
Num. Integration - Quadrature

Basic Problem – Approximation of integrals
We will investigate methods for computing an approximation to the definite
integral:

I(f) ≡

∫ b

a

f(x)d x.

The obvious generic approach is to approximate the integrand f(x) on the
interval [a ,b] by a function that can be integrated exactly (such as a
polynomial) and then take the integral of the approximating function to be
an approximation to I(f).
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Interpolatory Rules
When an interpolating polynomial, Pn(x),is used the corresponding
approximation I(Pn(x)) is called an interpolatory rule, Consider writing
Pn(x) in Lagrange form,

Pn(x) =
n

∑

i=0

f(xi)li(x),

where li(x) is defined by

li(x) =
n

∏

j=0,j 6=i

(

x − xj

xi − xj

)

.

We then have
∫ b

a

Pn(x)d x =

∫ b

a

n
∑

i=0

f(xi)li(x)d x

=
n

∑

i=0

f(xi)

∫ b

a

li(x)d x ≡

n
∑

i=0

ωif(xi).
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Observations

The ‘weights’ (the ωi’s) depend only on the interval (the value of a and
b) and on the xi’s. In particular these weights are independent of the
integrand.

The interpolatory rules then approximate I(f) by a linear combination
of sampled integrand evaluations.

If a = x0 < x1 < · · ·xn = b are equally spaced the corresponding
interpolatory rule is called a Newton-Coates quadrature rule.

CSCC51H- Numerical Approx, Int and ODEs – p.68/177



Errors in Interpolatory Rules
The error associated with an interpolatory rule is E(f) = I(f) − I(Pn) and
satisfies,

E(f) =

∫
b

a

f(x)d x−

∫
b

a

Pn(x)d x=

∫
b

a

[f(x)−Pn(x)]d x,

=

∫ b

a

En(x)d x,

where En(x) is the error in polynomial interpolation and satisfies,

En(x) = (x − x0)(x − x1) · · · (x − xn)f [x0x1 · · ·xnx],

= Πn(x)f [x0x1 · · ·xnx].

In some special cases we can simplify this expression to obtain estimates

and/or more insight into the behaviour of the error.
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Error Analysis - Special Cases
First special case – If Πn(x) is of one sign ( on [a ,b]) then the Mean
Value Theorem for Integrals implies,

E(f) =

∫ b

a

f [x0x1 · · ·xnx]Πn(x)d x,

= f [x0x1 · · ·xnξ]

∫ b

a

Πn(x)d x,

for some ξ ∈ [a ,b]. Also since f [x0x1 · · ·xnξ] = fn+1(η)
(n+ 1)! for some

η ∈ (a ,b), we have shown that if Πn(x) is of one sign then,

E(f) = 1
(n+ 1)!f

n+ 1(η)
∫ b

a
Πn(x)d x
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Error Analysis - Special Cases
Second special case – If

∫
b

a
Πn(x)d x = 0 we have, for arbitrary xn+1,

f [x0x1 · · ·xnx] = f [x0x1 · · ·xnxn+1] + f [x0x1 · · ·xn+1x](x − xn+1),

and therefore,

E(F ) =

∫
b

a

f [x0x1 · · ·xnx]Πn(x)d x,

=

∫ b

a

f [x0x1 · · ·xn+1]Πn(x)d x +

∫ b

a

f [x0x1 · · ·xn+1x]Πn+1(x)d x,

=

∫
b

a

f [x0x1 · · ·xn+1x]Πn+1(x)d x.

As a result, if
∫

b

a
Πn(x)d x = 0 and we can choose xn+1 so that Πn+1(x) is

of one sign, then using a similar argument as for the first special case, it
follows that, if

∫
b

a
Πn(x)d x = 0 and Πn+1(x) is of one sign,

E(f) = 1
(n+2 )!f

n+2 (η)
∫

b

a
Πn+1(x)d x
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Examples of Interp. Rules
Trapezoidal Rule (an example of the first special case):

T (f) ≡

∫

b

a

P1(x)d x,

where x0 = a and x1 = b. We then have,

P1(x) = l0(x)f0 + l1(x)f1 =
x − x1

x0 − x1

f0 +
x − x0

x1 − x0

f1.

Therefore we have

T (f) =

∫ b

a

x − b

a − b
d xf(a) +

∫ b

a

x − a

b − a
d xf(b),

=

(

b − a

2

)

f(a) +

(

b − a

2

)

f(b) =

(

b − a

2

)

[f(a) + f(b)].
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Examples of Interp. Rules
We also have that Π1(x) = (x − a)(x − b) is negative for x ∈ [a, b] and∫ b

a
Π1(x)d x = −

(b−a)3

6 . We therefore have satisfied the conditions of the
first special case and this implies,

T (f) = ( b−a
2 )[f(a) + f(b)], ET (f) = −f

′′

(η)
12 (b − a)3.

Simpsons Rule (an example of the second special case):

S(f) ≡

∫ b

a

P2(x)d x,

with x0 = a, x1 = a+b
2 , x2 = b.

CSCC51H- Numerical Approx, Int and ODEs – p.73/177



Simpsons Rule
Exercise: Using

P2(x) = l0(x)f(a) + l1(x)f

(

a + b

2

)

+ l2(x)f(b),

where

l0(x) =
(x −

a+b

2
)(x − b)

(a −

a+b

2
)(a − b)

, l1(x) =
(x − a)(x − b)

(a+b

2
− a)(a+b

2
− b)

,

l2(x) =
(x − a)(x −

a+b

2
)

(b − a)(b − a+b

2
)
.

Simplify and verify (after some tedious algebra) that,

S(f) = [

∫ b

a

l0(x)d x]f(a) + [

∫ b

a

l1(x)d x]f(
a + b

2
) + [

∫ b

a

l2(x)d x]f(b),

...
...

=

(

b − a

6

)[

f(a) + 4f(
a + b

2
) + f(b)

]

.
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Simpsons Rule (cont)
Note that for x ∈ [a, b], Π2(x) is antisymetric about a+b

2 and this implies∫ b

a
Π2(x)d x = 0. Furthermore by choosing x3 = a+b

2 we have

Π3(x) = (x − a)(x −
a + b

2
)2(x − b),

is of one sign and this implies,

ES(f) = I(f) − S(f) =
1

4!
f4(η)

∫ b

a

Π3(x)d x.

But
∫ b

a
Π3(x)d x = −

4
1 5 ( b−a

2 )5 so we have,

S(f) = ( b−a
6 )[f(a) + 4f(a+b

2 ) + f(b)] ES(f) = −f4(η)
9 0 ( b−a

2 )5
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Gaussian Quadrature
Recall that the error for interp. rules satisfies,
E(f) =

∫ b

a
f [x0x1 · · ·xnx]Πn(x)d x, and if

∫ b

a
Πn(x)d x = 0 we have,

E(f) =

∫
b

a

f [x0x1 · · ·xn+1x]Πn+1(x)d x,

for any xn+1. Now if
∫ b

a
Πn+1(x) = 0 as well we can show similarly,

E(f) =

∫
b

a

f [x0, x1, · · ·xn+2 , x]Πn+2 (x)d x.

In general if we let q0(x) ≡ 1 and qi(x) ≡ (x − xn+1) · · · (x − xn+i) for

i = 1, 2, · · · (m − 1). We can then show that if
∫

b

a
Πn(x)qi(x)d x = 0, for

i = 0, 1, · · · (m − 1) then,

E(f) =

∫ b

a

f [x0x1 · · ·xn+mx]Πn+m(x)d x.
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Gaussian Quadrature (cont)
The key idea of GQ is to choose the interpolation points, (x0, x1, · · ·xn)
such that

∫ b

a
Πn(x)q(x)d x = 0 for all polynomials, q(x), of degree at most

n. In particular for the choice q(x) = qi(x) for i = 0, 1, · · ·n we have∫
b

a
Πn(x)qi(x)d x = 0 and,

E(f) =

∫
b

a

f [x0x1 · · ·x2n+1x]Π2n+1(x)d x.

To ensure that Π2n+1(x) is of one sign for x ∈ [a b] we can choose
xn+i+1 = xi for i = 0, 1, · · ·n and we then have Π2n+1(x) = Π2

n(x),

E(f) = f [x0x1 · · ·x2n+1ξ]

∫
b

a

Π2
n(x)d x =

1

(2n + 2)!
f2n+2(η)

∫
b

a

Π2
n(x)d x.

Note that these rules will be exact for all polynomials of degree at most

2n + 1 since f2n+2(η) ≡ 0.
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GQ – Orthoganal Polynomials
How do we choose the xi’s to ensure that

∫ b

a
Πn(x)q(x)d x = 0 for all

polynomials, q(x) of degree at most n ? This question leads to the study
of orthogonal polynomials.

Definition: The set of polynomials {r0(x), r1(x), · · · rk(x)} is orthogonal
on [−1, 1] iff the following two conditions are satisfied:

∫
1

−1
ri(x)rj(x)d x = 0, for i 6= j,

The degree of ri(x) is i for i = 0, 1, · · · k.
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Properties
Properties of orthogonal polynomials:

Any polynomial qs(x) of degree s ≤ k can be expressed as.

qs(x) =
s∑

j=0

cjrj(x).

rk(x) is orthogonal to all polynomials of degree less than k. That is,∫
1

−1
rk(x)qs(x)d x = 0 for s < k. (This follows from the previous

property.)

rk(x) has k simple zeros all in the
interval [−1, 1].
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Proof (last property)
For rk(x), let {µ1, µ2, · · ·µm} be the set of points in [−1, 1] where rk(x)

changes sign. It is clear that each µj is a zero of rk(x) and all simple
zeros of rk(x) in [−1, 1] must be in this set. We then have m ≤ k as the
maximum number of zeros of a polynomial of degree k is k. Assume
m < k. We then have,

q̂m(x) ≡
m∏

i= 1

(x − µi),

is a polynomial of degree m < k that changes sign at each µi and,∫
1

−1

q̂m(x)rk(x)d x = 0.

But q̂m(x) and rk(x) have the same sign for all x in [−1, 1] (they change

sign at the same locations). This implies a contradiction (the integrand is

of one sign but the integral is zero)– our assumption must be false. We

must therefore have m = k.
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3-Term Recurrence
The rk(x) also satisfy,

rs+1(x) = as(x − bs)rs(x) − csrs−1(x),

for s = 1, 2, · · · k, where the as are normalization constants, r
−1(x) = 0,

and if ts =
∫ 1

−1
r2
s(x)d x then,

bs =
1

ts

∫ 1

−1

xr2
s
(x)d x, cs =

asts

as−1ts−1

.

For example, we obtain the classical Legendre polynomials if we
normalise so rs(−1) = 1. This leads to,

as =
2s + 1

s + 1
, bs = 0, cs =

s

s + 1
.

CSCC51H- Numerical Approx, Int and ODEs – p.81/177


