example with ε = 10−4 , σ = 1/144 , 0 ≤ x ≤ 1 , ∆x = 1/32 and N =
32 , we obtain

y
′

i = −104(y3
i + aiyi + bi) +D(yi−1 − 2yi + yi+1)

a
′

i = bi + 0.07vi +D(ai−1 − 2ai + ai+1)

b
′

i = (1− a2
i )bi − ai − 0.4yi + 0.035vi +D(bi−1 − 2bi + bi+1)

for i = 1, · · ·N , where

vi =
ui

ui + 0.1
, ui = (yi − 0.7)(yi − 1.3), D = N2σ =

N2

144
,

and the required ”boundary conditions” (to define the finite differences near the
endpoint values of x) are

y0 = yN , a0 = aN , b0 = bN ,

yN+1 = y1, aN+1 = a1, bN+1 = b1.

This defines a system of ODEs of dimension 3N = 96. The initial values are

yi(0) = 0, ai(0) = −2cos(
2iπ

N
), bi(0) = 2sin(

2iπ

N
), for i = 1 · · ·N.

1. For this particular discretization and choice of parameters you are to solve
this problem using a Stiff solver with and without supplying analytic
derivatives for the Jacobian matrix. In your write-up discuss whether,
on this problem, the extra effort required to supply the analytic Jacobian
is reflected in reduced costs, improved accuracy, or improved robustness.

2. By experimenting with different values of σ (and possibly N) show that
this system loses its limit cycle when D becomes too large or too small).
(Note that the system of ODEs given above for N = 32, will change if N
is increased.)
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