Extrapolation

f.. Recall, for the Trapezoidal rule we have established, T
Tonr + ESTon = ZT“H (T — 1),
1=1 3
M
46 L0

= E {g(fi—1+2fi—1/2+fi)_g(fi—1“|‘fi>}7
h
E{fi—l +4fici2+ fif

(A fourth order approximation to 1(f)).

|

CSCC51H- Numerical Approx, Int and ODEs — p.96/177

Extrapolation (cont)

f.. This process of taking a basic quadrature rule, applying it with a T
sequence of ‘stepsizes’ h, h/2,h/4,---h/2% and then using a linear
combination of the resulting approximations, Ag, A1, - - - Ax to obtain a
higher order approximation is called extrapolation.

When the Trapezoidal rule is used as the basic rule this is called
Romberg quadrature (or Romberg Integration).

® To justify extrapolation for the Trapezoidal rule we must show that
whenever f(x) has (2k + 2) continuous derivatives, then the true error
satisfies,

Bl = c1h® + coh* + - b + O(R*FT2),

where the ¢;’s are independent of h.

|

CSCC51H- Numerical Approx, Int and ODEs — p.97/177

Extrapolation (cont)

One can then ‘eliminate’ the h? term in the error by taking a linear T
combination of T, and T5,,. Let h be the interval width associated with
T5,. We then have,

T2M _ I(f)+61h2+“'Ckh2k+0(h2k+2),
Tvu = I(f)4+c1(2h)* + - cx(2h)%F + O(2R)* T2,
Defining T3, , by,

ATon — T 1
2M3 Moo= T+ §(T2M — Thp)

= I(f)+czh* + c3h® + - h®* + O(R*F?),

1
T2 M

we have derived an error expansion for this fourth order approximation.

|

CSCC51H- Numerical Approx, Int and ODEs — p.98/177

Extrapolation (cont.)

-

fSimiIarIy, by considering the resulting error expressions for 7.}, , and T}, ,
we can ‘eliminate’ the O(h*) term to obtain,

AM — y

15
Tl _Tl

= I(f) 4 R0 4+ Ah® + - - - h*F 4+ O(h*F12).

|

CSCC51H- Numerical Approx, Int and ODEs — p.99/177

Extrapolation Contined

-

This process can continue and we have, in general,

m—1 m—1
T2mM o T2m—1M

4gm —] ’
where we have the following expansion of the error,

m — mm—1
Tompr = Tompp +

Tty = 1) + e B2 42 O(n2FF2),

|

CSCC51H- Numerical Approx, Int and ODEs — p.100/177

Observations re Extrapolation

-

-

® This technique gives high order approximations with error estimation
but round-off limits the accuracy that can be achieved. In practice we
usually have m < 6 or 7.

® Note that we can obtain more accuracy by increasing m or M since
the error term associated with 727 , . is O(h2(™+1)) which is
O((%2)2(m+1)), The ‘cost’ of computing this approximation is 2™ M
evaluations of the integrand.

|

CSCC51H- Numerical Approx, Int and ODEs — p.101/177

Error Estimates for GQ

Let G,.(f) = >, wif(z;) denote the (n + 1) — point Gaussian quadratureT
rule.

®» We have shown,
I(f) = Gn(f) =0(b—a)*"*, as (b—a) — 0.

® Therules G,11,Gp0, -+, are more accurate (as (b — a) — 0) so we
could use,

EST. =Gnin(f)—Gn(f)=Ec. + O(b — a)2(nth)+3,

® Therules G, and G,, have at most one common interpolation point
so the computation of this error estimate more than doubles the cost
(2n + k£ + 2 integrand evaluations).

|

CSCC51H- Numerical Approx, Int and ODEs — p.102/177

Error Est for GQ (cont)

f.. An alternative (to forming an error estimate based on GG,,.) is to use T
the integrand evaluations already available (for the computation of
G, (f)) and introduce only the minimum number of extra evaluations
required to obtain an effective error estimate.

® This approach leads to a class of quadrature rules called Kronrod
quadrature rules, K,,1x(f). The error estimate for G, (f), is then
Knik(f) — Go(f), where K, (f) is more accurate and less
expensive to compute than is G,, .« (f)- Kronrod proposed a
particularly effective class of such rules where k£ =n + 1,

n n—+1
Kony1(f) =) aif (@) + > b f(y)),
i=0 J=0

|

CSCC51H- Numerical Approx, Int and ODEs — p.103/177

Kon1(f) = 30 gaif () + 3070 bif (y))

f.. The z’s are the interpolation points associated with G,,(f), and the T
y;'S are the extra interpolation points necessary to define an accurate
approximation to I(f). Kronrod derived these weights (the a;’s and the
b;’s) and the extra interpolation points (yq, y1, - - - y,) SO that the
resulting rule is order 3n + 3.

® The resulting error estimate is then,

ESTGn = K2n—|—1(f) o Gn(f)7

with an associated cost of 2n + 3 integrand evaluations and an order
of accuracy of O((b — a)3"™4).

® These Gauss-Kronrod pairs of rules can be the basis for composite
quadrature rules and adaptive methods. These methods are widely
used and implemented in numerical libraries.

|

CSCC51H- Numerical Approx, Int and ODEs — p.104/177

Adaptive Quadrature

A straightforward implementation of a method based on a basic T
quadrature rule with error estimate would attempt to provide an
approximation, A, that satisfies |I(f) — A| < TOL. It would have input
parameters,

® The integrand function, f(x).

® The upper and lower limits of integration, a and b.

® The desired accuracy, TOL.

The obvious implementation would be similar to that presented for the com-
posite rules. That is, after applying the basic rule, if the magnitude of the

associated error estimate exceeds TOL, the interval [a,b] is subdivided
and the basic rule applied to each sub-interval.

|

CSCC51H- Numerical Approx, Int and ODEs — p.105/177

Adaptive Quadrature (cont)

f.. This process of interval halving and updating the approximation to T
I(f) and the associated error estimate EST'(f) continues until
|EST(f)| < TOL with some failure condition possible if no
convergence is achieved after a reasonable amount of effort (for
example after 8 — 10 subdivisions).

® Such an implementation will work well for functions that are smooth
and relatively well behaved over the interval of integration. But such a
method can be inefficient if the integrand is badly behaved on only a
small part of the interval of integration. In such cases it would be more
effective to concentrate the effort (the integrand evaluations) in the
neighborhood where the integrand is changing rapidly. This is the key
idea behind ‘adaptive’ quadrature methods.

|

CSCC51H- Numerical Approx, Int and ODEs — p.106/177

Adaptive Quadrature (cont)

f.. In adaptive quadrature methods, a basic rule with an associated errorj
estimate is implemented in a similar fashion to the straightforward
implementation discussed above except that uniform interval halving is
not used when more accuracy is needed.

® We selectively refine or subdivide only those subintervals which have
an associated error estimate that is too large. That is, we use interval
halving to update the approximation and error estimate for only a
subset of the subintervals.

® At each step we maintain a partitioning of the interval
a=Xo< X; <---Xy =band we have the associated
approximation, A(f) and error estimate, EST(f).

|

CSCC51H- Numerical Approx, Int and ODEs — p.107/177

Adaptive Quadrature (cont)
f.l We then have, T

N
A(f) =) A,
r=1
N
EST(f) = > |EST,
r=1

where A, and EST,. are the approximation and error estimate
associated with the r*"* subinterval.

® The effectiveness of this approach depends largely on how one
decides which interval to subdivide next (when |EST(f)| exceeds
TOL).

|

CSCC51H- Numerical Approx, Int and ODEs — p.108/177

Refinement Strategies

Several possible refinement strategies (strategies for choosing which T
subinterval to halve) are possible. We will consider two alternatives.

® Refine where error contribution exceeds its ‘share’:
Each interval is allowed to contribute an amount to the total error that
is proportional to its width. The maximum allowable error on the ;*"
subinterval is then =—==TOL. This strategy can be effectively
implemented recursively or using stacks.

® Refine where error contribution is largest:
On each step subdivide only the subinterval with the estimate of
largest magnitude. Such a strategy can be effectively implemented
using an ordered linked data structure, where the ordering is
determined by the magnitude of the corresponding estimate, £ST,..

|

CSCC51H- Numerical Approx, Int and ODEs — p.109/177

Observation re First Strategy

-

-

On termination we will have,

EST(f)] =) |ESTi,

A\
I
|
8
L
=
O
&

CSCC51H- Numerical Approx, Int and ODEs — p.110/177

