
Piecewise Cubic Approx.
We will consider three possibilities.

Piecewise Cubic Interpolant: On each [xi−1, xi], introduce
ξi0 = xi−1, ξi3 = xi and two additional points ξi1, ξi2 to define Pi,3(x).
We then have,

|f(x) − S(x)| ≤
L

4 !
h4, h =

M
m a x
i= 1

|xi − xi−1|.

Note that S(x) is continuous but not ‘smooth’.

CSCC51H- Numerical Approx, Int and ODEs – p.48/177

Piecewise Cubic Hermite
Define P̄i,3(x) to be the unique cubic polynomial associated with [xi−1, xi]

such that P̄i,3(xi−1) = fi−1, P̄
′

i,3(xi−1) = f
′

i−1
, P̄i,3(xi) = fi and

P̄
′

i,3(xi) = f
′

i .

The resulting S̄(x) will be continuous and differentiable since
P̄

′

i,3(xi−1) = f
′

i−1
= P̄

′

i−1,3(xi−1).

The error in S̄(x) satisfies

|f(x) − S̄(x)| ≤
L

4 !
(x − xi−1)

2(x − xi)
2,≤

L

4 !
(h/ 2)4,

where L ≥ m a x a≤x≤b { |f
4(x)|} and h = m a x M

i= 1
|xi − xi−1|.

S̄(x) will be continuous and ‘smooth’ but S̄
′′

(x) will usually be
discontinuous.

CSCC51H- Numerical Approx, Int and ODEs – p.49/177

Cubic Splines
The basic idea is to determine the polynomial, P̂i,3(x), associated with
[xi−1, xi], by requiring P̂i,3(x) to interpolate fi−1, fi and have continuous
first and second derivatives at xi−1.

Consider the following representation of P̂i,3(x),

P̂i,3(x) = ci0 + ci1(x − xi−1) + ci2(x − xi−1)
2 + ci3(x − xi−1)

3,

The piecewise polynomial, Ŝ(x), is determined by specifying 4M

linear equations which uniquely determine the cij ’s. To do this we let
hi = xi − xi−1 and we associate ‘interpolation’ and ‘smoothness’
constraints with each subinterval.

CSCC51H- Numerical Approx, Int and ODEs – p.50/177

Cubic Splines (cont.)
On the first subinterval (3 interpolation constraints),

P̂
′

1,3
(x0)=? ⇒ c11 =? ,

P̂1,3(x0)=f0 ⇒ c10 =f0,

P̂1,3(x1)=f1 ⇒ c10+c11h1+c12h
2

1
+c13h

3

1
=f1,

On the second subinterval (2 interpolation and 2 smoothness
constraints),

CSCC51H- Numerical Approx, Int and ODEs – p.51/177

Cubic Splines (cont.)
In general on the i

th subinterval (2 interpolation and 2 smoothness
constraints),

And finally on the last subinterval we impose an additional
interpolation constraint:

P̂
′

M,3(xM) = cM,1 + 2cM,2hM + 3cM,3h
2

M = ?.

CSCC51H- Numerical Approx, Int and ODEs – p.52/177

Observations
The two extra interpolation constraints imposed at x0 and xM can be
set by specifying f

′

0
and f

′

M or by using the respective approximating
values, f [x0x1] and f [xM−1xM] or by replacing these constraints with
P̂

′′

1,3(x0) = P̂
′′

M,3(xM) = 0. The latter choice leads to what are called
‘natural splines’.

The total number of linear equations is then 3 + 4(M − 1) + 1 = 4M .
This system can be shown to be nonsingular as long as the xi’s are
distinct.

The error bound for splines is similar to that for cubic Hermite. That is,
it can be shown that, in most cases

|f(x) − Ŝ(x)| ≤
5L

4!
(h/ 2)4

(although for natural splines we only have O(h2) accuracy).

CSCC51H- Numerical Approx, Int and ODEs – p.53/177

Difficulties with Spline Approx.
They do not preserve monotone data. That is if the data is monotone
(increasing or decreasing) then, in some applications, so should the
interpolant.

They do not preserve discontinuous derivatives. For example in
representing ‘corners’.

They assume accurate data. In many applications (in particular in
those arising in CAD and computer graphics) one often wants to
represent the ‘general shape’ of the function or curve rather than
insisting on strict interpolation. (Bezier curves and/or linear least
squares can be used.)

CSCC51H- Numerical Approx, Int and ODEs – p.54/177

Interpolation in 2D
Consider the problem of approximating u(x,y) in a finite region of R2 or
approximating a surface in 3-dimensions. We can generalize the notion of
piecewise polynomials to higher dimensions.

The original region (or domain) is first decomposed (or partitioned)
into a collection of regularly-shaped subregions. Usually rectangles or
triangles are used.

Over each subregion (the triangular or rectangular mesh element) one
can define a bi-variate polynomial (in x and y) and use the total
collection of such polynomials to define the bivariate piecewise
polynomial, S(x,y).

One can define the coefficients of the polynomials associated with
each element by imposing interpolation or continuity constraints at the
boundaries.

CSCC51H- Numerical Approx, Int and ODEs – p.55/177

Data Fitting
Given data {xi, fi}

m

i=0
find the polynomial pn(x) of degree at most

n, pn(x) = c0 + c1x + · · · cnxn, such that G(c) is minimized,

G(c) =
m∑

i=0

(pn(xi) − fi)
2.

Other norms could be used–for example,
Ĝ(c) =

∑
m

i=0
|pn(xi) − fi| or G̃(c) = m a x m

i=0
|pn(xi) − fi|, but these

are not differentiable and the resulting algorithms are more complex.

We will assume that the xi’s are distinct and m > n. From linear
algebra we know that these assumptions will guarantee a full rank
problem with a unique solution.

CSCC51H- Numerical Approx, Int and ODEs – p.56/177

Data Fitting (cont)
For a given polynomial, pn(x), let ri(c) = pn(xi) − fi for i = 0, 1, · · ·m. We
then have,

ri(c) = c0 + c1xi + · · · cnxn

i
− fi,

=
[

Ac − f
]

i
,

where A is the (m + 1) × (n + 1) matrix,

A =

















1 x0 · · · xn

0

1 x1 · · · xn

1

...
...

...
...

1 xm · · · xn

m

















,

c ∈ <n+ 1, c = (c0, c1, · · · cn)T and f ∈ <m+ 1 is f = (f0, f1, · · · fm)T .

CSCC51H- Numerical Approx, Int and ODEs – p.57/177

Computing the ‘Best Fit’
We will show that the polynomial that minimizes G(c) is the
solution of the linear system of equations,

AT Ac = AT f.

These are called the Normal Equations. A solution always
exists and can be computed in an efficient and stable way.

CSCC51H- Numerical Approx, Int and ODEs – p.58/177

Computing the ‘Best Fit’ (cont)
From calculus we know that G(c) is a minimum when,

∂G

∂cj

= 0 for j = 0, 1, · · · n .

But since G(c) =
∑m

i=0
r2

i (c) we have,

∂G

∂cj

=
∂

∂cj

[

m
∑

i=0

r2

i (c)

]

=
m

∑

i=0

∂

∂cj

(r2

i (c)),

= 2

m
∑

i=0

ri(c)
∂ri(c)

∂cj

.

CSCC51H- Numerical Approx, Int and ODEs – p.59/177

Normal Equations (cont)
From the definition of ri(c) we have,

∂ri(c)

∂cj

=
∂

∂cj

[

Ac − f
]

i
= (ai,j) = x

j
i ,

for i = 0, 1, · · ·m; j = 0, 1, · · ·n.
It then follows that

∂G

∂cj

= 2
m

∑

i=0

ri(c)ai,j = 2
(

AT r
)

j
.

Therefore to achieve ∂G
∂cj

= 0 for j = 0, 1, · · ·n we must have,

(

AT r
)

j
= 0, for j = 0, 1, · · ·m.

CSCC51H- Numerical Approx, Int and ODEs – p.60/177

Normal Equations (cont)
This is equivalent to asking that,

AT r = 0 or AT
(

Ac − f
)

= 0.

Note that the matrix AT A is a square (n + 1) × (n + 1) nonsingular matrix
and we can therefore compute the best fit least squares polynomial, pn(x)

by solving the linear system:

AT Ac = AT f

These linear equations are called the Normal Equations.

CSCC51H- Numerical Approx, Int and ODEs – p.61/177

Efficient Solution of ATAc = ATf
To solve the Normal Equations efficiently we use a QR based algorithm
that doesn’t require the explicit computation of the (possibly
ill-conditioned) matrix AT A.
Consider forming the QR factorization (or Schur decomposition) of the
(m + 1) × (n + 1) matrix A,

A = QR = (Q1Q2 · · ·Qn+ 1)R,

where Q is an orthogonal matrix and R is an upper triangular matrix. This
is a standard factorization in numerical linear algebra and is usually
accomplished using a modified Gram Schmidt algorithm or an algorithm
based on the use of a sequence of ‘Householder reflections’. We will
consider the latter approach.

CSCC51H- Numerical Approx, Int and ODEs – p.62/177

Efficient Algorithm (cont)
We determine Q as a product of n + 1 Householder reflections:

QA = R ⇔ QT

n+1(Q
T

n
· · ·QT

1 A)) · · ·) = R,

where each Qi = QT

i
is an (m + 1) × (m + 1) Householder reflection, R is

an (m + 1) × (n + 1) upper triangular matrix,

R =

x x · · · x

0 x · · · x

0 0 · · · x

...
...

... x

0 0 · · · 0

...
...

...
...

0 0 · · · 0

≡
R

0

,

and R is an (n + 1) × (n + 1) upper triangular matrix.

CSCC51H- Numerical Approx, Int and ODEs – p.63/177

Efficient Algorithm (cont)
We then have,

AT A = (QR)TQR = RTQTQR = RTR,

where

R
T
R=

x 0 · · · 0

x x · · · 0

...
... · · · 0

x x · · · 0

x x · · · x

0 x · · · x

0 0 · · · x

...
... · · · x

...
...

...
...

0 0 · · · 0

.

= R
T

0

R

0

= R
T
R.

CSCC51H- Numerical Approx, Int and ODEs – p.64/177

Normal Equations - Summary
Therefore to solve the normal equations we need only solve the
equivalent linear system,

RT Rc = AT f.

This requires the computation of AT f (at a cost of (n + 1)(m + 1) flops)
and two triangular linear systems (at a cost of n2 flops). The cost of
determining the QR factorization of A is n2m + O(nm) and therefore the
total cost of this algorithm to determine c is n2(m + 1) + O(nm) flops.

Note that in most applications m is much larger than n and n is often less

than 4.

CSCC51H- Numerical Approx, Int and ODEs – p.65/177

