
Key Theorem
Given f(x) r-times differentiable on [a , b] then

f [x0x1 · · ·xr] =
fr(η)

r!

for some η ∈ [a , b].

Proof:

For r = 1 this is the Mean Value Theorem for derivatives. Now, for the

general case, let Pr(x) be the unique polynomial of at most degree r that

interpolates f(x) at (x0, x1, · · ·xr). Then Er(x) = f(x) − Pr(x) has r + 1

zeros in [a , b]. By repeatedly applying Rolle’s Theorem we see that

CSCC51H- Numerical Approx, Int and ODEs – p.34/177

Proof (cont.)
E

′

r
(x) has at least r distinct zeros in [a , b],

⇒ E
′′

r
(x) has at least r − 1 distinct zeros in [a , b],

...

⇒ Er

r
(x) has at least 1 zero in [a , b].

Let η be one zero of Er

r
(x) in (a , b).

0 = Er

r
(η) ⇒ fr(η) = P r

r
(η).

But since Pr(x) is a polynomial of at most degree r, P r

r
(x) is a constant.

More precisely
P r

r
(η) = f [x0x1 · · ·xr]r!.

and we have the desired result:
fr(η)

r!
= f [x0x1 · · ·xr].

CSCC51H- Numerical Approx, Int and ODEs – p.35/177

Corollary
If f(x) is n + 1 times differentiable and Pn(x) interpolates f(x) at the n + 1

distinct points (x0, x1, · · ·xn) ∈ [a , b] then ∀x ∈ (a , b) ∃η ∈ (a , b) such that,

En(x) =
fn+ 1(η)

(n + 1)!

n∏

i= 0

(x − xi).

This is the exact error in interpolation. We can use it to derive an
overall error bound and to provide guidance in the choice of
interpolation points.

We may not have |En(x)| → 0 since |fn+ 1| may grow faster than
(n + 1)!.

CSCC51H- Numerical Approx, Int and ODEs – p.36/177

Minimising the Error
What can be done to minimise |En(x)| for (x0, x1, · · ·xn) ∈ [a, b] ?

En(x) =
fn+ 1(η)

(n + 1)!

n∏

i= 0

(x − xi)

One approach would be to choose the xi’s to make

m a x
a≤x≤b

n∏

i= 0

|x − xi|

a minimum. This leads to the choice of Chebyshev points where we have

m a x
a≤x≤b

n∏

i= 0

|x − xi| = 2 (
b − a

4
)n+ 1.

CSCC51H- Numerical Approx, Int and ODEs – p.37/177

Computing Divided Differences
We can exploit the properties of divided differences to derive an efficient
scheme for computing and estimating the error in polynomial interpolation.
If one introduces a two dimensional tableau of divided differences,
dij , i = 0, 1, · · ·n; j = 0, 1, · · · i where

dij = f [xi−jxi−j+1 · · ·xi]

=
f [xi−jxi−j+1 · · ·xi−1] − f [xi−j+1xi−j+2 · · ·xi]

xi−j − xi

=
di−1,j−1 − di,j−1

xi−j − xi

.

then computing the entries in the tableau by rows is easy and effective (by
hand or in MATLAB).

Try some examples!

CSCC51H- Numerical Approx, Int and ODEs – p.38/177

An Example
Consider determining the cubic polynomial, P3(x), and estimating the
associated error (over the interval [−2, 2]) given the data values,
f(−2) = 4, f(−1) = 6, f(0) = 1, f(1) = 0 and f(2) = 2. Note that the
nodes or interpolation points defining P3(x) are (−2,−1, 0, 1) while the
node x4 = 2 is used only in the derivation of the error estimate.

CSCC51H- Numerical Approx, Int and ODEs – p.39/177

Example (cont)
We then have

P3(x) = 4 + 2 (x + 2) − 7/2 (x + 2)(x + 1)

+11/6 (x + 2)(x + 1)x,

and the associated error estimate,

e s tn(x) = f [x0x1x2x3x4]

3∏

i= 0

(x − xi)

= −1/2 (x + 2)(x + 1)(x)(x − 1).

CSCC51H- Numerical Approx, Int and ODEs – p.40/177

Hermite Interpolation
In some applications one wants polynomials which interpolate derivative
as well as function values. That is we want to determine a polynomial
Pn(x), of degree at most n that satisfies Pn(xi) = f(xi) for i = 0, 1, · · · k

and P
′

n
(xi) = f

′

(xi) for i = 0, 1, · · · r (where n = k + r + 1).

Note that each of the k+r+2 constraints is linear in the unknowns (the co-

efficients defining the polynomial Pn(x)) and, as for standard interpolation,

we can solve for these coefficients by solving a linear system of n+1 equa-

tions in n + 1 unknowns. In particular the algorithm based on the divided

difference tableau to constructively generate the Newton form of Pn(x) can

easily be generalized to handle this class of problems.

CSCC51H- Numerical Approx, Int and ODEs – p.41/177

Hermite Interp. (cont)
Recall that for standard interpolation we compute

Pn(x) = f [x0] + f [x0x1](x − x0) +

· · · f [x0x1 · · ·xn](x − x0) · · · (x − xn−1),

using the diagonal entries of the DD tableau. The first three columns of
this tableau are :

xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]
x0 f [x0] = f(x0)

x1 f [x1] = f(x1)
f(x0)−f(x1)

x0−x1

= f [x0, x1]

x2 f [x2] = f(x2)
f(x1)−f(x2)

x1−x2

= f [x1, x2]
f [x0,x1]−f [x1,x2]

x0−x2

...
...

...
...

xn f [xn] = f(xn) f(xn−1)−f(xn)
xn−1−xn

= f [xn−1, xn] f [xn−2,xn−1]−f [xn−1,xn]
xn−2−xn

CSCC51H- Numerical Approx, Int and ODEs – p.42/177

Hermite Interp. (cont)

In the limit as two interpolation nodes coalesce (ie, xm → xm+1), the
corresponding entries of the DD tableau become:

xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]
...

...
...

...
xm f [xm] = f(xm)

xm+ 1 f [xm+ 1] = f(xm+ 1)
f(xm)−f(xm+1)

xm−xm+1
→ f

′

(xm)
...

...
...

...

This suggests that when the function value and derivative are both
prescribed at the node xm we introduce two rows in this tableau
(corresponding to xm) and the first 2 columns of the tableau are initialised
to: xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi]

...
...

...
...

xm f [xm] = f(xm)
xm f [xm] = f(xm) f

′

(xm)
...

...
...

...

CSCC51H- Numerical Approx, Int and ODEs – p.43/177

Hermite Interp. (cont)
With these modifications, the remaining entries in the
tableau are computed in the usual way (row by row) with
the diagonal entries yielding the Newton form of the
Hermite interpolating polynomial, Pn(x).

Note that the error analysis for Hermite interpolation is
analogous to that for standard interpolation and similar
error estimates can be justified.

CSCC51H- Numerical Approx, Int and ODEs – p.44/177

Piecewise Polynomial Approx.
Recall:

En(x) =
fn+1(η)

(n + 1)!

n∏

i= 0

(x − xi).

The basic idea is to obtain accurate approximations of f(x) on [a, b] by
subdividing the interval, a = x0 < x1 < · · · < xM = b and over each
sub-interval, [xi−1, xi], introduce interpolation points (ξi0, ξi1, · · · ξin), and
approximate f(x) by the interpolating polynomial Pi,n(x) of degree at
most n. The approximating function, S(x) is then defined on [a, b] by,

S(x) = Pi,n(x) for x ∈ [xi−1, xi],

and is referred to as a piecewise polynomial.

CSCC51H- Numerical Approx, Int and ODEs – p.45/177

Observations re PP
The evaluation of S(x) requires an initial search to determine i such
that x ∈ [xi−1, xi].

The error satisfies,

|f(x) − S(x)| = |
fn+ 1(η)

(n + 1)!

n∏

j= 0

(x − ξij)| ≤
L

(n + 1)!
hn+ 1

i ,

where L is a bound on |fn+ 1(x)| and hi = (xi − xi−1).

S(x) will be continuous if the endpoints of each subinterval are
interpolation points. That is, if the set of points [ξij]

n
j= 0 includes xi and

xi−1. S(x) will not in general be differentiable.

CSCC51H- Numerical Approx, Int and ODEs – p.46/177

An Example of PP Approx.
Piecewise Linear Interpolation:
On each subinterval [xi−1, xi] let Pi,1(x) be the linear polynomial
interpolating fi−1 and fi,

Pi,1(x) = a
(i)
0 + a

(i)
1 (x − xi−1),

where a
(i)
0 = fi−1 and a

(i)
1 = f [xi−1, xi]. Note that S(x) will then be

continuous and satisfy,

|f(x) − S(x)| <
L

2
h2,

where h is the maximum subinterval width. If the xi’s are equally spaced

we will have

h = (b − a)/M .

CSCC51H- Numerical Approx, Int and ODEs – p.47/177

