Num. Integration - Quadrature

Basic Problem — Approximation of integrals
We will investigate methods for computing an approximation to the definite
integral:

1=/ ' fla)de.

The obvious generic approach is to approximate the integrand f(x) on the
interval [a, b] by a function that can be integrated exactly (such as a
polynomial) and then take the integral of the approximating function to be
an approximation to I(f).
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|nterpolatory Rules

hen an interpolating polynomial, P, (x),is used the corresponding —‘
approximation I (P, (x)) is called an interpolatory rule, Consider writing
P, (z) in Lagrange form,

We then have

/ab Pp(z)dx = /abif(%)li(x)dx

= Zf(«%‘z')/

i=0 a
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Observations

N N

®» The ‘weights’ (the w;’s) depend only on the interval (the value of a and
b) and on the x;’s. In particular these weights are independent of the
integrand.

® The interpolatory rules then approximate I( f) by a linear combination
of sampled integrand evaluations.

® fa=2y<xz <---x, =b are equally spaced the corresponding
interpolatory rule is called a Newton-Coates quadrature rule.
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Errorsin Interpolatory Rules

The error associated with an interpolatory rule is E(f) = I(f) — I1(P,) and
satisfies,

E(f) = /ab f(x)dx—/ab Pn(i’)dxz/ab[f(iﬁ)—Pn(fv)]dfﬂ,
_ /ab E, (z)dz,

where F,,(x) is the error in polynomial interpolation and satisfies,

E.(r) = (x—x0)(x—x1) - (x —xp) flror: - T01],

= IL,(x)flrozy - TprTl.

In some special cases we can simplify this expression to obtain estimates
and/or more insight into the behaviour of the error.
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Error Analysis - Special Cases

’7.9 First special case — If I1,,(x) is of one sign ( on [a, b]) then the Mean —‘
Value Theorem for Integrals implies,

b
E(f) = / flxoxy - - xpx]Il, (x)dx,

b

_ f[a:oa:1--°33n§]/ IL, (z)dz,

a

for some £ € [a,b]. Also since flrozy - x,&] = J}ij;?,) for some

n € (a,b), we have shown that if IT,,(x) is of one sign then,

E(f) = G/ () [, T (2)da
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Error Analysis - Special Cases

Second special case — If f: IL,,(x)dx = 0 we have, for arbitrary z,, 1,

flroxy - zpx] = flrox: - TpTppa] + flroz: - Tnp12)( — Tpg),

and therefore,

b
E(F) = /f[xoxl---xna:]ﬂn(x)da:,
b b
= /f[xox1---$n+1]ﬂn($)d$+/ flzoz -+ @npr2]Ily 41 (2)da,

b
— [ S )l (@)

As a result, if f: IL,, (x)dx = 0 and we can choose x,, 1 so that IT,,,1(x) is
of one sign, then using a similar argument as for the first special case, it
follows that, if f;’ IL, (x)dx = 0 and II,, .1 () is of one sign,

E(f) = Gz /"2 () J, Ty (2)da
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Examples of Interp. Rules

Trapezoidal Rule (an example of the first special case):
b
1(5)= | P,

where xo = a and x; = b. We then have,

Pi(z) =lo(x)fo+lL(x)fi = oo Jo+

o — 1 1 — X0

Ir — X

fi.

Therefore we have

b o b
1) = [ ijdat)+ [ —defo)

= (58 @+ (550) 0= (552 @ + 50

ek



Examples of Interp. Rules

’7We also have that Il; () = (x — a)(x — b) is negative for x € |[a, b] and —‘

f; I (x)dx = —%. We therefore have satisfied the conditions of the

first special case and this implies,

T(f) = (559)[f(a) + fO), ET(f) = =L 20— a)®

Simpsons Rule (an example of the second special case):

with o = a,x1 = 422, x5 = b.
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Simpsons Rule

’*Exercise: Using
Pa(o) = o(o)f@) + h)f (57 ) + 120170

where
e e)e—p) . (@-a)z-b
o) = T w gy T gy )
@ —a)(e— oY)
ZQ(ZE) - (b . h— a—l—b)

)
Simplify and verify (after some tedious algebra) that,

SU) = 1 b@dsli@ -+ h@da )+ ([ ta(a)dslfo),




Simpsons Rule (cont)

Note that for = € [a, b], II>(z) is antisymetric about %2 and this implies —‘
f; I (z)dz = 0. Furthermore by choosing z3 = %% we have

is of one sign and this implies,
b
E(f) = 1() = 5() = 70 | Ta(w)de

But f; II3(z)dx = —=(2%5%)° so we have,

S(f) = (59 [f(a) + AF(<£2) + F(B)] || BS(f) = =L (b52)?
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Gaussian Quadrature

Recall that the error for interp. rules satisfies, —‘
E(f) = f; flxoxy - - - xpx]ll, (x)dx, and if f; IL, (x)dx = 0 we have,

b
B(f) = [ flanmn 1)l (o)
for any x,, ;1. Now if f; IL,,4+1(z) = 0 as well we can show similarly,

b
E(f) = / Flwo, @1, s e)nyo(@)dr.

In general if we let go(z) =1 and ¢;(x) = (x — xpy1) - - (x — Tp44) fOr
i=1,2,---(m—1). We can then show that if ff IL,(z)q;(x)dx = 0, for
i=0,1,---(m —1) then,

b
E(f)= / flroxy - xpomx|yrm (z)d.
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Gaussian Quadrature (cont)

The key idea of GQ is to choose the interpolation points, (zq, x1,- - - %) —‘
such that ff IL,, (x)q(z)dz = 0 for all polynomials, ¢(x), of degree at most

n. In particular for the choice ¢(x) = ¢;(x) fori = 0,1, - - - n we have

f IT,, ( z)dx = 0 and,

b
E(f):/ flwowy -+ won12|lapqq (z)de.

To ensure that I, 1 () is of one sign for x € [a b] we can choose
Tniir1 = x; fori=0,1,---n and we then have Il,, 1 (z) = 112 (z),

b b
B(f) = flwows - - wamsaf] / Hi(w’)d%’:mf%“(n) / I (2) .

Note that these rules will be exact for all polynomials of degree at most
2n + 1 since f2"2(n) = 0.

L, |

CSCC51H- Numerical Approx, Int and ODEs — p.77/177

e



GQ - Orthoganal Polynomials

How do we choose the z;’s to ensure that f; IL, (x)q(x)dx = 0O for all
polynomials, ¢(x) of degree at most n ? This question leads to the study

of orthogonal polynomials.

® Definition: The set of polynomials {rq(x),r1(x),---ri(z)} is orthogonal
on [—1, 1] iff the following two conditions are satisfied:

o ! ri(@)ry(@)de =0, fori # j,
» The degree of r;j(x)isifori=0,1,---k.
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Properties

’71 Properties of orthogonal polynomials: —‘
» Any polynomial ¢,(x) of degree s < k can be expressed as.

S

as(x) = ) _ejri@).

J=0

r rk( ) is orthogonal to all polynomials of degree less than k. That is,
f  7k(x)gs(x)dx = 0 for s < k. (This follows from the previous

property.)

» ri(z) has k simple zeros all in the
interval [—1, 1].
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Proof (last property)

For ri(x), let {u1, po, - - - um } be the set of points in [—1, 1] where ry(z) —‘
changes sign. It is clear that each p; is a zero of r;(z) and all simple

zeros of ri(x) in [—1, 1] must be in this set. We then have m < k as the
maximum number of zeros of a polynomial of degree £ is k. Assume

m < k. We then have, m

Gm(z) = | [ (@ = a),
is a polynomial of degree m < k tha%[:c]hanges sign at each p; and,

/1 Gm ()7 (x)dx = 0.

—1
But ¢,,(z) and ri(x) have the same sign for all x in [—1, 1] (they change

sign at the same locations). This implies a contradiction (the integrand is
of one sign but the integral is zero)— our assumption must be false. We
must therefore have m = k.
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3-Term Recurrence
’*The ri(x) also satisfy, —‘

rsi1(x) = as(x — bs)rs(x) — csrs_1(x),

fors =1,2,---k, where the as are normalization constants, r_;(x) = 0,
and if t, = f_ll r2(x)dx then,

S

asts

1 1
bs = —/ rri(r)de, cg= ——"—.
ts 1 as_1ts—1
For example, we obtain the classical Legendre polynomials if we
normalise so r;(—1) = 1. This leads to,
_ 2s+1 S

As = ) bSZO, Cs — .
s+1 s+1
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