
Quadrature - Special Difficulties
We will consider 2 types of difficult problems and how they can be solved.
Infinite range problems (improper integrals):
The infinite integration,

∫

∞

0
f(x)dx is well-defined only if

limR→∞

∫ R

0
f(x)dx exists. Some possible approaches for approximating

I(f) =
∫

∞

0
f(x)dx when it exists:

For 0 = R0 < R1 < · · ·Rj < · · ·, define Ai as the approximation to
∫ Ri

Ri−1

f(x)dx associated with a standard quadrature rule. We then
have that,

Sj ≡

j
∑

i=1

Ai,

can be used as an approximation to I(f) if Ri → ∞. This process can
halt (at a fixed value of j) when |Aj | < TOL.
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Infinite Range Approaches
If f(x) = ω(x)g(x) with ω(x) positive, then one can apply a generalized
Gaussian rule. For example, if ω(x) = e−x we obtain Gauss Laquerre
rules. In this case we have,

∫

∞

0

ω(x)g(x)dx ≈
n

∑

i=0

ωig(xi),

where the xi’s are the zeros of polynomials orthogonal on [0,∞) with
respect to ω(x).

Special transformation of variable. Let x = ρ(t) for some differentiable
function ρ(t). We then have,

I(f) =

∫

∞

0

f(x)dx =

∫ ρ−1(∞)

ρ−1(0)

f(ρ(t))ρ
′

(t)dt.

For example, if x = − ln(t), ⇒ t = e−x and we have
I(f) =

∫ 1

0
f(− ln(t))/tdt.
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Singular Integrands
Consider the approximation of I(f) =

∫ b

a
f(x)dx where f(a) or f(b) is

undefined. For example,

I =

∫ 1

0

1

x1/2 + x1/3
dx.

For such problems we can attempt to ‘remove’ the singularity (at
t∗ = a or t∗ = b) as a 2-step process:

1. Determine the ‘type’ of the singularity at t = t∗, choose s(x) where
∫ b

a
s(x)dx can be computed analytically and where (f(x) − s(x)) is not

singular at t∗.

2. Replace
∫

f(x)dx by
∫

(f(x) − s(x))dx +
∫

s(x)dx where standard
methods can be used to approximate the first integral and the analytic
formula used for the second.
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Singular Integrands
For the above example, with f(x) = 1

x1/2+x1/3
consider what happens as

x → 0,

1

x1/2 + x1/3
=

1

x1/3(x1/6 + 1)
=

1

1 + x1/6
−

x1/6 − 1

x1/3
.

We therefore have,
∫ 1

0

1

x1/2 + x1/3
dx =

∫ 1

0

1

1 + x1/6
dx +

∫ 1

0

1 − x1/6

x1/3
dx.

The first integral can then be approximated by standard methods while the
second is equal to 3/10.

For the general case the key step is to perform an expansion of the in-

tegrand about the point of singularity (t∗ = a or t∗ = b) to allow one to

‘remove’ it.
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2D Quadrature
Consider the problem of approximating integrals in two dimensions,

I(f) =

∫ ∫

D

f(x, y)dxdy,

This problem is more complicated than the one dimensional case
since D can take many forms.

One can develop the analogs of Gaussian rules or interpolatory rules
but the weights and nodes will depend on the region D. Such rules
can be determined and tabulated for simple regions such as
rectangles, triangles and circles.

An arbitrary region must then be transformed onto one of these simple
regions before the rule can be used. Such a transformation will
generally be nonlinear and may introduce an approximation error as
well.
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2D Quadrature (cont)
An alternative approach is to apply a ‘product rule’, where one
reduces the 2D-integral to a sequence of two 1D-integrals:

∫ b

a

∫ β(y)

α(y)

f(x, y)dxdy =

∫ b

a

g(y)dy,

where

g(y) ≡

∫ β(y)

α(y)

f(x, y)dx.

Note that g(y) is a 1D-integral with upper and lower bounds depending
on y.

In this case g(y) is approximated, for a fixed value of y, by a standard

method (for example, ≈
∑M

j=0 ωjf(xj , y), and
∫ b

a
g(y)dy is also

approximated by a standard method.
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2D Quadrature (cont)
That is,

∫ b

a

∫ β(y)

α(y)

f(x, y)dxdy =

∫ b

a

g(y)dy ≈
M ′

∑

r=0

ω̂rg(yr),

≈

M ′

∑

r=0

ω̂r





M
∑

j=0

ωjf(xj , yr)



 ,

=
M ′

∑

r=0

M
∑

j=0

(ω̂rωj)f(xj , yr).

Note that error estimates for product rules are not easy to develop since

the function g(y) ≈
∑M

j=0 ωjf(xj , y) will not be a ‘smooth’ function of y

unless M and the xj ’s are fixed (which is unlikely since α(y) and β(y) are

not fixed). In particular this ‘inner rule’ cannot be adaptive.
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Numerical ODEs
Definition: A first-order ordinary differential equation is specified by:

y′ = f(x, y), over a finite interval x ∈ [a, b].

Note that a solution of this ODE, y(x), is a function of one variable.
When the solution depends on more than one variable (ie a
multivariate function) it is called a partial differential equation – PDE.
The term first-order refers to the highest derivative that appears in the
equation.

For ODEs the variable x is called the independent variable while y

(which depends on x) is called the dependent variable. ‘Solving’ the
ODE is interpreted as determining a technique for expressing y as a
function of x in some explicit way.
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ODEs-Mathematical Preliminaries
A function Φ(x) is a solution of this ODE if Φ(x) ∈ C1[a, b] and
∀x ∈ [a, b] we have Φ

′

(x) = f(x, Φ(x)). (Note that this condition is
often easy to check or verify).

For example the ODE,

y′ = λy,

has solutions Φ(x) = c eλx for any constant c since,

[c eλx]
′

= λceλx = λΦ(x).

In particular this ODE does not have a unique solution but rather a
whole family of solutions (characterized by the parameter c).
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ODEs-Mathematical Preliminaries
To determine a unique mathematical solution we must add an
additional constraint. The most common way to do this is to prescribe
the value of the solution at the initial point of the interval. That is we
specify,

y(a) = y0.

–Definition: An ODE together with the initial conditions specifies an
initial value problem for an ordinary differential equation (IVP for an
ODE).

Before we can attempt to approximate a solution to an IVP we must
consider some essential mathematical questions:

Does a solution exist?

If a solution exists, is it unique?

Can the problem be solved analytically (ie. in closed form)?
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IVPs - Existence/Uniqueness

Definition: The function f(x, y) satisfies a Lipschitz condition in y (ie,
wrt its second argument) if ∃L > 0 such that ∀x ∈ [a, b] and ∀ u, v we
have

|f(x, u) − f(x, v)| ≤ L|u − v|.

In particular, if f(x, y) has a continuous partial derivative with respect
to y and this derivative is bounded for all y, then f satisfies a Lipschitz
condition in y since,

|f(x, u) − f(x, v)| = |
∂f

∂y
(x, η)| |u − v|,

for some η between u and v.
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IVPs - Existence/Uniqueness

A typical Theorem:
Let f(x, y) be continuous for x ∈ [a, b] and ∀y and satisfy
a Lipschitz condition in y, then for any initial condition y0

the IVP,

y′ = f(x, y), y(a) = y0, over [a, b],

has a unique solution, y(x) defined for all x ∈ [a, b].
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Systems of ODEs
Often one must deal with a system of n ‘unknown’ dependent
variables of the form:

y′

1 = f1(x, y1, y2, · · · yn),

y′

2 = f2(x, y1, y2, · · · yn),

...
...

...

y′

n = fn(x, y1, y2, · · · yn),

with initial conditions all specified at the same point,

y1(a) = c1,

y2(a) = c2,

...
...

...

yn(a) = cn,
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Systems of ODEs (cont)
In vector notation, this system of IVPs can be written

Y ′ = F (x, Y ), Y (a) = Y0,

where Y (x) = [y1(x), y2(x), · · · yn(x)]T , Y0 = [c1, c2, · · · cn]T and F (x, Y ) is
a vector-valued function,

F (x, Y ) =

















f1(x, Y )

f2(x, Y )
...

fn(x, Y )

















.

The theory and the investigation of numerical methods that we present will

be the same for systems as for scalar IVPs. In particular, the Theorem

quoted above holds for systems.
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Some Examples
From Biology:
A predator-prey relationship can be modeled by the IVP:

y
′

1 = y1 − 0.1y1y2 + 0.02x

y
′

2 = −y2 + 0.02y1y2 + 0.008x

with
y1(0) = 30, y2(0) = 20.

Here y1(x) represents the ‘prey’ population at time x and y2(x)

represents the ‘predator’ population at time x. The solution can then
be visualized as a standard x/y solution plot or by a ‘phase plane’ plot.
Figure 1 illustrates the solution to this system. We know that for
different initial conditions solutions to this problem exhibit oscillatory
behaviour as x increases.
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Solution to PP problem
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Figure 1. Solution plot for the Predator-Prey Problem.
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Solution to PP problem
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Figure 2. Phase Plane Plot for Predator-Prey Problem.
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