
Proof (last property)
For rk(x), let {µ1, µ2, · · ·µm} be the set of points in [−1, 1] where rk(x)

changes sign. It is clear that each µj is a zero of rk(x) and all simple
zeros of rk(x) in [−1, 1] must be in this set. We then have m ≤ k as the
maximum number of zeros of a polynomial of degree k is k. Assume
m < k. We then have,

q̂m(x) ≡
m∏

i= 1

(x − µi),

is a polynomial of degree m < k that changes sign at each µi and,∫
1

−1

q̂m(x)rk(x)d x = 0.

But q̂m(x) and rk(x) have the same sign for all x in [−1, 1] (they change

sign at the same locations). This implies a contradiction (the integrand is

of one sign but the integral is zero)– our assumption must be false. We

must therefore have m = k.
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3-Term Recurrence
The rk(x) also satisfy,

rs+1(x) = as(x − bs)rs(x) − csrs−1(x),

for s = 1, 2, · · · k, where the as are normalization constants, r
−1(x) = 0,

and if ts =
∫ 1

−1
r2
s(x)d x then,

bs =
1

ts

∫ 1

−1

xr2
s
(x)d x, cs =

asts

as−1ts−1

.

For example, we obtain the classical Legendre polynomials if we
normalise so rs(−1) = 1. This leads to,

as =
2s + 1

s + 1
, bs = 0, cs =

s

s + 1
.
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Orthogonal Polys on [a, b]
To transform orthogonal polynomials defined on [−1, 1] to [a, b]

consider the linear mapping from [−1, 1] → [a, b] defined by
x = b−a

2
y + a+b

2
. The inverse mapping is y = 1

b−a
[2x − b − a] and from

calculus we know,

∫ b

a

g(x)d x = (
b − a

2
)

∫ 1

−1

g(
b − a

2
y +

a + b

2
)d y.

This relationship, combined with the properties of Legendre
polynomials give a prescription for the choice of the xi’s for GQ:
For i = 0, 1, · · ·n, set yi to the ith zero of the Legendre Polynomial,
rn+1(y). With this choice we note that

∏n

j= 0
(y − yj) = K rn+1(y) for

some K 6= 0.
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Choice of the xi’s for GQ
Then with the choice xi = b−a

2
yi + b+a

2
we have,

Πn(x) = Πn(
b − a

2
y+

a + b

2
) =

n
∏

j= 0

(
b − a

2
y +

a + b

2
− xj)

=
n

∏

j= 0

(
b − a

2
y +

a + b

2
− (

b − a

2
yj +

a + b

2
))

=
n

∏

j= 0

[

b − a

2
(y − yj)

]

= (
b − a

2
)n+1

n
∏

j= 0

(y − yj)

= (
b − a

2
)n+1 K rn+1 (y).
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Choice of the xi’s (cont)
Therefore for any polynomial, q(x) of degree at most n,∫

b

a

Πn(x)q(x)d x

= (
b−a

2
)

∫ 1

−1

Πn(x)q(
b − a

2
y +

b + a

2
)d y,

= (
b − a

2
)

∫ 1

−1

Πn(x)q̂(y)d y,

= (
b − a

2
)n+ 2 K

∫ 1

−1

rn+ 1(y)q̂(y)d y = 0.

since q̂(y) is a polynomial of degree at most n.

That is with the xi’s chosen as the ‘transformed zeros’ of the Legendre

polynomial, rn+ 1(y), we have the property we need.
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Composite Quadrature Rules
Approximating the integrand with a PP leads to the class of
Composite Rules. Let a = x0 < · · ·xM = b and S(x) be a PP

approximation to f(x) (defined on this mesh). We can then use
∫ b

a
S(x)d x

as the approximation to I(f) =
∫ b

a
f(x)d x. Recall that S(x) ≡ pi,n (x) for

x ∈ [xi−1, xi] i = 1, · · ·M . From calculus we have,

∫ b

a

S(x)d x =
M∑
i= 1

∫ xi

xi−1

S(x)d x =
M∑
i= 1

∫ xi

xi−1

pi,n (x)d x,

–A sum of basic interpolatory rules.

If we use equally spaced xi’s and low degree interpolation we obtain famil-

iar rules.

CSCC51H- Numerical Approx, Int and ODEs – p.85/177



Composite Trapezoidal Rule
The composite trapezoidal rule, TM (f):

∫
xi

xi−1

f(x)d x =
xi − xi−1

2
[f(xi−1) + f(xi)] −

f
′ ′

(ηi)(xi − xi−1)
3

1 2

=
h

2
[fi−1 + fi] −

f
′ ′

(ηi)h
3

1 2
.

Summing over all sub-intervals we obtain,

TM (f) ≡ h

M−1∑
i= 1

fi +
h

2
(f0 + fM ),

with the corresponding error expression,

ET

M
(f) ≡ I(f) − TM (f) = −

M∑
i= 1

h3

1 2
f

′ ′

(ηi).
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Error term for CT Rule
If f

′′

(x) is continuous we can apply the MVT for sums to obtain the
expression,

ET

M (f) = −f
′′

(η)

M∑

i=1

h3

1 2
= −f

′′

(η) M
h3

1 2
for some η ∈ (a, b),

= −f
′′

(η)(b − a)
h2

1 2
since h = (b − a)/M.

We therefore have:

TM (f) = h
∑

M−1

i=1
fi + h/2 (f0 + fM )

with

ET

M
= −f

′′

(η)(b − a) 1

3
(h

2
)2 .
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Composite Simpsons Rule
Similarly we can derive the Composite Simpsons Rule

SM (f)= h /6
[

f0+fM +2
∑M−1

i= 1 fi+4
∑M

i= 1 fi−1/2

]

with the corresponding error expression,

ES
M (f) = −f(4)(η)

18 0 (b − a)(h
2 )4

and fi−1/2 defined to be f evaluated at (xi−1 + xi)/2.
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Error Estimates
Composite Trapezoidal rule: The contribution to the error from the ith

sub-interval is,

E(i)
≡ I(i)

− T
(i)
1 =

∫ xi

xi−1

f(x)d x −

h

2
(fi−1 + fi)

= −(
1

12
)h3

i f
′ ′

(ξi).

Subdividing [xi−1, xi] into two subintervals leads to,
∫ xi−1/2

xi−1

f(x)d x≈
hi

4
(fi−1 + fi−1/2),err=

−1

12
(
hi

2
)3f

′ ′

(̄ξi),

∫ xi

xi−1/2

f(x)d x≈
hi

4
(fi−1/2 + fi),err=

−1

12
(
hi

2
)3f

′ ′

(ξ̂i).
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Error Estimate for CT Rule
Summing these two terms we obtain,

I(i)(f) ≈
hi

4
(fi−1 + 2fi−1/2 + fi) ≡ T

(i)
2 (f),

with an associated error expression,

I(i)
− T

(i)
2 =

−1

12
(
hi

2
)3

[

f
′′

(ξ̄i) + f
′′

(ξ̂i)
]

=
−h3

i

48
f

′′

(ξ̃i).

If h is ‘small enough’, (ie, f
′′

(ξ̄i) ≈ f
′′

(ξ̂i) ≈ f
′′

(ξ̃i) ) then subtracting
these two error expressions we obtain,

(I(i)
− T

(i)
1 ) − (I(i)

− T
(i)
2 ) = T

(i)
2 − T

(i)
1

≈

−h3
i

12
f

′′

(ξi) [1 − 1/4] =
−3

48
h3

i f
′′

(ξi).
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Error Estimate for CT Rule (cont)

We can then estimate the error associated with T
(i)
2 as 1/3

[

T
(i)
2 − T

(i)
1

]

and, after summing over all M subintervals,

EST2M ≡

M
∑

i= 1

1

3
(T

(i)
2 − T

(i)
1 ),

=
1

3

[

M
∑

i= 1

T
(i)
2 −

M
∑

i= 1

T
(i)
1

]

,

=
1

3
[T2M − TM ] .

Furthermore by applying the MVT for sums, it can easily be shown that

EST2M also equals −f
′′

(ξ)
24 (h

2 )2(b − a) for some ξ ∈ (a, b).
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Observations re Error Est
This estimate is only justified for hi sufficiently small so that f

′′

is
almost constant over each subinterval.

The computation of EST2M can be subject to large relative error as it
involves the subtraction of ‘near equals’.

A validity check is available based on monitoring the ratio
|ESTM / EST2M | which should be close to 4.
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Error Est for Comp Simpsons
A similar analysis for Composite Simpsons rule justifies,

EST S

2M =
1

15
[S2M − SM ] ,

= −
f4(η)

18 0
(
h

4
)4(b − a).

where the corresponding validity check is that |EST S

M
/ EST S

2M
| ≈ 16 .

Exercise: Show that T2M + EST T

2M
= SM .
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An Example

Consider applying the Composite Trapezoidal and Composite Simpsons
rules in single and double precision floating point arithmetic ( β = 1 6 and
s = 5, s = 1 2 , respectively) to approximate

∫
1

0
e−x

2

d x .

The numerical results are presented in the attached Table and they clearly
indicate the ability of the validity check to reflect when the error estimate
can be trusted. Note that we have only justified it in the limit as h → 0 and
in the situation where truncation error dominates round-off error.
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