|nterpolation and Approximation
’7.9 The Basic Problem: —‘

Approximate a continuous function f(x), by a polynomial p(x), over
la, b].

» f(x) may only be known in tabular form.

» f(x) may be expensive to compute.

® Definition:
A polynomial p(x) interpolates f(z) at the nodes xg, x1, - - - x,, if
p(x;) = f(z;) fori=0,1,---n.
(Intuitively if f(z) and p(x) agree at the z; then they should be ‘close’
at nearby points.)
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Key Theorem

Given distinct nodes xzg, z1, - - - x,, and arbitrary fy, f1,--- fn, thereis a
unique polynomial p,,(x) of degree at most n that interpolates f(x) at

Loy L1, Ln-
Proof:

® Existence: (constructive)
Let

P.(x)=ag+ai(z —xg)+ - -an(x —x0) - (. —xpn_1),

For any choice of ag, a1, - - - a,, P,(x) will be of degree at most n. We
will choose the a; to ensure that P, (x;) = f;. This results in a system
of n + 1 linear equations in the n + 1 unknowns, ag, a1, - - - a,,. The it?
equation is:

ap + a1(x; —x9) + - an(x; —x0) -+ (2; — 1) = fi,
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Proof (cont)

In matrix form then, Ba = f, where —‘
= [ag, a1, - an)", f = [fo, f1,--- fu]", and B is the matrix,

: 1 for j = 0;,
Y (aci—xo)---(xi—a;j_l) forjzl,---n
® B is lower triangular since b;; contains a factor (z; — x;) for j > 1.
® b;; # 0since zg,x1, - x, are distinct. This implies B is nhonsingular
and there exists a unique solution a. Solving this triangular linear
system by forward substitution:

ag = f07

a1 = (f1—ao)/(z1— z0),

an : [fn—(ao+ - an_1(xn —x0)  (Tn — Tpn_2))]

[(xn —x0)(@n —21) -+ (Tn — Tp—1)]-

-
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Two Key Observations

B B

#® The first r + 1 terms, ag, a1, - - - a,-, determine a polynomia
of degree at most r that interpolates f(x) at g, z1, - - - z,.

# The resulting P, (x) satisfies the interpolation conditions
and the coefficients ag, a1, - - - a,, define the Newton Form
of this polynomial. (The Newton Form depends on the
nodes and their order.)
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Proof of Uniqueness

-

’7.0 Let ¢,,(x) be a polynomial of degree at most n such that ¢, (z;) = f; for
i=0,1,---n. Then with r(z) = P,(z) — ¢»(x) we observe that r(z) is a
polynomial of degree at most n such that r(x;) =0fori=20,1,---n.

Then, by Rolle’s theorem, »'(x) has n distinct zeros, " (z) hasn — 1
distinct zeros, ... and r™(x) has one zero in the interval containing the
nodes.

But this is impossible unless r(z) = 0, in which case ¢, (z) must equal
P, (x).
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Representation of P,(x)

The interpolating polynomial P, (x) is unique but it can be represented in —‘
different ways. Consider the following representations of P, (x):

® Monomials (powers of x or (x — w) ):

P.(x) =co+ crx+ - cpx™,

(In this case P, (x) is represented by the coefficients cg, ¢, - - - ¢, and
we do not need to know the nodes or their order to evaluate or use this
polynomial.)

® Newton Basis (or divided differences):

P.(z)=ag+ai(z —x9) + - an(x —x0) - (x — xp_1),

(In this case P, (x) is represented by the a;’s and one must know the
nodes and their order to use this polynomial.)
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Representation of P,(x) (cont)

® | agrange Basis: —‘
We introduce the ;" Lagrange basis function ¢;(x) (associated with

the nodes [z;]}_,) by

forj=0,1,---n
Then it is clear that ¢;(z) is a polynomial of degree n such that

0 forj=0,1,---n;7 # 1,
1 forj =i.
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L agrange Basis (cont)

It is also clear that any linear combination of the ¢, (z) will be a polynomial
of degree at most n. In particular,

Po(z) = ) fili (@),
7=0
since P, (x) is unique and the polynomial Z?:O fi¢;(x) satisfies,
ijgj(l‘z') = f;, fort=0,1,---n.
5=0

(In this case P, (x) is represented by the function values, fo, f1,--- f, and
we must know the nodes to use P, (x).)

The particular choice of what representation to use will depend on the ap-
plication. Often we will use the Lagrange form in our analysis but other
forms in our implementations.
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An Example

’7Consider the unique quadratic defined by the three interpolating —‘
conditions, P>(—1) =7, P,(0) = 2, and P,(1) =1 (that is,
xo=—1,x1=0,z9 =1and f, =7, f1 =2, fo = 1). The Lagrange basis is,

(x —0)(z—1) 1’ —x

ble) = oy - 2
o (z+D(x—-1) 2*-1 5
G@ = Gino-n - -1 LT
B (z+1z  2*+a
e = oo T 2
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An Example (cont)

-

In Lagrange form P (x) is
Py(xz) = folo(z)+ fila(z) + fala(w),

2 2
¢ —x i e
= 71— )+ 2(1 — 2°) + 5
( = 22 —3z+2 (in monomial form))
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Divided Differences
.

# Definition: The divided difference, f|xox1 - - x;] IS defined
to be a; the (i + 1)% coefficient of the interpolating
polynomial P,(x) written in Newton form.

-

Py(x) =ag+ai(x —xg) + - apn(x —x0) - (. — xp_1).

#» Recall that the first » + 1 coefficients of the Newton form
of P,(x) determine a polynomial of degree at most r that
Interpolates f(z) at the nodes (xg, 1, - - x,).
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Properties of Divided Differences

N N

® fleowr ] = fljox, 5],
where jg, j1,- - - 7; IS @ permutation of 0,1, - - - 4.

f[xoxl"'xi—l]_f[$1$2“'$7;]
To—T4 .

o f[ioﬂfl%] —
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Proof of First Property
’*The polynomial of degree at most i interpolating f(x) at (xg, 1, - x;) IS —‘
Pi(z) = flzo] + flzoz1](x — o) + -+« flzozs - ] (w — @0) -+ (¥ — 1),

Note that the coefficient of 2* in this polynomial is f[zoz1 - - - z;]. Similarly
the polynomial P;(z) interpolating f(z) at (z,,;,, - ;,) iS

Pz(x) :f[$j0]+f[$joxj1](x_$j0)+' ' 'f[xjole o sz](x _xjo) T (33 _x.ji—l)'

Now the sets [z, z1, - - - ;] and [z}, x;,, - - - ;,] are identical (only the
order may be different) so by uniqueness we have P;(z) = P;(z). In
particular the respective coefficients of 2* must agree and we have,

flwozy - xi] = flwjozy, - x5,].
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Proof of Second Property

Consider the orderings (x1, 2, - - - x;, xg) and (xg, z1, - - - z;). Writing Pi(:p)—‘
using the two different Newton Forms (corresponding to these different
orderings) we have,

Pi(z) = flzo]+ flwozi](z — o) + - flwows - wil(x — mo) -+ (& — z4-1)
= flr1] + flrrzo)(x —x1) + -+ - flerxo - - wixol(z — 1) -+ - (2 — ;).

Multiplying the first equation by (x — z;), the second equation by (x — z)
and subtracting we obtain,

(z — ) Pi(x) — (x — 20) Pi(x) = (0 — ;) Pi(),

or...
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Proof (cont)
@ w)P@) = Sl 2) = flo]@ - ) ]

+flwowy - xia](@ — o) - (@ — wim2) (T — @)
+flroxry - xi)(x —z0) -+ - (. — x4)
—flerze - xizol(z — x0) - - - (¢ — ;).
But the last term in this expansion vanishes and this implies the coefficient

of z* in the pOIynomiaI (CC() — CEZ)PZ(CC) IS f[xoxl SR CCZ'_l] — f[CL‘lng IR SI]Z]
We know this coefficient is (z¢g — z;) flzoz1 - - - ;] SO we can conclude,

f[ﬂﬁOlEl .. -jS_l] — f[ajlng .. xz] |

f[xoa’;l PR x’l,] -
o — X;
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Error in Interpolation

Let £, (x) = f(x) — P,(z). To investigate the behaviour of E,,(x) consider—‘
fixing z and determine the polynomial p,,+1(z) of degree at most n + 1 (in
z), interpolating f(z) at the n + 2 nodes (xg, %1, Tn, ).
pnt1(2) = [flzol + flrozi)(z —xo) + -+
flroxy - xpzx)(z —x0) -+ (2 — T0)
= P,(2)+flroxr - xpx|(z —x0) - (2 — ).

Evaluating this expression at z = = and using the fact that p,,.1(z) = f(z)
we have,

E.(z) = f(z)— Pu(x) = pnii(z) — Pu(z),

= flwows - wnz](x — 7o) - (x — ).
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Error Expression

fWe have shown, T

En(x) = flroxy - xpz](x — x0) -+ (. — xp)

Therefore if f|xox; - - - z,2] (@S a function of x) Is ‘slowly
varying’, then we can estimate F,(x) by

esty () = [[mo(x — i) flzows - - @]

for some z,,. 1.
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